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Abstract—Facial recognition is a classical problem
in computer vision. The accuracy of face recognition
algorithms is crucial in practice, as systems are in-
creasingly secured with biometric locks. However, the
performance of these algorithms is heavily dependent
upon the size of the training data. This paper proposes
an unsupervised ensemble method for expanding the
set of training faces when only a single labeled face
per subject is known. We show that the ensemble’s
confidence measure is sufficient to expand the training
set to the point where more sophisticated algorithms
can take over in classification.

Index Terms—confidence, unsupervised, face, ensem-
ble

I. Introduction
Modern face recognition methods are primarily built

on deep learning frameworks such as convolutional neural
networks [1] or generative adversarial networks [2]. While
such methods boast outstanding accuracy, they require
a large number of training samples to achieve this per-
formance. Even Facenet [3], using the Inception-ResNet
architecture [4] and trained for feature extraction to 99.65%
accuracy on the large VGGFace2 dataset [5], does not
perform well on new datasets when the number of training
faces per subject is very small. However, with just a few
more training faces, Facenet consistently achieves perfect
or near-perfect accuracy.
In this paper, we propose a confidence measure to

estimate the likelihood that a predicted label is correct.
We use this confidence measure to design an ensemble that
gathers high confidence labels and faces by assuming that,
under certain circumstances, the ensemble’s predicted label
is correct. Newly labeled images are then used to train
more sophisticated algorithms, or optionally to retrain the
component algorithms of the ensemble.
An example use case for the proposed ensemble is,

in conjunction with face location/detection methods, to
tag subsets of people from a known group in a set of
photographs or video feed. One scenario where this would
prove useful is in smart surveillance devices. A user could
place a camera in or around their house, and after being

provided with one picture of each member of the household,
the system would progressively get better at identifying
these people. Setting a threshold on the association of faces
to known labels, the system could then be used to send
alerts when unknown people appear on camera.

II. Background

In this section, we provide a brief overview of the indi-
vidual facial recognition algorithms used in the proposed
ensemble. Our choice of algorithms stems largely from
popularity and availability of implementation. For these
reasons, we first chose to use the three facial recogni-
tion algorithms bundled with OpenCV [6]: Eigenfaces [7],
Fisherfaces [8], and Local Pattern Binary Histograms [9].
OpenCV provides a unified interface to each of these
algorithms, including methods for training and prediction.
The prediction methods not only return an algorithm’s
prediction for a given face, but also the computed distance
between the given face and the face associated with the
predicted label. In addition to the three algorithms from
OpenCV, we implemented the Randomized PCA [10]
algorithm to add to the diversity of the ensemble.
We want to emphasize that the choice of algorithms

in this paper is not necessarily a recommendation for
what should be used in practice. Instead, the emphasis
in this paper is on our proposed metric for evaluating
the confidence of a face recognition algorithm and on
our confidence-based ensemble methodology. Thus, flex-
ibility was of the utmost concern when developing this
approach. One should consider many factors relating to the
application domain when building the ensemble, such as
available time to train, desired prediction times, availability
of training data, and number of faces to learn. While we
use four component algorithms with one training face per
subject, both the number of component algorithms and
number of training faces can also change as needed. A
thorough suvey on single-face-per-subject recognition is
provided by Tan et al. [11].
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Fig. 1: Eigenfaces reconstructions using increasing numbers
of components. From left to right the images were recon-
structed using: 1, 25, 50, 75, and 100 principle components.

A. Eigenfaces Algorithm
Eigenfaces is one of the oldest and most well known

face recognition algorithms to date. The idea of Eigenfaces
is to find characteristic faces for each subject in the
database. To combat the high dimensionality of the “face
space,” principal component analysis (PCA) [12] is used to
only consider the components which contribute the most.
To associate a new face with a face from the already
labeled training set, a nearest neighbor is determined
after projecting the new face onto the PCA subspace and
calculating the shortest distance between this projection
and all images from the labeled training set.
The Eigenfaces algorithm takes a single parameter: the

number of components to use in principal component
analysis. Using fewer components improves computation
time, but makes it more difficult for the algorithm to
distinguish between two similar faces. For larger datasets,
one should choose a larger number of components. Figure 1
illustrates the effect of varying the number of components.

