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Abstract—Many robot use-cases put a robot in close con-
tact with people. These scenarios require the robot to make
complex decisions that—above all else—must be safe. Often,
sensor processing and decision making methods rely heavily on
machine learning, and these techniques are only as useful as the
training dataset. Current methods and datasets do not account
for enough variation or “extraordinary” conditions. We propose
using novelty search to discover scenarios causing a model to
behave poorly.
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Robots are poised to enter use in a wide-range of unstruc-
tured and human-centric environments. Cleaning, structural
inspection, mining, and giving tours are a few commonly
discussed tasks. Take hospital room maintenance, where a
robot could aid in the disposal of single-use items and
disinfecting surfaces, as an example. UVD Robotics created
autonomous mobile robots with UV disinfecting technology
to clean patient rooms [1]. Use of the robots in Croatia and
Italy showed less hospital staff testing positive for COVID-19
and reducing manual labor spent on disinfecting [2]. Robot
performance was also better than that of humans: micro-
resistant organisms were present 10% of the time in manual
disinfecting versus no organisms detected in robot disinfecting.
Autonomous disinfecting robots could also be deployed in
high-contact public areas such as public transit, bathrooms,
and schools.

Robots needing complex sensor processing often rely on
machine learning methods. To build such machines, engineers
often rely on simulation, which is faster, safer, and more cost
effective. A common approach involves: (1) developing a sim-
ulation environment, (2) generating a large dataset, (3) training
an artificial intelligence model, and then (4) tweaking the
model so that it works on a real system. The drawback of
simulation is that we cannot perfectly model all aspects of
reality, and we are always left with a simulation-designed
system that may fail when put into a real environment [3].

To partially address the reality-gap, we propose the use of
photogrammetry [4], neural radiance fields (NeRF) [5], [6],
style transfer [7], and Unreal Engine 5 (a recently released
system for creating real-time 3D content and experiences) [8]
to create high-fidelity virtual environments. The top row of
Figure 1 shows an interior scene modeled using these tech-
niques. These technologies have only recently become usable
for roboticists, and open new avenues for generating data and

validating results. One can build realistic environments and
incorporate virtual creatures with dynamic behaviors.

Existing work focuses on collecting realistic training
data [9] and introducing random but realistic noise [10].
Such models often perform well in controlled environments
but poorly when confronting novel scenarios. How will a
trained model react when a child unexpectedly jumps in front
of a robot from around a corner—a scenario that could be
overlooked during data generation. The drawbacks of realistic
data with noise are like those in which systems are trained
primarily on datasets comprising images with mostly white
people [11] or mostly western imagery [12]: the datasets
perform extremely well on the training datasets, but they fail
when tested in real-world scenarios.

Differing from existing work, we focus on collecting train-
ing data from a diversity of scenarios. We create robot
training data by creating virtual environments using common
techniques and adding: (1) people of varying skin colors,
styles, appearances (including unrealistically tall or propor-
tioned), and behaviors; (2) unexpected changes to surfaces
(e.g., changing an interior floor from tile into grass or a ceiling
from paint into gravel); (3) weather effects (e.g., viewing
rain through a window, and window blowing through trees);
(4) local and exotic flora and fauna; (5) erratic lighting (e.g.,
instantly changing the time or day and day of year); and
(6) structural deformations (e.g., distorting the shape of a
hallway). Examples of randomized lighting and texture are
depicted in Figure 1. We will use novelty search [13] to
discover scenarios that cause a robot to fail (e.g., by running
into a person) and then feed these scenarios back into the data
generation process.

The proposed techniques should improve safety by elimi-
nating some unexpected robot behaviors, but they must also
be combined with techniques from control theory [14] and
software engineering [15] for higher confidence.

Increased automation is likely to eliminate low-wage jobs
and impact those already most affected by fluctuations in
the economy [16]. So, while eliminating dangerous and
monotonous jobs may be good in the long term, we must
have a plan for those being displaced.
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Fig. 1: The first row depicts (from left to right) a photograph, photogrammetry model created with RealityCapture,
photogrammetry model created with PolyCam, manually constructed Unreal Engine level, and NeRF model of the same
environment. Subsequent rows depict a different view of the same scene, but with randomized lighting and textures.
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