
Review: A Web-Based Simulation Viewer for Sharing
Evolutionary Robotics Results

Anthony J. Clark
Computer Science Department

Missouri State University
Springfield, Missouri, USA

anthonyclark@missouristate.edu

Jared M. Moore
School of Computing and Information Systems

Grand Valley State University
Allendale, Michigan, USA

moorejar@gvsu.edu

ABSTRACT
Evolutionary robotics researchers often need to share results
that may be too difficult to describe in text and too complex
to show using images. Many researchers include links to videos
as supplementary materials, but videos have a predefined view
of the scene and do not allow watchers to adjust the viewing
angle to their preference. In this paper we present a web-
based application (based on three.js) for sharing interactive
animations. Specifically, our tool (called Review) enables
researchers to generate simple animation log data that can
be loaded in any modern web browser on a computer or
mobile device. The camera in these animations is controlled
by the user such that they can pan, tilt, rotate, and zoom in
and out of the scene. Review is meant to improve the ability
of researchers to share their evolved results with one another.

CCS CONCEPTS
• Computing methodologies → Scientific visualization; Evo-
lutionary robotics;

KEYWORDS
evolutionary robotics, visualization
ACM Reference Format:
Anthony J. Clark and Jared M. Moore. 2018. Review: A Web-Based
Simulation Viewer for Sharing Evolutionary Robotics Results. In
GECCO ’18 Companion: Genetic and Evolutionary Computation
Conference Companion, July 15–19, 2018, Kyoto, Japan. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3205651.
3208292

1 INTRODUCTION
Conveying the behaviors of a dynamic system is extremely
important in the field of robotics. When presenting the opera-
tion of a new robotic system, it is vital to provide readers and

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan
© 2018 Copyright held by the owner/author(s). Publication rights
licensed to Association for Computing Machinery.
ACM ISBN 978-1-4503-5764-7/18/07. . . $15.00
https://doi.org/10.1145/3205651.3208292

collaborators with some way to visualize its motions. This is
particularly true for evolutionary robotics (ER) research, as
often the goal of ER is to produce novel or unexpected behav-
iors. Despite this importance, however, it can be difficult to
present behaviors in a manner useful to other researchers. In
this paper, we present Review1 (source code2), a web-based
platform for sharing visualizations of evolved robotic systems.

Traditionally, to depict behaviors of an evolved system,
researchers provide sequences of images (see Figures 1 and 2)
and/or links to videos. Image sequences have been a common
feature of ER from the beginning; see, Sims [14] from 1994
for example. Images, however, can sometimes be problematic.
First, when a reader is unfamiliar with terminology (e.g.,
gait, hopping, bounding, etc.) they may not have a base-
line reference with which to compare and understand images
of a new behavior. And second, even with a good under-
standing of what to expect, some complex movements are
difficult to comprehend from image sequences. For example,
the quadruped gaits in Figure 1 are reasonably understand-
able for someone familiar with such systems, but for someone
new to quadrupedal robotics it may be difficult to picture
the motions. Likewise, the unusual gaits exhibited by the
worm-like animat in Figure 2 are difficult to imagine without
the aid of video (or animation).

Linking to videos is a common approach to handling the
problems associated with images. Videos, however, are simi-
larly static in the sense that the camera transform (viewing
angles, zoom levels, etc.), object materials (colors and other
material properties), and playback speed are fixed once the
video is generated and uploaded. Practically, this means that
a viewer of the video cannot change the view angle or zoom-
in on different aspects of the scene, and cannot change the
color of objects if they find the chosen colors hard to see.
And although some web-based video players allow a viewer
to speed-up/slow-down the video by small amounts, this is
usually at the cost of playback smoothness; videos appear
choppy when they are slowed down since videos are recorded
at a fixed frame-rate and slowing down the video effectively
makes each frame appear for a longer period of time. Addi-
tionally, it is common for ER researchers to generate videos
by performing a video screen recording (often referred to as a
screencast). Since the speed of a simulation playback depends
on the current load of both the CPU and GPU, recording
a simulation playback via screencasting generally leads to
1https://review.github.io/
2https://github.com/review/review.github.io