B. Fisherfaces Algorithm
In a similar fashion to Eigenfaces, Fisherfaces [8] uses lin-

ear discriminant analysis (LDA) [13] to classify faces. LDA
is similar to PCA, however LDA maximizes between-class
distances and minimizes within-class distances, whereas
PCA does only the latter. As a consequence of using
LDA instead of PCA, Fisherfaces is more invariant to
illumination changes than Eigenfaces. Just as in Eigenfaces,
classifying a new face with Fisherfaces is done using nearest
neighbor classification.
Fisherfaces is also parameterized by the number of

components to use during linear discriminant analysis. As
demonstrated in Figure 2, the effect of this parameter is
similar to that of PCA in the Eigenfaces algorithm.

C. Local Binary Pattern Histograms
The Local Binary Pattern Histograms (LBPH) algo-

rithm [9] works by analyzing the intensities of pixels
surrounding a given pixel. Each surrounding pixel with
an intensity greater than or equal to the intensity of the
given pixel is given a value of 1; all other surrounding
pixels are set to 0. These 0 and 1 bits can be converted
to a single integer value that is then used to represent
the value for the given pixel; this process is depicted in
Figure 3a. LBPH can be computed using a circle around
the pixel in question, defined by a radius parameter with

(a) Reconstructed Sample

(b) Fisher Faces

Fig. 2: (a) Fisherfaces reconstructions using increasing
numbers of components. Since the variation between re-
constructed faces is less noticeable, we have also provided
(b) an example of the generated Fisherfaces.

a specified number of points (neighbors) to sample in this
circle.
Since LBPH only compares relative pixel intensities,

it is almost entirely invariant to changes in illumination
(illustrated in Figure 3b).

D. Randomized PCA Algorithm
Randomized Singular Value Decomposition (SVD) [10]

was proposed as a way to calculate an approximate sin-
gular value decomposition of a matrix when relatively
few singular vectors are desired. This approach utilizes
a random Gaussian test matrix to make the computation
of the approximate SVD of a large matrix more time and
resource efficient.
Randomized SVD can be applied to the face recognition

problem as a drop-in replacement for the calculation of
the principle components in Eigenfaces [14], yielding a
different method of recognizing faces: Randomized PCA.
The method of reconstructing these faces from principal
components, shown in Figure 4, is the same as in Eigen-
faces. While Randomized PCA for face recognition is very
similar to Eigenfaces, with both attaining similar accuracy,
the different method of computing principal components
changes which faces the algorithm is capable of recognizing.
This makes Randomized PCA a valuable addition to our
proposed ensemble.

E. Ensemble Methods
The goal of ensemble methods is to improve performance

(i.e., increase accuracy) by combining existing techniques
for solving a problem. The general notion is that through a
set of techniques, some techniques will have an advantage
in certain situations, and through some form of consensus
the advantages can be combined. In the context of face
recognition, we combine the predictions of Eigenfaces, Fish-
erfaces, LBPH, and Randomized SVD to yield results that
are more accurate than any individual algorithm on its own.
Some common techniques in designing ensemble methods
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(a) LBPH thresholding (b) LBPH representation

Fig. 3: (a) An example of the thresholding process used during LBPH. The given pixel has a thicker border. The left
grid shows the original pixel intensities, and the right grid shows the thresholded values. The dashed line indicates how
the final given pixel value is calculated. (b) an LBPH representation of a face from the AT&T dataset.

Fig. 4: Reconstruction of a face from the AT&T faces
dataset using Randomized PCA with 1, 5, 10, 20, and
50 components, respectively. Compare to Figure 1 which
appeared more blurry even with higher numbers of com-
ponents.

include the Bayes Optimal Classifier [15] (typically not
feasible in large problems), Bayesian Model Averaging [16],
Boosting [17], and Stacking [18]. Our proposed ensemble
does not quite fit into any of these categories, but borrows
techniques from both Stacking and Boosting.

