
Evolving Adabot: A Mobile Robot with

Adjustable Wheel Extensions

Anthony J. Clark

Department of Computer Science
Missouri State University
Springfield, Missouri, USA

AnthonyClark@MissouriState.edu

Abstract—Robots are increasingly being utilized
in unstructured environments. Autonomous mobile
robots are being assigned with tasks that are either
too di�cult or too dangerous for people. For instance,
search and rescue robots can be deployed in unstable
environments to aid in the search for disaster victims.
In this paper, we propose a novel design for an au-
tonomous mobile robot that can dynamically adjust
traction during runtime. Our device, called Adabot
meaning adaptive robot, is small, has a simple design,
and can extend wegs from its wheels by adjustable
amounts. We optimize both the morphology and the
control parameters of Adabot using di�erential evo-
lution, and our simulation results show that Adabot
is e�ectively able to take advantage of both purely
wheeled locomotion and legged-wheel locomotion by
transitioning automatically between these two modes.

I. Introduction

Robots are often designed to operate in environments
that are too hazardous or remote for humans. Examples
include remote sensing (e.g., underwater exploration), as-
sisting humans in dangerous occupations such as mining,
and locating disaster victims (i.e., search and rescue). Each
of these scenarios involve an environment that can be
unpredictably dynamic with unknown structure. In this
paper we focus on the search and rescue task. Specifically,
we present a compact, autonomous mobile robot that has
been designed to adapt to its current terrain in order to
increase mobility in unforeseen environments. The device,
which we call “Adabot” (for adaptive robot), is pictured
in Figure 1. Adabot includes adjustable wheel extensions,
called wegs, that can be quickly extended or retracted.
E�ectively, Adabot can operate on smooth wheels, extend
the wegs a small amount to mimic tire studs, or extend
the wegs completely so that the device operates similar to
other mobile robots with legged-wheels [1].

Due to recent advances in sensing, computing, actuation,
and battery systems, the past two decades have seen
many advances in the field of mobile robots. In particular,
mobile robots that combine wheeled and legged locomotion
have received a great deal of interest [1–5]. The devices
developed in these studies combine the simplicity provided
by wheels with the ability of legged locomotion to navigate
irregular, rough terrain with obstacles. Typically, such
systems resemble a skid-steer mobile robot with four or

(a) (b) (c)

(d) (e) (f)

Figure 1. (a,d) Images of the Adabot being simulated in Gazebo,
(b,e) CAD models for the Adabot design in Inventor, and (c,f) a 3D-
printed prototype of Adabot. All images show Adabot with its wegs
extended.

six wheels, where in place of each wheel they have a
rotating actuator that drives a rimless wheel with one
or more spokes. Most devices, however, do not have the
ability to operate purely as wheeled vehicles. Though,
recently researchers have been developing robots that can
dynamically switch between wheeled and legged-wheel
modes [6–9].

The mobile robot in Figure 1 more closely resembles
these reconfigurable robots (i.e., it has the advantages of
both pure wheeled and legged-wheel locomotion), however,
with a significantly simpler mechanism for reconfiguration.
With the wegs completely retracted, the robot behaves
as any other skid-steer device [10] and has the advantages
associated with wheeled locomotion: simple design, driving
quickly and stably over flat terrain, simplified navigation,
simple odometry calculations, relatively low vibrations and
possibility of damage, etc. This mode does, however, come
with several disadvantages: wheels can easily slip over loose
or low friction terrain, wheels can also become stuck if
they are wedged against an obstacle, and most importantly
wheeled robots have trouble climbing over obstacles that
are taller than the radius of the wheel [1]. The device
presented in this paper can smoothly transition from using
wheeled locomotion, to extending the wegs fully in rough



terrain, to retracting the wegs a small amount on somewhat
uneven terrain, back to fully retracting the wegs when the
surface is again level.