1357

https://doi.org/10.1145/3205651.3208292
https://doi.org/10.1145/3205651.3208292
https://doi.org/10.1145/3205651.3208292
https://github.com/review/review.github.io

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Anthony J. Clark and Jared M. Moore

Figure 1: Evolved gaits for a quadrupedal animat: (top) galloping, (bottom) hopping. Interactive visualizations of the galloping
and hopping gaits can be found, respectively, at the following links: http://bit.ly/2HYXS7u and http://bit.ly/2HVY9bc; or by
visiting the links specified by the QR codes.

Figure 2: Evolved gaits for a worm-like animat (adapted with permission from Moore et al. [8]): (top) tumbling, (bottom)
hopping. Interactive visualizations of the tumbling and hopping gaits can be found, respectively, at the following links: http:
//bit.ly/2vH4Knp and http://bit.ly/2HnHa4C; or by visiting the links specified by the QR codes.

videos with irregular frame-rates. Animation software, such
as Review, does not have these drawbacks.

Review was originally developed to share visualizations
among colleagues. Essentially, a tool was needed to solve
two common questions in evolutionary robotics: (1) how
can we share behavior results without needing to generate
and email (or upload) large video files, and (2) how can
we enable collaborators to manipulate the scene’s camera
as the visualization is playing. One method for achieving
these two goals is to setup the same simulation and graphics
environment on the machines of all collaborators, such that
everyone is able to repeat the same experiment when given the
same configuration (i.e., control and morphology parameters
and environment initial conditions). To ensure repeatable
results, in ER research this would require all collaborators to
install the same physics and graphics libraries. This works
for small teams and simple software packages, however, it
becomes untenable when dealing with more complex systems.

Instead, Review has the ability to playback visualizations,
inside a browser, when provided a log file. Thus, the work-
flow works as follows: (1) a researcher runs an evolutionary

experiment (likely with the aid of a compute cluster), (2)
interesting solutions are re-run, with visualization logging
enabled (see section 2 for details), to generate log files, (3)
log files are shared with other researchers (e.g., via email or
uploaded to a website), and (4) log files are run with Review so
that everyone can see the same results. Importantly, everyone
using Review can independently adjust the playback speed,
color of objects, and camera.

Review is meant to be complementary to both image
sequences and videos. Many researchers will not have access
to the Internet while reading a research paper, and for many
other cases video will suffice. A web-based simulation viewer
is meant for the following scenarios:

(1) sharing research with collaborators that need the ability
to examine the scene from their own perspective, and

(2) sharing difficult-to-visualize behaviors in such a way
that readers can manipulate the camera to better un-
derstand evolved behaviors.

1358

http://bit.ly/2HYXS7u
http://bit.ly/2HVY9bc
http://bit.ly/2vH4Knp
http://bit.ly/2vH4Knp
http://bit.ly/2HnHa4C

Review: A Web-Based Simulation Viewer for Sharing
Evolutionary Robotics Results GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

2 REVIEW
Due to recent advances in web technologies (e.g., WebGL
and HTML5), web-based visualizations have become increas-
ingly prevalent [3]. Applications include: data visualization,
education (e.g., viewing the human anatomy or the structure
of a molecule), content creation (i.e., creating 3D models
and other assets), gaming, and structure visualization (e.g.,
geospatial and architectural) [3, 9, 10]. The convenience of
web-browsers and their increased performance has led to this
increase in web-based applications.