III. Confidence Measure
The primary purpose of this paper is to develop a

measure that, given the predicted labels and associated
distances from several existing algorithms, returns one
predicted label and a confidence value that describes
the overall confidence of the component algorithms. For
classification tasks, it is common to use a simple voting
strategy called majority voting. If two methods assign a
sample to class “A” and one method assigns the sample to
class “B”, a majority voting strategy would simply assign
the sample to class “A” as it had the most votes. We can
improve this voting strategy by assigning weights to each
vote. Choosing these weights is not trivial, however.
In the proposed ensemble, we utilize the distance mea-

sure returned by each algorithm to improve voting. Con-
sider a face with an unknown label that is presented to
the algorithm. We will denote this face as a random vector
Xf . Similarly, we will denote the single known face for
each subject as Yi, i = 1, 2, ..., k where k is the number of
unique subjects present in the dataset.
Note that Xf and Yi are usually projections of a raw

face vector onto another subspace, however the theory
presented hereafter is unchanged in these cases. Also, when
there is more than one training face for each subject, Yi

is intuitively thought of as an “eigenface”, which is a
generalization of features found in each training face.
We define Zf to be the distance between Xf and its

nearest neighbor face Yi is given by

Zf = min
i=1,2,...,k

‖Xf − Yi‖2
2 . (1)

We can see that Zf is in fact a random variable, but its
distribution function fZ(z) is unknown.
To estimate the distribution of Z, we use kernel density

estimation to approximate fZ(z) using a Gaussian kernel
[19]. Suppose an algorithm returns a predicted label for
a face with distance z; we define the confidence of this
prediction to be the probability that a randomly classified
face has a higher distance value, that is,

C(z) = Pr(Z ≥ z) =
∫ ∞

z

fZ(t) dt . (2)

To approximate the improper integral in (2), we trans-
form the limits of integration and approximate using
Gaussian quadratures [20]:

C(z) =
∫ 1

0
fZ

(
z + t

1− t

)
dt

(1− t)2
. (3)

The confidence value C(z) ranges from zero to one,
with a value of one indicating a high likelihood that the
predicted label associated with the distance z is correct.

IV. Proposed Ensemble
The key observation motivating the ensemble is that the

model for each algorithm can be retrained on testing data
when all algorithms agree on the same label. Formally, the
steps of the ensemble are as follows:
1) Divide the dataset into testing and training. The
training dataset consists of one randomly selected
image (with a known label) for each subject, and
the testing dataset contains all remaining data. The
true labels of the testing dataset are only used in
evaluating the performance of the ensemble.

2) Train each algorithm in the ensemble using the
training dataset with the known labels.
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Fig. 5: Flow chart of proposed ensemble method.

3) Obtain the distance to the nearest neighbor match of
each algorithm’s prediction, and use these distances
as random samples to estimate the density function
of Z from equation (1) using kernel density estima-
tion.

4) Predict the label of each image in the testing dataset
using component algorithms. For all cases where
each algorithm agrees on labels, store the predicted
label with the sum of the confidence values of each
algorithm’s prediction.

5) Order each agreement-confidence tuple by sum of
confidence in descending order.

6) Discard all agreements whose confidence is lower
than a given threshold.

7) Update the models of each algorithm with the re-
maining faces and agreed-upon labels after step 6.

8) Repeat steps 3-7 as many times as desired. The
number of repetitions will be referred to as the
number of passes. The density function is updated
at each pass, since the distribution of distances will
change as each algorithm’s model is updated.

9) Each algorithm votes on the labels of the remaining
testing images. At this stage, the algorithms have
some disagreement regarding the label of all remain-
ing images. The weight of each vote is the confidence
measure of that algorithm’s distance, as described in
equations (2) and (3).

This process is visualized in Figure 5. The primary use
case of this ensemble is to augment a small existing training
set with high confidence matches. The ensemble can also
be used directly as a face recognition algorithm. Using
kernel density estimation makes no assumptions about
the distribution of distances, so in theory, any algorithm
that returns a distance measure that is smaller for closer
matches will fit into the ensemble as-is. Adding more
algorithms to the ensemble scales the complexity linearly
with the complexity of the added algorithm, and doing
so is a simple process. When using a larger number of
algorithms, one may wish to assume a prediction is correct
when a strong majority agrees on a label, rather than
requiring 100% agreement. The Python implementation
of this ensemble is available via GitHub at https://github.
com/jeff-dale/face-rec-ensemble/.