Although the extendable weg design has many benefits,
it does require several design choices that drastically
a�ect performance. Namely, the robot’s morphology (i.e.,
shape, size, positioning, etc.) and control parameters must
be specified. For this study we rely on an evolutionary
algorithm to optimize these parameters. Like many evo-
lutionary robotics (ER) studies, we perform evolutionary
evaluations in simulation [11], and because we are utilizing
the Robot Operating System (ROS) [12] on the physical
device, we chose to leverage the expansive knowledge bases
of ROS and Gazebo [13] for simulation. More specifically,
we optimize the robot by simulating it in two distinct
environments (a simple step world and a rocky terrain
world). Evolving in simulated environments enables testing
the device in harsh conditions, similar to what can be
expected in real-life scenarios, without exposing it to
unneeded risk. Our decision to use ROS/Gazebo comes
with many advantages and technical challenges, which are
discussed in Section IV.

The evolutionary results presented in this paper show
the e�cacy of the robot’s design. Specifically, that the
adjustable wegs enable the robot to e�ectively operate as
if it were a wheeled or a legged-wheel robot. Additionally,
the simple design, range of possible extension lengths, and
small scale of our device provides an advantage over other
similar robots. Another contribution of this work is the
use of evolutionary optimization techniques in conjunction
with ROS and Gazebo, which we believe will be of interest
to the ER community. A Git repository1 for the Adabot
package can be found online. The remainder of this paper
is structured as follows. In Section II we describe studies
involving similar robotic systems. Sections III and IV
describe the robotic platform and its simulation environ-
ment. Results of evolutionary experiments are discussed
in Section V, and finally we present our conclusions in
Section VI.

II. Related Work

Mobile Robots. Robotics research focused on improving
mobility has received a great deal of interest in the
previous two decades. Researchers have discovered sev-
eral unique methods for balancing the trade-o�s between
design simplicity and the increased complexity required
to manage rough and unpredictable terrain. The simplest
design is that of a standard wheeled robot. The inherent
simplicity, however, comes at the cost of mobility. Purely
wheeled robots su�er from poor mobility in uneven terrain.
Thus, to improve performance, wheeled robots have been
augmented with both active and passive suspensions. Some
of the most e�ective, and complex, designs involve placing

1Git repository: https://github.com/anthony-jclark/adabot

the wheels at the end of actively controlled legs. Take, for
example, the Hylos [14] and NASA’s Curiosity.

In an e�ort to retain the mobility of such systems
while at the same time striving for simplicity (or avoiding
unnecessary complexity), legged-wheel robots have been
proposed. These devices, such as the Wheg 1 [1] and the
ASGUARD [3], have rimless wheels in which the wheel
spokes are what make contact with the ground. Compared
with wheels, legged-wheels can drastically improved a
robot’s ability to navigate rough terrain and stairs. For
example, when comparing a wheel and a legged-wheel
with the same e�ective radius, the legged-wheel will be
able to climb steps that are nearly the same height as
the wheel diameter while the wheeled robot will likely en-
counter di�culty when the step height is above the wheel’s
radius [1, 7]. A subset of legged-wheel robots incorporate
only a single spoke (leg) on each wheel that rotates around
a central axis. The RHex [2] and VelociRoACH [4] are
examples of hexapod-like mobile robots that use a single
spoke per wheel to mimic animal-like gaits. Both of these
devices derive their motion from the insect-like tripod gait,
which has proven to be very e�ective in rough terrains.
Similar to legged-wheels are wheeled-legs, which include a
powered wheel at the end of each spoke. These devices
aim to incorporate the benefits of purely wheeled and
legged-wheel locomotion, however, this comes at the cost
of increased complexity and larger wheels [7, 15].

More recently, the research community has put an
emphasis on transformable legged-wheels. These devices
include a mechanism for reconfiguring the wheel (i.e.,
significantly changing its shape) from a purely wheeled
mode to a legged-wheel mode [6, 9, 16, 17]. The device pre-
sented in this study is most similar to these transformable
robots. However, compared with other devices, the wheel
presented in this study is able to exhibit a range of di�erent
behaviors, rather than purely wheeled or fully legged-
wheeled. Additionally, our robot has a simpler transforming
mechanism that requires only a single actuator to extend
the wegs of all four wheels–though, the version presented
here includes a linear servo for each wheel to maximize the
flexibility of our design. The Adabot also has the advantage
of few moving parts and joints, and the ability to more
easily miniaturize the design for applications in which the
robot needs to be smaller. For example, it is beneficial to
have a small, lightweight robot to lower the possibility of
causing further damage to the environment or injury to
a person. However, our weg extensions have a relatively
low maximum extension distance, roughly equal to the
di�erence between the radius of the wheel and the radius
of the axle (see Figure 5).