2.1 Usage
Before we discuss Review in detail, we provide the following
proposed usage for using Review as part of an ER study:

(1) Run evolutionary experiments
(2) Generate animation data (in Review log file format)

for interesting results
(3) Load animations in Review
(4) Configure the scene (change materials and environ-

ment)
(5) Export animation file (Review log file and/or glTF

formats)
(6) (optional) Generate high-quality videos using glTF
(7) Share animations with other researchers

The final step above can be achieved in several ways. First,
Review log files can be directly sent to collaborators (e.g.,
via email). A log file saved on a local computer can be
opened by Review through a file browser or by dropping the
file onto the browser window. Alternatively, log files can be
hosted on any server and automatically fetched by Review in
the following manner: https://review.github.io/?log=https://
raw.githubusercontent.com/review/review.github.io/master/
examples/simple-sphere.json. Here, we have provided the URI
of a log file to Review via an HTTP URI query component
(note the "?" after the domain and the key-value pair that
follows). When embedding links to an animation inside of
a research article, it can often be desirable to shorten the
URI with a URL shortener (such as Bitly3 and Ow.ly4) .
For example, this shortened link can be used in place of
the previous link: http://bit.ly/2HOZQcY (this usage is also
shown in the caption of Figures 1 and 2). Additionally, a
QR code can be generated for the URL and paired with the
image sequence as shown in Figures 1 and 2. This will enable
readers to print a copy of an article and view the anima-
tion on their smart-phone using a QR code reader. Finally,
Review-based animations can be embedded into any website
using an HTML iframe. This allows users to see animations
in a similar manner to an embedded video, but they will be
able to manipulate the viewing angle, and change the color
of objects in the scene.

3https://bitly.com/
4http://ow.ly/

2.2 Interface
A screen-shot of the Review interface is shown in Figure 3.
Review provides two methods for loading a log file (the log
files is described in the next section): (1) log files can be
loaded from the local machine either by dragging the file
onto the browser window, or by choosing a file from the open-
file dialog box that is available when no log file is currently
loaded (not shown), or (2) log files can be specified via an
HTTP URI query component and loaded automatically by
Review from remote servers (as demonstrated in the “Usage”
section above).

Figure 3: A screen-shot of Review with a UGV simulation in
progress. The color palette can be used to change the color of
each object in the scene.

This image depicts a scene of a transformable wheel UGV
and several obstacles; the UGV’s chassis color is currently
being changed with a color picker that can be accessed in
the settings pane. Review’s settings pane includes several
other expected features, for example, the ability to follow
a specific object with the camera, reset the camera to its
original settings, change the visibility of objects in the scene,
and export the current animation. The settings pane can be
hidden from view when it is unneeded. A standard set of
playback controls are available at the bottom of the screen.
One of the most useful controls is the progress bar, which
can be scrubbed forward and backwards. Scrubbing refers
to the ability to drag the progress icon to quickly navigate
through time while watching the scene update on-the-fly.
The playback speed can be adjusted from −5 to 5, where a
negative number indicates that the scene will play in reverse.

2.3 Log File Format
One motivating factor for developing Review was the lack
of an alternative application with a suitable file format.
Most similar tools (described in section 3) require a complex
file format that is difficult to generate alongside a physical
simulation–likely because most 3D object viewers anticipate
that visualization data is being generated by an authoring
tool like Blender [1] or Autodesk Maya [11]. Common 3D
file formats that include animations (e.g., COLLADA, FBX,
glTF, and OpenGEX) focus on making it easy to load bi-
nary data and immediately send it through a GPU-centric

1359

http://bit.ly/2HOZQcY
https://bitly.com/
http://ow.ly/

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Anthony J. Clark and Jared M. Moore

graphics pipeline. For example, the following components are
needed to specify a moving sphere in the glTF file format:

(1) A binary data buffer specifying the 3 dimensional posi-
tions of all points comprising the sphere, the surface
normals of all points, and texture coordinates;

(2) A set of buffer accessors (called “views”) for speci-
fying how to extract positions, normals, and texture
coordinates from the binary buffer;

(3) A material object that specifies various properties of
the sphere’s surface (i.e., roughness, metallic factor,
and base color);

(4) A mesh object that groups together the buffer accessors
associated with a single object and includes a reference
to the sphere’s material;

