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Abstract—Mobile robots frequently operate in rough,

uneven terrain. One way for them to identify easier to

traverse paths is to use deep learning methods, such

as a convolutional neural network (CNN). It is not

clear, however, what input should be provided to the

CNN to best enable it to classify di�erent terrain. In

this study, we investigate and compare several input

formats for improving terrain classification using a

CNN. All experiments take place in simulation, where

we have complete control over terrain (e.g., shapes

and textures) and information about our robot. Our

experiments lead us to the following conclusions: (1)

input formats should prefer grayscale over color images

as color has a tendency to overfit the training data and

(2) disparity maps also improve classification compared

with raw image data. These results can be used to

improve the performance of terrain classification; par-

ticularly as they apply to transformable-wheel robots.

Index Terms—mobile robotics, transformable

robotics, deep learning

I. Introduction
Making decisions based on visual input is a challenge

for mobile robots. It is not always obvious how to best use
pixel data to choose a path or decide a robot’s next action.
In this paper, we investigate how a convolutional neural
network (CNN) can be used with pairs of images from a
stereo camera to make decisions about its locomotion mode.
Specifically, a CNN will output a terrain classification that
can then be used to transform the wheels of the robot
pictured in Figure 1.

(a) Simulation (b) Prototype
Figure 1. A mobile robot with transformable wheels.

The pictured robot can extend “legs” from the outer
rim of each wheel. On even terrain, legs are fully retracted

so that camera and other sensor data is not a�ected by
vibrations or bumps. On rough ground, legs can be fully
extended so that the robot can climb obstacles. Legs can be
extended by any distance between 0 and the wheel radius,
enabling a fine control over the balance between mobility
and vibrations. To use wheel-legs e�ectively, we require a
method for deciding how far they should be extended.

Despite a wide variety of transformable-wheel devices
in existing literature [1], to date little research has been
conducted on how to best decide when to transform the
wheels. Most current methods rely on detecting poor
mobility after it occurs. For example, measuring wheel
slippage with encoders or using GPS to measure actual
speed and comparing with expected speed. More recently,
researchers have been using vision data to predict when
a wheel should be transformed, rather than react to an
already poor situation [2], [3].

Deep learning techniques have produced state-of-the-art
results for many vision related tasks. Such techniques have
been applied to terrain classification [4]–[6], though, not in
the context described in this study. As a first step in apply-
ing deep learning to the problem of transformable-wheel
robotics, in this study we investigate using stereo camera
images as input and terrain classifications as output. How-
ever, before we can train and deploy a CNN-based terrain
classifier, we first need to answer the following question:
what input format should we provide to a CNN
such that it can make accurate predictions about
the current terrain? For example, we can input three-
channel RGB images, disparity maps, grayscale images,
etc., or some combination of these formats.

We use Gazebo [7] to simulate and collect image data.
We label images based on the simulated robot’s ability to
navigate three di�erent types of terrain: high, medium, or
low mobility. These labeled images are then fed to a CNN,
which is responsible for classifying terrain and making
decisions regarding wheel-leg extensions.

Our results show that a combination of disparity maps
and grayscale images should be used to classify terrain (in
terms of traversability) for a transformable-wheel robot.
More specifically, we find that using RGB images leads
to better validation accuracy, but significantly worse ac-
curacy on a testing set in which images are generated



using a second simulation environment. Simulation and
deep learning code for this study can be found here:
https://github.com/anthonyjclark/terrain-classification.

II. Related Work
A. Deep Learning Terrain Classification

Mobile robots need the capacity to determine traversabil-
ity of terrain to navigate in complex real-world environ-
ments. This is especially true for transformable robots
that can change their abilities to better handle uneven
ground. Dongshin Kim et al. [4] compare the performance
of patch, pixel, and super-pixel segmentation for terrain
traversability classification, and while their super-pixel
approach is an improvement over existing techniques, the
output is still di�cult to interpret. Deng et al. [8] propose
a method for finding traversable regions from a mobile
robot’s camera. They used a vanishing point method with
self-supervised learning to find traversable paths.

More recently, many research groups have turned to
neural networks for classifying terrain. Iwashita et al. [6]
propose two novel deep learning-based terrain classification
methods: TU-NET and TDeepLab. These architectures
combine the use of visual features with thermal features to
provide robust classification of terrain by taking advantage
of thermal di�erences. In [9], Zhang et al. integrate a
CNN model with a near-to-far learning strategy to improve
the accuracy of terrain segmentation and make it more
robust against wild environments. Kim et al. [5] propose a
novel multimodal CNN architecture comprising two input
streams: 2D images and 3D point clouds from LiDAR.
The combination of these two inputs provides improved
accuracy when compared with image-only data. In [10],
Chavez-Garcia et al. present a neural network architecture,
which when given an image and a height map, classifies
the traversability of the terrain and yields the path the
robot should take. The network takes aerial images as input
(as opposed to a view from the robot itself as shown in
Figure 2(b)).