Evolutionary Robotics. Roboticists have often drawn
inspiration from nature to design more robust systems.
Likewise, the field of evolutionary computation (EC) ap-
plies concepts from natural evolution to optimization
algorithms. Evolutionary robotics is a branch of both



(a) (b) (c) (d) (e) (f)

Figure 2. CAD models showing the (a) wheel and its empty weg channels, (b) wegs in the fully retracted position, (c) retracted wegs and
the sliding-ramp, (d) wegs and sliding-ramp in a partially extended position, and (e) wegs and sliding-ramp in a fully extended position. An
image of the 3D printed prototype is shown in (f).

robotics and evolutionary computation in which evolu-
tionary algorithms are applied to optimize both the mor-
phology and control of physical systems [11]. For example,
Iwasa et al. [18] used a genetic algorithm and knowledge
transfer to improve the mobility of a hexapod walking
in rough terrain. Similarly, the robot presented in this
study is optimized using an evolutionary algorithm called
di�erential evolution (DE) [19]. In prior work [20], we
investigated the use of DE to improve the adaptability of
a robotic fish by optimizing both the physical properties
of the robot’s tail fin as well as its control parameters.

III. Robot Platform

Adabot Hardware. The Adabot is a compact, au-
tonomous mobile robot. The prototype pictured in Figure 1
is controlled by a Raspberry Pi 3 Model B (RPi), which was
chosen due to its low cost and ability to e�ectively run ROS.
In addition to the RPi, the Adabot includes an A-Star 32U4
micro-controller board to o�oad some of the sensor pro-
cessing. Each wheel is directly driven by a DC gear-motor
with magnetic wheel encoders, and each set of wheel wegs is
extended/retracted by a 2.3 gram linear servo. For sensors,
the Adabot includes three forward facing IR sensors, a
9-axis IMU (gyro, accelerometer, and magnetometer), as
well as a 2.4 GHz wireless communication module. Finally,
the Adabot is powered by a 2200 mAh NiMH battery pack
and includes the necessary voltage regulators and motor
controllers to interact with the sensors and actuators. The
prototype device has been fabricated with the aid of 3D
printing technology, though parts on the finalized device
are being cast from plastic resins. The 3D printing process
enables quick validation of evolved solutions.

Figure 2 shows how the wheels have been designed. In
the figure, the wheel’s radius and depth are 2 cm and
0.4 cm, respectively, and the wegs can extend from the
wheel rim approximately 1 cm. The mechanism comprises
four main components: a wheel (white with black tread),
several wegs (red), a sliding-ramp (blue), and a sliding-
push (not shown in this figure, see Figure 4). Essentially,
as the sliding-ramp is pushed outward the wegs slide

(a) (b) (c)

Figure 3. A cross-section view of a single wheel channel showing
the wegs in (a) the retracted state, (b) a partial extended state, and
(c) the fully extended state. As the sliding-ramp (blue) moves from
left-to-right the weg (red) is pushed up the wheel channel.

Figure 4. A top-down view of an Adabot axle cavity (with the RPi
removed). Servomotors connected to the sliding-push components are
responsible for pushing and pulling the sliding-ramp, which in turn
extends and retracts the wegs.

radially out from the wheel’s axle. Figure 3 depicts a cross-
sectional drawing of the sliding-ramp, wheel, and wegs.
This mechanism is simple, e�ective, and can be scaled up
or down in size.

Each sliding-ramp is pushed and pulled outward and
inward by a sliding-push component, as shown in Figure 4.
The sliding-push components are attached to linear servos
situated in the space between the wheel motors. This
design is compact and also has considerable flexibility
since each wheel and each set of wegs can be controlled
independently.