(5) A node object that refers to the above mesh and speci-
fies the sphere’s relationship to all other objects in the
scene (even if no other objects are present);

(6) A scene graph specifying that the sphere is a root
object (it’s transform does not depend on any other
objects);

(7) An animation object that specifies how the sphere is
transformed (typically translations, rotation, and scale)
over time.

glTF version 2.0 was released in 2017 and is a relatively
simple specification compared to the other formats listed
above. In contrast, the Review file format was specifically
designed to be easily generated while running a simulation.
An example of the Review log file format is provided in
Listing 1. This is a visualization of a sphere that moves in a
square pattern and pauses for one frame when it reaches its
position defined in the fourth frame. This example animation
can be viewed at the following link: http://bit.ly/2HOZQcY.

Listing 1: Review Log File Example
{

"name": " Sphere Example ",
" timeStep ": 0.25 ,
" objects ": [{

"name": " sphere1 ",
"mesh": " sphere "

}],
" frames ": [

{ " sphere1 ": { "t": [0, 0, 0] } },
{ " sphere1 ": { "t": [1, 0, 0] } },
{ " sphere1 ": { "t": [1, 0, 1] } },
{ " sphere1 ": { "t": [0, 0, 1] } },
{ },
{ " sphere1 ": { "t": [0, 0, 0] } }

]
}

The log file is a JSON file with a specific schema [12].
Here we describe a basic file, but the full schema can be
found in the Review Git repository. This file format is human
readable and writable, and nearly all programming languages
include a library for manipulating JSON data. The Review

logging library5 used to generate the files linked in this study
has been provided, and it contains less than 100 lines of
C++ code and has only one external dependency (a C++
JSON library). This format has four required fields. The
name (string) and timeStep (number) provide a unique name
for the visualization and the time elapsed between frames,
respectively.

objects (array) is a list of all objects that are present in
the scene. In the example, there is only one object and only
the required object fields are specified. Each object must
have a unique name (string) and a mesh (string). The mesh
value denotes either a primitive (cube, cylinder, or sphere) or
a URI to an external resource (e.g., an STL or COLLADA
file). In addition to these fields, several other attributes can
be specified. The most prominent fields include: a physically
based rendering (PBR) material, translation, rotation, and
scale.

frames (array) is a list of all frames in the scene. The time
lapsed between each pair of consecutive frames is always
timeStep. Each frame is a JSON object where the keys (left
side of the colon) denote objects named in the objects array,
and the values (right side of the colon) denote object trans-
formations. In the example, the only attribute of sphere1
that changes is its translation. The most common animation
attributes are translation (t) and rotation (r), but other types
can be specified (e.g., scale). As exemplified by the fifth frame,
this log file format allows for empty frames. An empty frame
signifies that no objects are in motion during that frames
time step. Allowing for empty frames greatly reduces the
file size when many objects are in a given scene but only a
few are in motion at a specific time. For example, for the
UGV visualization in Figure 3 all 30 boxes are dynamic, but
only one or two boxes are pushed by the UGV in any given
frame. Although frame data may be omitted, currently the
empty frames themselves must be present to ensure that the
duration of the simulation is accurate–the log file format does
not currently allow for variable timeSteps between different
frames.

2.4 Technical Details
After Review loads a JSON-format log file, it converts it
into glTF 2.06. glTF is a transmission format specified in
JSON that is used for loading and saving 3D models and
scenes–an example of the contents of a glTF file are described
above. It is advantageous to convert the Review log file into a
format that is readily loaded by graphics engines. A custom
graphics engine could be constructed around the Review log
format (indeed, an earlier version of Review used a custom
engine), however it is beneficial to use a full-featured graphics
engine with state-of-the-art features and optimizations. We
chose glTF due to its wide support and relatively simple
specification. Thus, Review maintains the benefit of a simple
file format while also gaining the capabilities of more capable
rendering libraries.

