

An Ensemble of Face Recognition Algorithms for Unsupervised Expansion of Training Data

Anthony Clark anthonyclark@missouristate.edu

Jeff Dale jdale@ieee.org

Missouri State.

Motivation

Security

Ability to unlock personal

devices with faces

Smart Surveillance

Send alerts when unknown persons appear on premises On big data, deep learning approaches are unparalleled

Deep Learning

Small Data

Big data is nice, but difficult to obtain

Ensemble Learners

The herd often makes better decisions than the individual

Problem

How accurate can face recognition methods be with the smallest possible training data?

Small Training

- One known face per subject given
- Many subjects possible
- Goals:
 - Augment training set with unlabeled faces from testing set.
 - Do not introduce incorrect labels to training set

Large Testing

- Many unlabeled faces needed
- $\circ~$ So that we can validate our method
- Caveat:
 - All subjects in testing must appear in training

Our Approach

We used four classical algorithms in a face recognition ensemble and created a novel voting strategy

Common Ensemble Method

Many ensemble method use majority voting

Proposed Ensemble Method

Our ensemble method take into account the confidence of each model

Proposed Ensemble Method

Our ensemble method take into account the confidence of each model

Ensemble Confidence

A novel way to combine component algorithm distance measures

- Z_f distance between testing face X_f and nearest neighbor among k training faces Y.
- Confidence: probability that a random distance is greater than the observed distance. For multiple algorithms, combine distances by summation.
- PDF $f_Z(z)$ is estimated using kernel density estimation, integral transformed and evaluated with Gaussian quadratures.

$$Z_f = \min_{i=1,2,...,k} \| X_f - Y_i \|_2^2$$

$$e \quad C(z) = \Pr(Z \ge z) = \int_{z}^{\infty} f_{Z}(t) \, \mathrm{d}t$$

$$C(z) = \int_0^1 f_Z\left(z + \frac{t}{1-t}\right) \frac{\mathrm{d}t}{\left(1-t\right)^2}$$

Ensemble Method

Idea: Treat high confidence agreements in component algorithms as truth and retrain components.

Datasets

We used popular small-to-medium sized datasets in face recognition.

AT&T Faces			
 40 subjects 			
 10 faces per subject 			
 112×92 pixel images 			
o Grayscale			
F. S. Samaria and A. C. Harter, "Parameterisation of a stochastic model for human face identification," in <i>Proceedings of the Second IEEE Workshop on Applications of Computer Vision</i> . IEEE, 1994, pp. 138–142.			

Extended Yale Database B

o 38 subjects

- Varied faces per subject (2424 total images)
- o 192x160 pixel images
- o Grayscale

A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, "From few to many: Illumination cone models for face recognition under variable lighting and pose," *IEEE transactions on pattern analysis and machine intelligence*, vol. 23, no. 6, pp. 643–660, 2001.

Tuning the Ensemble

- Each ensemble method has a few parameters that a user must specify
- These parameters have a large impact on accuracy
- We used an evolutionary algorithm to tune these parameters
- These parameters were evolved in the ensemble method loop

	AT&T Faces		Yale Faces	
Method	Best	Average	Best	Average
Eigenfaces	74.17%	69.72%	13.03%	12.05%
Fisherfaces	73.33%	69.33%	11.78%	11.01%
LBPH	83.61%	81.95%	29.63%	27.31%
Rand. PCA	74.17%	69.95%	13.12%	11.98%
MV Ensemble	74.44%	70.33%	13.16%	12.05%
Best Guess	86.39%	84.67%	29.97%	27.73%
Ensemble P0	76.94%	73.33%	16.60%	15.40%
Ensemble P1	96.39%	94.33%	80.47%	79.10%
Ensemble P2	98.33%	95.73%	83.32%	82.57%
Ensemble P3	98.61%	95.73%	85.16%	84.06%

Accuracy of the Ensemble

12

Ensemble as a Face Recognition Algorithm

Evaluating the merit of the proposed ensemble in face recognition

- Each pass adds additional training samples
- These new samples are assumed to be correct, but they are never checked
- Accuracy is over 5 replicate experiments
- Points are fitted with logistic curve
- Shading is standard deviation fitted with logistic curve

Ensemble Confidence - Validation

Evaluating the merit of the proposed confidence measure

- ROC curve false positive rate vs true positive rate varying confidence threshold
- Data points considered are agreements in ensemble.
- Can achieve over 90% true positive rate at 0% false positive (Dataset: AT&T Faces)
- Number of added faces to training is sufficient for deep learning approaches to take over.

Discussion

What do these results show?

- We have created two things:
 - 1. A metric for assessing the confidence of a face recognition algorithm
 - 2. An ensemble method that uses the confidence metric for predicting labels of new faces
- Our proposed ensemble method can be used to improve the performance of face recognition for application with the following properties:
 - 1. Only a few training examples are available
 - 2. New samples will be collecting during the *testing* process
- New methods can be added the ensemble as long as they provide some form of distance
- After enough new labeled (or predicted) samples are collected, a tool can switch over to a more accurate system like the Inception-ResNet deep neural network face recognizer.

Thank You

Anthony Clark
 anthonyclark@missouristate.edu
 cs.missouristate.edu/AnthonyClark.aspx

▲ Jeff Dale☑ jdale@ieee.org

Iinkedin.com/in/jeff-dale-31aa5496/

GitHub https://github.com/jeff-dale/face-rec-ensemble