Although these works are related to that which we
present here, they are focused on finding even terrain
that any wheeled robot can traverse. In this study, we are
concerned with classifying terrain with di�ering degrees of
traversability. Consider rough terrain that a wheeled robot
cannot handle; a transformable-wheel robot will be able
to traverse such ground by extending its legs.

B. Perception for Transformable-Wheel Robots
At the cost of adding actuators and additional control

complexity, transformable-wheel robots gain the benefits
of both smooth wheel and legged-wheel locomotion [11].
Specifically, on even terrain they operate without the
vibrations caused by wheel-legs, and on uneven terrain
they can climb obstacles. To date, however, there has been
limited research into classifying terrain for transformable-
wheel robots. Wang et al. [3] used a CNN with image
data to select appropriate gaits for the TurboQuad-V

vehicle. They relied on hand-labeled data. Xu et al. [2]
proposed a novel system using binocular vision, ultrasonic
sensors, and an IMU to detect if the current ground is a
plane, step, or incline. In contrast to these two studies,
here we present a method for automated training data
labeling using simulation that works in a more complicated
environment. On the other hand, we do not present results
from real-world experiments.

III. Methods
This research study is meant to address an important

gap in the current literature for mobile robots: what
input formats are appropriate for classifying degrees of
traversability. Current terrain classifying techniques do
not consider transformable wheels (i.e., robots that can
traverse rough terrain), and most studies do not compare
di�erent input formats for a CNN. We are starting with a
simulation-based study so we have full control over terrain
and camera data, and so we can create an automatic
labeling process using simulated velocity measurements.

A. Transformable-Wheel Robot
Motivation for this study comes from our prior work with

the transformable-wheel robot in Figure 1. Specifically, it is
di�cult to decide when the wheel-legs should be extended.
Typical forms of sensing are too course-grain (GPS) or
too sensitive to noise (IMU). Moreover, they can only
react to poor mobility, whereas in this study we develop a
vision-based system for predicting appropriate wheel-leg
extensions ahead of time. The current prototype is 8 cm
long by 10 cm wide, and it operates using a skid-steer drive.
More details about this device are presented in [11].

B. Gazebo Simulation Environment
Similar to Chavez-Garcia et al. [10], we rely on the

Gazebo simulation environment [7] for generating training
data. Gazebo is specifically made for robotics research,
and as such it has support for complex terrain and
sensing capabilities. Figure 2 shows our robot in a custom
simulation environment. In the left-hand image you can see
a view of the three di�erent terrain types: high, medium,
and low mobility. These names refer to our robot’s ability
to traverse the terrain. For example, our robot can easily
cover the terrain labeled “high” without use of its wheel-
legs, but it has significant trouble on the terrain labeled
“low” even with the legs fully extended. The “medium”
mobility terrain requires use of the wheel-legs to traverse.

Figure 2(b) shows the robot’s view. These are the images
being fed to the CNN in di�erent formats. Figure 1 shows
the placement and angle of the camera. For this study, the
robot was only allowed to operate in one of three modes:
legs fully retracted, half-way extended, or fully extended.

To generate training and validation images, we created
three environments. One in which each of the terrain types
was placed in the middle. In doing so, we have images in
which the robot is traversing each terrain type while having
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(a) Gazebo Environment

(b) View from the Stereo Camera
Figure 2. (a) A view of the di�erent terrain types in our Gazebo
simulation environment. The black lines and annotations have been
added for presentation here. (b) A view of the stereo camera output
as seen from the robot’s perspective.

each of the other terrain types appear in the frame on the
left and right peripheries. Figure 2 depicts this setup for
the case of having high-mobility terrain in the middle. The
simulated robot also traversed the terrain laterally across
all three types. These di�erent traversals provide a wide-
variety of images with which we can train a CNN.

To label each image, we took the current speed of the
robot and compared it with the expected speed. When the
current speed was less than the expected we knew that
the terrain must belong to the medium or low mobility
class depending on how much the wheel-legs were extended.
We used all possible combinations of wheel-leg extensions,
current terrain, and terrains that can be seen in the stereo
camera’s peripheral vision. In total, we gathered 4688,
3866, and 3218 images for the high, medium, and low
mobility terrains, respectively (11 772 images in total).

C. Deep Learning with fastai
We use the fastai library [12] to train our CNN. We use

the ResNet34 architecture [13] since fastai has a version
that includes state-of-the-art techniques for regularization
and optimization. Additionally, fastai has support for
cyclical and progressive learning rates. Our assumption for
this study is that changing the architecture will not change
the relative results between the di�erent types of input
formats we feed through the network. Details regarding
data augmentation, validation, batch sizes, and other
hyper-parameters can be found in the linked repository.

IV. Discussion and Results
According to recent work by Gowda et al. [14], the RGB

color space provides good results for most applications.
Thus, here we focus on the following image input formats:
RGB images, grayscale images, and disparity maps gener-
ated from the grayscale images. Similar to Iwashita et al.
[6], we combine multiple input formats and feed them to
the network. Specifically, we combine the disparity maps
and left/right stereo images into a single input.