5https://github.com/review/logger-cpp
6https://github.com/KhronosGroup/glTF

1360

http://bit.ly/2HOZQcY
https://github.com/review/logger-cpp
https://github.com/KhronosGroup/glTF

Review: A Web-Based Simulation Viewer for Sharing
Evolutionary Robotics Results GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

Review uses three.js [2] to render animated scenes to a
browser window. three.js includes a modern rendering pipeline
built on WebGL [5], great support for animations, and the
ability to import glTF files. WebGL is a JavaScript API
for rendering 3D graphics within a browser. WebGL enables
GPU accelerated rendering in a similar fashion to OpenGL
(specifically OpenGL ES). GPU shaders can be customized to
produce stunning visuals that are rendered in the browser in
real-time. WebGL is supported on many systems, including
most modern desktop browsers and many browsers running
on iOS and Android.

three.js is a cross-browser JavaScript library created to
make 3D graphics applications. It includes many features for
building complex scenes from simple components: different
forms of lighting, different material and texture models, sup-
port for importing standard mesh formats, and an animation
system. Perhaps the most important feature of the three.js
animation system is interpolation, whereby three.js will inter-
polate transformation between frames. In the moving sphere
example above, the time between frames is 0.25s, however,
most computers will have no trouble rendering the scene
at 60 frames-per-second, which means that three.js will use
interpolation to generate roughly 15 frames in-between each
frame. The impact of interpolation is most dramatic when the
playback speed is reduced. For instance, when the playback
speed is set to 0.25 three.js generates 60 interpolated frames,
thereby providing a smooth animation. Without interpola-
tion, animations would be choppy (similar to a slowed-down
video).

3 RELATED WORK
Although web-based visualizers can be found for many differ-
ent domains, there are only a few that have similar capabil-
ities to those we describe here–namely, sharing animations
with other collaborators and other researchers. Clara.io [4]
is a cloud-based web-application for modeling, animating,
and rendering scenes. Clara.io has an impressive list of fea-
tures, including the ability to create models and scenes in the
browser. With Clara.io you can send animation links to col-
laborators, but the data files must be hosted by Clara.io and
the project is not open source. More importantly, Clara.io
uses standard graphics formats, which makes it difficult to
generate animation data as part of an evolutionary experi-
ment work-flow. Sketchfab [15] is another alternative, and
like Clara.io, Sketchfab hosts the data files and works with
common graphics files. In contrast to Clara.io, Sketchfab
focuses more on sharing and hosting graphics demos and
less on authoring new assets and models. Verge3D [6] is an
upcoming product that has similar features to both Clara.io
and Sketchfab. Verge3D, however, focuses more on providing
a means for creating 3D Web applications hosted by users.
For example, it can be used to create an e-commerce website
that delivers interactive 3D renderings of products.

Apart from these larger projects, Shen’s Clay-Viewer [13]
and McCurdy’s glTF Viewer [7] have a similar interface to
Review, and they load local animation files in glTF format.

None of the above applications, however, provide a feature
similar to our HTTP URI query component whereby an ani-
mation can be loaded by providing a link to the animation
data in the URI. While these alternatives would enable shar-
ing visualizations, they all require an extensive amount of
work to generate visualization data (see the discussion on
glTF in section 2). Another drawback of these websites is
that many require a paid account to keep hosted files private,
whereas with Review a researcher can choose to only share
the log files with specific collaborators.

4 CONCLUSIONS
In this paper we have presented Review, a web-based tool
for sharing evolutionary robotics visualizations with collabo-
rators and other researchers. The interactive visualizations
enabled by Review are complementary to current techniques
such as providing image sequences and links to videos. More-
over, the simple log file format and export to glTF feature
will enable researchers to import their simulation results into
3D author tools such as Maya, which will enable the produc-
tion of high-quality videos more suitable for presentations.
In the future, we anticipate adding the following features:
(1) the ability to import more than one animation at a time
so that researchers can compare the results from different
trials in the same view, (2) support for additional mesh and
material formats, and (3) the ability to generate videos by
outputting frame data (which will provide a smoother video
when compared to a screen recording).