TABLE I: Accuracy on each dataset after 5 replicate
experiments. MV Ensemble indicates the ensemble where
labels are assigned solely by majority voting.

AT&T Faces Yale Faces
Method Best Average Best Average

Eigenfaces 74.17% 69.72% 13.03% 12.05%
Fisherfaces 73.33% 69.33% 11.78% 11.01%
LBPH 83.61% 81.95% 29.63% 27.31%
Rand. PCA 74.17% 69.95% 13.12% 11.98%

MV Ensemble 74.44% 70.33% 13.16% 12.05%
Best Guess 86.39% 84.67% 29.97% 27.73%

Ensemble P0 76.94% 73.33% 16.60% 15.40%
Ensemble P1 96.39% 94.33% 80.47% 79.10%
Ensemble P2 98.33% 95.73% 83.32% 82.57%
Ensemble P3 98.61% 95.73% 85.16% 84.06%

V. Experimental Results and Discussion
The proposed ensemble was tested on two benchmark

datasets: the AT&T faces dataset [21] and the Extended
Yale Database B [22]. The AT&T faces dataset has 400
faces from 40 subjects (10 images per subject) and the
Extended Yale Database B has 2424 faces from 38 subjects
with a varying number of faces per subject.
The parameters of Eigenfaces, Fisherfaces, LBPH, and

Randomized PCA were tuned using the differential evolu-
tion (DE) algorithm [23]. The exact parameter values can
be seen in our code repository.
The remainder of this section is broken into two parts:

(1) using the ensemble to augment the training set and (2)
using the ensemble as a face recognition algorithm.

A. Ensemble for Training Set Augmentation
As previously mentioned, an important trait of the

proposed ensemble is its ability to quantify its confi-
dence in a prediction as a function distance measures of
its component algorithms. To show that this confidence
measure is performing as expected, Figure 6 shows a
receiver operating characteristic (ROC) curve obtained by
varying the confidence cutoff threshold. It is clear from
Figure 6 that false positives in classification are rare when
the confidence measure is high, as is essential in a good
confidence measure.
Using this approach to augment existing training data

allows more powerful classifiers, such as Facenet [3], to
take over in classification beyond a certain point. When
running Facenet with a model trained on VGGFace2 [5], it
only took three training faces per subject for classification
accuracy to exceed 97%, however with fewer than three
training faces per subject, classification accuracy was less
than 60%. Based on the ROC curve in Figure 6, we see
that the ensemble is capable of providing the additional
labels needed by Facenet to perform well, with a high

345



Fig. 6: ROC curve showing how varying the confidence
threshold in step 6 of Section IV affects the true and
false positive rates of the ensemble’s predicted labels on
the AT&T dataset on the first pass. True positives are
when agreements have the correct label and false positives
are when agreements have the incorrect label. The blue
dotted line indicates the expected performance of a random
classifier.

likelihood of having no added false positives (incorrectly
labeled faces).

B. Ensemble for Face Recognition
Table I shows the accuracy achieved by the proposed

ensemble on the AT&T and Yale faces datasets. In the
table, we provide accuracy results for each component
algorithm in the ensemble, as well as results for two
baseline ensemble methods and our proposed method.
Since our proposed method includes multiple passes, we
have included the accuracy achieved after each pass. From
the table, we observe that each individual algorithm had
average accuracy of around 70 to 80% on the AT&T faces
dataset. The naïve majority voting (MV) ensemble, which
uses equally weighted votes for each algorithm, performed
better than Eigenfaces, Fisherfaces, and Randomized PCA
on average, but not better than LBPH. For the sake of com-
parison with our proposed method, we have also introduced
a new ensemble method called Best Guess, which simulates
an ensemble with perfect voting, i.e. always correctly labels
a face if any single algorithm correctly labeled that face.
The Best Guess ensemble is clearly only for benchmarking,
as it requires ground truth information on the accuracy
of each algorithm. It is used in this paper to demonstrate
that the proposed ensemble can achieve higher accuracy
than any voting-only ensemble (with no re-training). This
unimplementable method gives an accuracy of around 85%
on the AT&T dataset.
On the AT&T faces dataset, the P0 ensemble (ensem-

ble pass 0, confidence-based voting and no re-training)
achieved an average accuracy higher than the majority vot-
ing ensemble. These results indicates that our confidence-
based voting has merit. After 1 pass of re-training, the
proposed ensemble outperforms all methods shown in the

TABLE II: Number of gathered labels and classification
time per face (in seconds) for each pass of the ensemble.
Time was measured on an standard Intel i7 processor
running all 5 replicates of the ensemble in parallel.