To maximize extension of wegs while also allowing for
a minimal wheelbase (i.e., the distance between front and



Figure 5. A depiction of the weg o�set in the wheel’s outer rim.
In the wheel on the left (the front wheel), the wegs protrude closer
to the outer edge of the wheel, whereas the opposite is true for the
wheel on the right (the rear wheel). This enables wegs to extend a
greater distance without colliding while at the same time reducing the
maximum required chassis length (i.e., the wheelbase). Also depicted
in the figure are the two evolved parameters (chassis length and wheel
radius) that constrain the maximum allowed wheel extension distance,
which can be less than the length of a weg.

rear axles), wegs do not extend from the center of a wheel’s
outer rim. As shown in Figure 5, the front wheel wegs
extend from nearer the outer edge and the rear wheel
wegs extend from nearer the inner edge of the wheel rim.
Minimizing the wheelbase is important for skid steer drives
as the relationship between wheelbase and wheel-track (i.e.,
the distance between tires on a single axle vector) impacts
the amount of vibration/skidding during a zero-degree turn.
Specifically, as the wheelbase is increased relative to the
wheel-track so do the frictional forces that cause vibration.

Although the prototype has a wheel radius of 2 cm, it
should be noted that as the wheel radius is increased so
to is the maximum possible weg extension distance. This
point is discussed in more detail in the next section where
we discuss the evolved parameters.

Adabot and ROS. RPis are a powerful option for a small
embedded system. The Raspberry Pi 3 Model B has a
1.2GHz, 64-bit CPU and 1 GB RAM, as well as built in
Bluetooth and a 40-pin GPIO header among other features.
The RPi enables use of ROS, which is a set of libraries and
middleware that aid the in the development of robotic
systems. At its core, a ROS controlled system launches
several software nodes that communicate with one another
via a publisher/subscriber message passing (or through
services and actions). Each node has a single well-defined
task, and nodes are designed to be as reusable as possible.
For example, one node might read IMU data from a specific
IMU sensor chip over an I2C interface, and then publish
this data for use by other nodes.

In addition to nodes that read from sensors and send
information to motor controllers, we are using several
custom, single purpose nodes and two commonly used
nodes from the ROS community. First, we have a node
that generates odometry from our wheel encoder data.
This data and the IMU data are then fused by the

robot_localization [21] package, which provides localization
information (positions, velocities, and accelerations) using
a Kalman filter. We then have a custom ROS node that
reads the current velocity from the localization data and
smooths it using a windowing technique so that it can
be used by the higher level controller (described in the
next section). Finally, the ros_control package is utilized
to manage PID controllers for each of the four DC motors
connected to the wheels.

IV. Simulation and Evolution

Simulation Environment. Gazebo is an open source
simulation package with up-to-date ROS integration; both
ROS and Gazebo are managed by the Open Source
Robotics Foundation (OSRF). Although Gazebo can act
as a stand-alone simulator, when used in tandem with ROS
it behaves like any other ROS node. Specifically, a Gazebo
simulation instance acts as a drop-in replacement for a
real robot and its physical environment. Essentially, as a
simulated vehicle operates in its environment Gazebo will
publish raw sensor data (in an identical format to what is
published by a node reading from a real sensor) and with
the gazebo_ros_control package, ros_control commands
will be acted upon by simulated actuators. Another key
benefit of Gazebo is that its sensor plug-ins (like the IMU
sensor used in this study) are thoroughly tested and have
built-in noise models so that they more closely mimic real
devices. One additional responsibility of the Gazebo node
is to publish the current simulation time, which all nodes
use in place of real time.

To test and evolve Adabot, we have created two simple
environments: a step world, and a rocky world. The step
world, depicted in Figure 6 (a), serves two purposes: (1)
it is a minimal environment we can use to investigate the
Adabot weg mechanism, and (2) it provides a baseline
comparison for experiments that occur in more complex
environments. In particular, we can compare optimized
parameters from the step world to the rocky world to in-
vestigate whether a single set of morphological parameters
is likely best for all environments or if di�erent types of
obstacles and terrain require di�erent parameter values.

