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Abstract—Pathfinding in dynamic, indoor environments is
fundamental to the reliable, safe, and real-time navigation of
autonomous systems. In this study, we present our research
generating datasets and comparing deep learning architectures for
real-time pathfinding in indoor environments. We use simulation
for data collection, compare six architectures, and analyze real-
time inference performance on an NVIDIA JetBot. Our work
showcases an end-to-end pathfinding approach and highlights
challenges to address in future research.

Index Terms—robotics, simulation, learning, vision, edge com-
puting

I. INTRODUCTION

Autonomous robots are becoming increasingly prevalent,
with applications ranging from self-driving vehicles to factory
automation. Such robots must operate reliably and safely in
highly uncertain environments. Our work concentrates on en-
hancing pathfinding models for indoor spaces and implementing
them in real-time navigation tasks.

Specifically, we compare small and larger model architectures
(in terms of the number of parameters) to bring autonomy to the
edge, enabling real-time model inference and decision-making
directly on the robot despite its limited computational abilities.
So called “TinyML” (machine learning models running on
devices with lower compute resources, such as microcontrollers
and single-board computers) seeks to not only enhance the
efficiency of robots by conserving electric power, but also
expands the scope of autonomous robots to include resource-
limited environments, ultimately contributing to the widespread
adoption of such systems.

We chose the following architectures (the number of param-
eters for each is listed in parentheses): ResNet18 (11.7M) [1],
ConvNextV2Base (88.7M) [2], ConvNextV2Atto (3.4M), Ef-
ficientNet (12.2M) [3], MobileNetV4 (3.8M) [4], and Vision-
Transformer (86.6M) [5]. These modern architectures include
a mix of larger, traditional networks, and models specifically
designed for low-resource computing environments. We trained
models using fastai [6] and the Timm library [7]. Figure 1
shows both the real-world environment with an NVIDIA JetBot
and the simulated environment used for data collection.

We collected three datasets, each with 100 000 images, using
a simulation created with Unreal Engine 5. The simulated
environment replicates a portion of Oldenborg Hall on Pomona
College’s campus. Datasets differ in how a programmed agent

Fig. 1: (Left) An image of a hallway in Oldenborg Hall
including an NVIDIA JetBot and (Middle/Right) simulated
depictions of the environment.

navigates the hallways. We have three navigation behaviors:
perfect, wandering, and teleporting (see Figure 2). Programmed
agents have access to a full map of the environment, however,
agent’s using trained models do not have access to this map.
Each image is labeled with the signed angle between the
agent’s current heading and the target location. Target locations
were manually marked at the center of each overlapping
hallway intersection. Labeling images with an angle enables
us to train both classification- and regression based-models.
Though, our prior research shows little different between
these approaches [8]. The simulation also allows for all
surface textures to be randomized and for random changes
to internal and external lighting. Figure 1 shows two different
configurations for the same hallway.

We trained three models for each combination of archi-
tecture and dataset for a total of 108models (3 replicates,
6 architectures, 3 dataset collection agents, and 2methods for
texture randomization). Models were trained to classify input
camera frames as one of three actions: move forward, rotate
left, or rotate right. Models were evaluated on training metrics
(i.e., classification accuracy and loss) using a validation dataset
and behavior metrics (i.e., path progress, processing time, and
reliability) by deploying models in simulation. Only the most
promising models were evaluated on the JetBot.

In terms of the three datasets, the perfect dataset produced
models with the highest accuracy (all models were greater
than 99% accurate) but the worst behaviors. Specifically,
these models performed poorly during inference time on the
simulated robot in that they frequently ran into walls and were
unable to pathfind through the environment. Models trained on
the teleporting dataset were less accurate (around 70%) and



Fig. 2: Different data collection strategies (from left to right):
perfect, wandering, and teleporting.

resulted in similarly poor behaviors. The wandering dataset,
on the other hand, produced models with the best behaviors.
Despite having lower accuracy on the validation dataset (around
90%), these models were able to consistently navigate their
way through the environment. Our current experiments suggest
that randomizing textures reduces accuracy but improves the
model’s ability to generalize to new environments. Figure 3
shows a confusion matrix for the ConvNextV2Atto models.
Data represented in the figure was collected while analyzing
the models’ behaviors in the simulated environment.

Fig. 3: A confusion matrix depicting for a ConvNextV2Atto
model trained on randomized textures using the three different
data collection agents.

As for the architectures, the ViT-based models consistently
produced the most accurate validation results. However, the
smaller architectures (i.e., ConvNextV2Atto and MobileNetV4)
were only slightly behind in terms of accuracy and comparable
in terms of behaviors. Moreover, the smaller architectures
were significantly faster in terms of inference time per frame.

Specifically, these models were able to process frames in about
0.2 s on average.

Building on these promising results, we proceeded to deploy
the models in the real-world by implementing them on an
Nvidia JetBot. Out JetBot is powered by the 4GB version
of the Jetson Nano Module. The robot has a wide angle
camera with a 136◦ field of view; we calibrated the camera
following standard procedures. We remotely communicated
with the JetBot using remote procedure calls (RPCs). The
robot, however, was responsible for autonomous navigation in
which it captured images in real-time, processes the images,
computed a trained models output, and then executed the most
appropriate action.

Deploying our models in the real-world revealed the strengths
and limitations of our approach. We observed trained models
demonstrating promising performance in real-time navigation,
successfully processing data and acting upon it for maneuvering.
However, we also observed significant deviations in the robot’s
behavior based on manually configured parameters, such as the
distance taken on a forward action and the amount of rotation
resulting from a rotate left or rotate right action. Often, the
robot became stuck in a cycle of rotating a few times in one
direction and then back in the other, failing to make progress
towards the target. These observations suggest the need to
further fine-tune and optimize our data collection process to
improve our overall performance across simulation and reality,
ultimately bridging the gap between the two.

Moving forward, our focus will be on refining our data
collection process. First, we will improve the fidelity of our
environment to better match the actual Oldenborg setting. We
will do so using a combination of better modeling techniques,
photogrammetry, and neural-based scene generation (e.g., NeRF
and gaussian splatting). Moreover, we will introduce noise into
the collection process to enhance the model’s flexibility when
navigating complex environments where small details such as
lighting, textures, and shadows can make a huge difference.
Next, we will rely heavily on generalization techniques such as
domain randomization and data augmentation. Finally, based on
our experiments we recommend a combination of the wandering
dataset collection pattern (with texture randomization) using
the smaller ConvNextV2Atto and MobileNetV4 architectures.
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