AT&T Faces Yale Faces
Number of Passes Labels Time Labels Time

Ensemble P0 40 0.12 38 0.34
Ensemble P1 297 0.17 976 1.59
Ensemble P2 358 0.17 1460 2.21
Ensemble P3 370 0.17 1637 2.44

table, including the Best Guess ensemble. After 2 passes,
we begin to notice diminishing returns on the accuracy of
the ensemble, and after 3 passes, we achieve a peak average
accuracy of just over 95%. The point of diminishing returns
can be more clearly seen in Figure 7.
We observe similar results for the Extended Yale

Database B, however, with lower accuracies overall (Ta-
ble I). The lower accuracies can be attributed to the fact
that the Extended Yale Database B is much larger than the
AT&T database, and contains subjects in multiple poses
with varying illumination conditions. We see that for larger
datasets, only one retraining pass is needed to get a large
jump in accuracy. Using more than one or two passes is
only recommended when training time is not a factor and
accuracy is absolutely crucial.
Since performance peaks after three passes for our

test datasets, we chose to limit our ensemble to three
passes. Forcing the ensemble to continually retrain will
lead the ensemble to eventually choose poor faces to add
to the training set, particularly when using stochastic
algorithms like Randomized PCA, which can potentially
assign different labels to the same face when run multiple
times on the same data. Figure 7 clearly shows that the
confidence measure and retraining is useful, however, it also
shows that at some point further passes quickly becomes
unnecessary.
Table II shows how the number of gathered labels grows

after each pass, as well as the average time taken to
classify each face in the testing set. Even with the heavy
computations in our algorithm being done in Python (with
Numpy/Scipy), such as the repeated kernel density estima-
tion and quadratures, we see that faces can very easily be
classified in real time on the AT&T dataset. After several
passes on the Yale dataset however, classification slows
down. Some ways to improve the classification time include
(i) using a faster language than Python, (ii) parallelizing
the ensemble predictions, and (iii) utilizing the GPU for
batch testing.

VI. Conclusion
In this paper, we presented: (i) a universal method for

measuring an algorithm’s confidence based on distance
values, (ii) a voting strategy based on this confidence

346



Fig. 7: Average accuracy of the proposed ensemble on the
AT&T and Yale faces datasets by number of passes. Each
point on the graph is a data point, while the lines are
generated by fitting a logistic curve to the points. The
shaded area is the standard deviation of each replicate
experiment, also fitted with a logistic curve for smoothness.

measure, (iii) an ensemble method that uses the proposed
confidence-based voting to achieve high accuracy on well-
known face recognition datasets, and (iv) the ability of
this ensemble to effectively expand small training data for
use in larger scale classifiers. This ensemble is robust and
flexible, and is useful in a variety of different real-world
scenarios. Our experiments show that confidence-based
voting achieves higher accuracy than majority voting in the
average case, and returns a useful continuous value between
zero and one to quantify its prediction, providing more
than a “yes or no” in its decisions. The ensemble method
outperforms each of its components by a large margin,
and even achieves higher accuracy than an infeasible Best
Guess ensemble, allowing the ensemble to correctly identify
faces where all components of the ensemble failed.
Most beneficial of all, any face recognition algorithm

that provides a distance or confidence value to its predic-
tions can be dropped into the ensemble. One could even
create a so-called “meta-ensemble” containing other ensem-
bles. Even when component algorithms have individually
low accuracy, as in our experiments with the Yale dataset,
the ensemble is still able to gather more high-confidence
labels and achieve high accuracy.
Finally, our ensemble method can easily be updated

with new algorithms–a useful characteristic in the rapidly
changing field of computer vision. When a new state of
the art technique is discovered, simply drop it into the
ensemble and observe the increased performance.
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