Table I
Training Results for Different CNN Input Formats

Valid (Dirt) Test (Grass)
CNN Input # % s/epoch % ms/image

RGB 3 97.8 21 33.8 7
Stack-RGB 6 95.8 32 33.8 9
Grayscale 1 97.5 17 46.6 6
Stack-Gray 2 95.0 20 51.4 7
Disp. Maps 1 74.0 17 58.8 6
Stack-RGB + Disp. 7 95.1 33 33.8 10
Stack-Gray + Disp. 3 94.5 20 58.8 7

Single Image in RGB. In our first experiment, we
use only images from the left lens of the stereo camera
(we conducted the same experiment for images from the
right lens with identical results). Results from this and all
subsequent experiments are shown in Table I. Validation
accuracy after 10 epochs reached 97.8 % (we set aside
20 % of the training data for validation). However, this
model performs at the same level as a random classifier
when provided inputs generated with a grass texture (see
Figure 3) instead of a dirt texture. Therefore, we can
infer that the model relies heavily on color information.
This experiment provides a baseline against which we can
compare other input formats.

Stacked Images in RGB. For the second model, we took
corresponding pairs of images and “stacked” them to create
a six-channel input (two sets of RGB channels). The second
column of Table I indicates the number of input channels
for each model. This model provides similar results to the
previous: high performance on the validation set and poor
performance on the test set. Although performance was
similar, this model took 50 % longer to train.

Single Image in Grayscale. Since the first two models
rely heavily on color, we used grayscale images for the
third. This model was the quickest to train and requires
the least amount of time to execute when deployed on the
actual device; as shown in columns four and six of the
table. Columns four and six refer to the training time per
epoch and the prediction time per image, respectively. In
addition to quicker processing, this model performs better
than random (46.6 %) at classifying terrain.



Stacked Images in Grayscale. For the fourth model,
we stacked left/right pairs of grayscale images to create a
set of two-channel inputs. At a slight cost of processing
time we improve accuracy by a small margin. We were
surprised that the extra information provided by stereo
images did not lead to even greater increases in testing
accuracy. We hypothesize that increasing the training data
size (and variety) will further the gap between grayscale
and two-channel grayscale inputs.

Disparity Maps. Inputs to the fifth model are generated
by creating disparity maps from the grayscale image pairs.
We tested several algorithms (and algorithm settings) for
producing disparity maps, and we achieved our highest
accuracy using a method developed by Hirschmuller [15].
Figure 3 shows an example pair of stereo images and the
resulting disparity map.

Figure 3. Left and right image pairs from the robot’s simulated stereo
camera and the resulting disparity map. The left and right images
are first converted to grayscale.

Although this model had the poorest training accuracy,
it had the highest testing accuracy. The poor training
accuracy can largely be attributed to the required tuning
of the disparity map algorithm. The algorithm includes
several parameters that drastically a�ect performance, and
changing these parameters can have di�erent a�ects on
di�erent pairs of images. With a larger dataset and a higher
variety of textures in the scene, we would expect creating
disparity maps to be even more di�cult.

Examining the confusion matrix for this model (see
Figure 4) shows that, while it has lower accuracy, it mostly
confuses medium and high mobility images, which are
the most visually similar. Specifically, the model has an
accuracy of 89 %, 62 %, 73 % on low, medium, and high
mobility images, respectively. If we combine the medium
and high classes, the model has an accuracy of 95 %. Again,
we hypothesize that an increase in training images will
improve accuracy and enable the model to di�erentiate
between medium and high mobility terrain.

Stacked Images in RGB with Disparity Maps. The
next model combines disparity maps with the stacked RGB
images, resulting in seven-channel inputs. Validation and
testing accuracies are similar to our prior models using
RGB information, showing that the superior validation
performance of RGB data is dominating the CNN’s output.
Specifically, the disparity map channel appears to be

Figure 4. A confusion matrix for the disparity map model on the
validation dataset. Values in the diagonal show cases of correctly
classified images.

ignored during training since it would lead to a lowered
validation (and training) accuracy.

Stacked Images in Grayscale with Disparity Maps.
The final model includes disparity maps and grayscale
images for a total of three channels. This model performs
as well as the disparity map model. Interestingly, the
grayscale images do not appear to override the disparity
maps for this model. Specifically, the model has both
a relatively high validation accuracy (94.5 %) and the
highest testing accuracy (58.8 %). This indicates that a
combination of grayscale images and disparity maps are a
good combination for our classification task. This model
can combine the benefits of disparity maps with those of
using raw image data.

V. Conclusions
In this study, we compared seven di�erent input formats

for classifying terrain as high, medium, or low mobility for
our transformable-wheel robot. Our results lead to the
following conclusions: (1) color in RGB images can lead to
good validation accuracy, but over-reliance on color infor-
mation can lead to poor testing accuracy; (2) validation
accuracy does not correlate with testing accuracy when you
expect to encounter di�erent types of terrain (even if they
only di�er in color); (3) disparity map results can likely
be improved by further tuning the algorithms parameters;
and (4) results using stacked images and disparity maps
will likely improve by generating more training data.
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