Figure 6 (b) shows the rocky world environment. This
environment comprises three randomly generated “rocky”
regions separated by flat plains, where peaks in the rocky
regions are evenly distributed in a 1 by 1 cm grid pattern
and the height of each peak is a randomly generated. This
world is randomly generated prior to simulation and then
kept constant throughout all replicate experiments. The
rocky world includes a more di�cult terrain that better
reveals the relative strengths and weaknesses of the Adabot
design.

Evolutionary Optimization. We chose the di�erential
evolution (DE) algorithm for this study, and we are
using the Distributed Evolutionary Algorithms in Python
(DEAP) software package [22]. DE is similar to a conven-



(a) Step World

(b) Rocky World

Figure 6. The step world (a) contains a single obstacle that is 3.5 cm
tall and 25 cm wide. The rocky world (b) contains three rocky regions
that are 25 cm wide with 25 cm gaps between them, where each region
comprises random-height peaks of at most 6 (near), 8 (middle), and
10 cm (far).

tional steady-state genetic algorithms, however, its genetic
operators have proven to be particularly e�ective for real-
valued problems [19]. For this study, we have implemented
dither for the mutation factor [23]. The objective for
DE is to maximize average velocity of the Adabot in
the x-axis direction (i.e., straight ahead from its initial
orientation). During any given simulation, the Adabot is
being controlled by the state machine depicted in Figure 7.
Along with several morphological parameters, the values
that dictate transitions in this state machine are optimized
by DE. After testing several variants, we have configured
DE as DE/rand/1/bin (see Storn et al. [19] for a description
of the nomenclature).

Figure 7. The depicted state machine automatically extends and
retracts the wegs based on sensor feedback. The robot starts in the
retracted state and then transitions to the extended state once the
poor mobility flag has been set, which is based on several evolved
parameters. The transition back to the retracted state is based on an
evolved timeout period.

A full listing of the evolved parameters can be found
in Table I. We evolve four morphological parameters: the
chassis length and width, the radius of the wheels, and
the number of wegs per wheel. For control, we evolve
five parameters. First, an angular wheel rate (i.e., a rate
independent of the wheel radius, meaning on a flat surface
a larger wheel will produce a higher linear velocity) for
the fully retracted weg-state, and an angular wheel rate

for when the wegs are extended. These wheel rates serve
two purposes: first, it may be beneficial to drive at a
di�erent speed with the wegs extended or retracted (for
example, it may be more stable to drive slower with the
wegs extended), and second, the top speed of the robot with
the wegs extended is lower to reduce the risk of damage to
the wegs. We also evolve a poor mobility threshold factor
and a poor mobility duration threshold, which are used
to detect how long the Adabot has not been achieving
its directed speed and then trigger extension of the wegs.
For example, when Adabot reaches an obstacle with its
wegs retracted, the robot_localization package will indicate
that it is no longer driving at the directed speed (the
current speed will be di�erent from the desired speed
by at least the Poor Mobility Threshold Factor). Once
the Adabot detects that such a condition has transpired
for a specified period of time (Poor Mobility Duration
Threshold) its wegs are extended. Specifically, they are
extended by some percentage of their maximum possible
amount (Weg Extension Percentage) for a specified amount
of time (Weg Extension Duration), which are the final two
evolved parameters.

Table I
Evolved Adabot Parameters

Description Range

Chassis Length 6 to 15 cm
Chassis Width 6 to 15 cm
Wheel Radius 1 to 3 cm
Wegs Per Wheel 0 to 7
Angular Wheel Rate (Retracted) 0 to 9 rad s≠1

Angular Wheel Rate (Extended) 0 to 4 rad s≠1

Poor Mobility Threshold Factor 0 to 1
Poor Mobility Duration Threshold 0 to 7 s
Weg Extension Percentage 0 to 100 %
Weg Extension Duration 0 to 30 s