ACKNOWLEDGMENTS
The authors would like to thank the contributions of Dr.
Razib Iqbal, Michael Brattin, Kyle Finter, Garren Ijames,
Brett Spatz, and Jesse Stewart from Missouri State Univer-
sity.

REFERENCES
[1] John M Blain. 2012. The complete guide to Blender graphics:

computer modeling and animation. CRC Press.
[2] Ricardo Cabello et al. 2010. Three.js. Retrieved Apr. 3, 2018

from https://threejs.org/.
[3] Alun Evans, Marco Romeo, Arash Bahrehmand, Javi Agenjo,

and Josep Blat. 2014. 3d graphics on the web: a survey. Com-
puters & graphics, 41, 43–61.

[4] Inc. Exocortex Technologies. 2013. Clara.io. Retrieved Apr. 3,
2018 from https://clara.io/.

[5] Dean Jackson and Jeff Gilbert. 2011. WebGL. Retrieved Apr. 3,
2018 from https://www.khronos.org/webgl/.

[6] Yuri Kovelenov and Alex Kovelenov. 2018. Verge3D. Retrieved
Apr. 3, 2018 from https://www.soft8soft.com/verge3d/.

[7] Don McCurdy. 2017. glTF Viewer. Retrieved Apr. 3, 2018 from
https://gltf-viewer.donmccurdy.com/.

[8] Jared M. Moore, Anthony J. Clark, and Philip K. McKinley.
2017. Effect of animat complexity on the evolution of hierar-
chical control. In Proceedings of the 2017 acm genetic and
evolutionary computation conference. Berlin, Germany, (July
2017). doi: https://doi.org/10.1145/3071178.3071246.

[9] Jared M. Moore, Anthony J. Clark, and Philip K. McKin-
ley. 2014. Evolutionary robotics on the web with webgl and
javascript. In Proceedings of the workshop on artificial life
and the web 2014, held in conjunction with the fourteenth
international conference on the synthesis and simulation of
living systems (alife 14). New York, New York, USA, (July
2014). http://arxiv.org/abs/1406.3337.

1361

Clara.io
https://threejs.org/
https://clara.io/
https://www.khronos.org/webgl/
https://www.soft8soft.com/verge3d/
https://gltf-viewer.donmccurdy.com/
http://dx.doi.org/https://doi.org/10.1145/3071178.3071246
http://arxiv.org/abs/1406.3337

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Anthony J. Clark and Jared M. Moore

[10] F. Mwalongo, M. Krone, G. Reina, and T. Ertl. 2016. State-of-
the-art report in web-based visualization. Computer graphics
forum, 35, 3, 553–575. doi: 10.1111/cgf.12929. https://onlinelib
rary.wiley.com/doi/abs/10.1111/cgf.12929.

[11] Todd Palamar. 2015. Mastering Autodesk Maya 2016: Autodesk
official press. John Wiley & Sons.

[12] JSON Schema. 2013. Json schema. Retrieved Apr. 3, 2018 from
http://json-schema.org/.

[13] Yi Shen. 2018. Clay-Viewer. Retrieved Apr. 3, 2018 from https:
//pissang.github.io/clay-viewer/editor/.

[14] Karl Sims. 1994. Evolving virtual creatures. In Proceedings of
the 21st annual conference on computer graphics and interac-
tive techniques. ACM, 15–22.

[15] Sketchfab. 2013. Sketchfab. Retrieved Apr. 3, 2018 from https:
//sketchfab.com/.

1362

http://dx.doi.org/10.1111/cgf.12929
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12929
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12929
http://json-schema.org/
https://pissang.github.io/clay-viewer/editor/
https://pissang.github.io/clay-viewer/editor/
https://sketchfab.com/
https://sketchfab.com/

	Abstract
	1 Introduction
	2 Review
	2.1 Usage
	2.2 Interface
	2.3 Log File Format
	2.4 Technical Details

	3 Related Work
	4 Conclusions
	Acknowledgments