The maximum possible weg length, and therefore the
maximum weg extension amount, is based on the wheel
radius (a configurable value) and the axle radius (a fixed
value). Additionally, the amount of space between wheels
(the amount of weg extension allowed) depends on the
wheel radius and the chassis length (i.e., the wheelbase).
Figure 5 depicts these parameters. If the evolved param-
eters result in wegs that collide with another wheel, then
we add a constraint violation to the evolved individual.
Specifically, we use the following equations:

weg

length

= wheel

radius

≠ axle

radius

extension

allowed

= chassis

length

≠ wheel

radius

ú 2
extension

evolved

= weg

length

ú extension

percent

/100.0
violation = extension

evolved

≠ extension

allowed



where weg

length

, extension

allowed

, and extension

evolved

denote the full weg extension possible for a single wheel, the
amount of space available between wheels, and the evolved
extension amount, respectively. If violation is greater
than zero then the evolved individual has a constraint
violation and the weg extension percentage is reduced
to the maximum allowed value. Once the weg extension
percentage is reduce, fitness is evaluated as normal. Finally,
when comparing individuals based on fitness and constraint
values, if they are both constraint-free then the higher
fitness value is preferred, if one individual has a constraint
violation then the non-constraint individual is preferred,
if they both have a constraint violation then the lower
violation individual is preferred. This is a simple and
e�ective method for handling constrained values among
evolved parameters [24].

Evaluation. To evaluate an individual, we configure a
Gazebo simulation with the individual’s parameter values
and repeat the same simulation five times. It is important
to repeat the simulation multiple times as an inherent
property of ROS/Gazebo simulations is that they are not
deterministic (due to the message passing system and lack
of reset functionality for all plug-ins and external nodes).
An additional benefit of repeated evaluation is that it
reduces the chances of a selection bias attributed to evolved
solution being “lucky” during fitness evaluation [25]. We
settled on five repeated simulations after some experimen-
tation and finding the best balance between execution time
and repeatability. The final fitness value is calculated as
the average velocity in the x-direction once outliers are
discarded using the median filtering method. One positive
side-e�ect of evaluating each genome multiple times is
that the fitness function applies an evolutionary pressure
on producing genomes that are repeatably high fitness.
E�ectively, the fitness function prefers solutions that are
not easily knocked o� a straight-ahead course by obstacles
in the environment.

V. Results

In this section we describe and compare results from
two experiments: evolving the Adabot in a rocky world
and in a step world. For both experiments, we config-
ure DE parameters after experimenting with the values
recommended by Storn et al. [19]; for both experiments,
we use a population size of 40, a dithered mutation
factor from 0.5 to 1.0 (a random value is generated each
generation), and a crossover rate of 0.9. Additionally,
each experiment comprises 40 replicates (initialized with
di�erent random number generator seeds) evolving for at
most 50 generations. We include an early stopping criteria
to prevent wasted simulation time–if the maximum fitness
does not improve for 10 consecutive generations and the
current generation is greater than 25, then the replicate
is stopped. On average, an experiment is stopped-early
at generation 34 and 43 for the rocky and step worlds,

Figure 8. The figure above shows the max and mean fitness trends
(measured as velocity in the x-axis) for both replicated experiments
as they improve over the generations. The shaded regions and vertical
bars near each line indicate confidence intervals of one standard
deviation from the mean. A maximum fitness of value of 11 and
20 cm s≠1 is achieved on average in the rocky and step environments,
respectively.

respectively. The duration of trials in the rocky and step
environments are 30 seconds and 20 seconds, respectively,
and fitness is calculated as described in the previous section.
Evolutionary trajectories for these experiments are shown
in Figure 8, and videos of optimized behaviors for the
rocky2 and step3 environments can be found online.

As demonstrated by the figure, both replicated experi-
ments converge on a final fitness value, and it can be seen,
that on average, fitness values attained in the step environ-
ment are higher. Furthermore, the final mean fitness values
for the step world (19 cm s≠1) are significantly higher when
compared to those of the rocky world (9.3 cm s≠1). These
characteristics indicate that the rocky world is a more
di�cult challenge for the simulated Adabot.

Considering the evolved parameters, the highest attain-
able velocity is 24 cm s≠1. This speed assumes that the
Adabot is driving over flat terrain with the largest wheel
size and the fastest allowed angular wheel rate for the
retracted wegs state. It is also worth noting that the fastest
possible velocity with the wegs extended is approximately
20 cm s≠1, which is based on an e�ective wheel radius that
includes the extended wegs (i.e., wegs extended 2.2 cm
in addition to a 3 cm wheel radius). Thus, the evolved
velocities are roughly 80 and 39 % of the maximum value,
respectively. We consider this to be a good result because
both environments require the Adabot to extend its wegs to
move forward in the x-direction, and the trigger to extend
the wegs is based on the robot becoming “stuck” in a low
mobility state. Hence, it is not possible to exactly reach
the maximum 24 cm s≠1.

To identify behaviors of the robot we look at distribu-
tions for the evolved parameters. As shown in Figure 9 (a)
the morphological parameters (the first four plots in (a))
converge to final values for each environment. The evolved
chassis lengths (11 cm) and widths (6 cm), and the wheel
radius (3 cm) are roughly the same for both environments.

2Rocky environment: https://youtu.be/A5NfjCTC7vQ
3Step environment: https://youtu.be/pMf8tchKE6g



(a)

(b)

Figure 9. Distributions for the evolve parameters listed in Table I.
Each plot shows the distribution of the top 100 individuals (across
all replicates) from each environment. The left-half (appearing in
red) shows values from the rocky experiments and the right-half
(shown in blue) for the step environment. Horizontal lines denote
an exact evolved parameter value, the y-axis limits are the limits
allowed during evolution.

Though, longer chassis are found to be e�ective in the step
world. The chassis values are lower in the rocky world since
larger chassis would increase the chances of becoming high
centered on uneven terrain, which is less of a concern in the
step world. As for the number of wegs per wheel, it appears
that for both environments roughly 5 or 6 wegs per wheel
is optimal. This is intuitive, as having an increased number
of wegs improves he ability of Adabot to climb obstacles,
but too many will e�ectively results in just a larger wheel
that does not provide an advantage for climbing obstacles.

For control, the Adabot evolved similar strategies for the
two di�erent environments. Specifically, high and medium
values for the poor mobility threshold factor (the second
distribution plot in Figure 9 (b)) and low values for
poor mobility duration threshold (the third distribution)
indicate that the robot will quickly extend its wegs in
reaction to an obstacle. Essentially, the controller will deem
any short-in-duration variation in speed to indicate poor
mobility. Furthermore, once the wegs are extended the
Adabot moves at its maximum allowed speed of 4 rad s≠1,
which corresponds to roughly 20 cm s≠1.

Weg extension duration converges in the step envi-
ronment (they are retracted as soon as Adabot climbs
the step), but not in the rocky environment (the final
distribution in Figure 9 (b)). This is likely because in the
rocky world Adabot quickly returns to the wegs extended
state, which reduces the need for evolving long extension
durations. For the same reason, there does not appear
to be a high pressure on evolving a high speed in the

retracted wegs state for the rocky world, as the Adabot
is rarely in this state. Finally, the fourth distribution in
Figure 9 (b) shows that the wegs are fully extended in
both environments, and we should note that the chassis
lengths evolved for both environments are long enough
to accommodate full extension of the wegs (as would any
chassis length over 8.2 cm). Meaning that the most optimal
solutions in terms of fitness do not contain any constraint
violations.

VI. Conclusion

We have presented Adabot, an adaptive, autonomous
mobile robot. Adabot’s main advantage is a simple mecha-
nism for transforming its smooth wheels into legged-wheels.
Compared with other devices with similar design goals,
Adabot can exhibit a wider range of di�erent locomo-
tion modes. Specifically, Adabot can operate with purely
wheeled locomotion, wheels that appear to have studs, or
fully legged-wheels. We evolved Adabot’s morphology and
control parameters so that it could achieve a maximum
velocity when faced with rough terrain. Our results show
that Adabot can e�ectively detect poor mobility using
localization data and then respond by transitioning from a
retracted weg state to an extended weg state. Our results
also show that some morphological characteristics and
control strategies must be tuned to the type of environment
in which the Adabot is operating. Our ongoing work
includes prototyping compliant wegs, evolving Adabot
against more di�cult tasks (such as way-point following),
and generating controllers based on fuzzy-systems that
extend the wegs by di�erent amounts dependent on current
conditions.

Acknowledgment

The authors gratefully acknowledge the contributions
and feedback on the work provided by Megan Clark and
Professors Philip McKinley and Jared Moore. Additionally,
we would like to thank Keith Cissell, Dillon Flohr, Der-
sham Schmidt, and Daniel Warken from Missouri State
University.

References

[1] R. D. Quinn, J. T. O�, D. A. Kingsley, and R. E.
Ritzmann, “Improved mobility through abstracted
biological principles,” in Proceedings of the 2002
IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), vol. 3, 2002, pp. 2652–
2657.

[2] U. Saranli, M. Buehler, and D. E. Koditschek, “RHex:
A simple and highly mobile hexapod robot,” The
International Journal of Robotics Research, vol. 20,
no. 7, pp. 616–631, 2001.

[3] M. Eich, F. Grimminger, and F. Kirchner, “A versa-
tile stair-climbing robot for search and rescue applica-
tions,” in Proceedings of the 2008 IEEE International
Workshop on Safety, Security and Rescue Robotics,
Oct. 2008, pp. 35–40.



[4] D. W. Haldane, K. C. Peterson, F. L. G. Bermudez,
and R. S. Fearing, “Animal-inspired design and
aerodynamic stabilization of a hexapedal millirobot,”
in Proceedings of the 2013 IEEE International Con-
ference on Robotics and Automation (ICRA), May
2013, pp. 3279–3286.

[5] G. Kenneally, A. De, and D. E. Koditschek, “Design
principles for a family of direct-drive legged robots,”
IEEE Robotics and Automation Letters, vol. 1, no. 2,
pp. 900–907, Jul. 2016.

[6] Y. S. Kim, G. P. Jung, H. Kim, K. J. Cho, and C. N.
Chu, “Wheel transformer: A wheel-leg hybrid robot
with passive transformable wheels,” IEEE Transac-
tions on Robotics, vol. 30, no. 6, pp. 1487–1498, Dec.
2014.

[7] C. Zheng, J. Liu, T. E. Grift, Z. Zhang, T. Sheng,
J. Zhou, Y. Ma, and M. Yin, “Design and analysis
of a wheel-legged hybrid locomotion mechanism,”
Advances in Mechanical Engineering, vol. 7, no. 11,
2015.

[8] B. P. Rhoads and H.-J. Su, “The design and fabrica-
tion of a deformable origami wheel,” in Proceedings
of the ASME 2016 International Design Engineering
Technical Conferences and Computers and Informa-
tion in Engineering Conference (IDETC/CIE), Aug.
2016.

[9] W. H. Chen, H. S. Lin, Y. M. Lin, and P. C. Lin,
“Turboquad: A novel leg-wheel transformable robot
with smooth and fast behavioral transitions,” IEEE
Transactions on Robotics, vol. PP, no. 99, pp. 1–16,
2017.

[10] A. Mandow, J. L. Martinez, J. Morales, J. L. Blanco,
A. Garcia-Cerezo, and J. Gonzalez, “Experimental
kinematics for wheeled skid-steer mobile robots,”
in Proceedings of the 2007 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS), Oct. 2007, pp. 1222–1227.

[11] F. Silva, M. Duarte, L. Correia, S. M. Oliveira,
and A. L. Christensen, “Open issues in evolutionary
robotics,” Evolutionary Computation, vol. 24, no. 2,
pp. 205–236, Jun. 2016.

[12] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T.
Foote, J. Leibs, R. Wheeler, and A. Y. Ng, “ROS:
An open-source robot operating system - Willow
Garage,” in Proceedings of the 2009 IEEE Inter-
national Conference on Robotics and Automation
(ICRA) Workshop on Open Source Robotics (OSS),
May 2009.

[13] N. Koenig and A. Howard, “Design and use
paradigms for Gazebo, an open-source multi-robot
simulator,” in Proceedings of the 2004 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), vol. 3, Sep. 2004, pp. 2149–2154.

[14] C. Grand, F. Benamar, F. Plumet, and P. Bidaud,
“Stability and traction optimization of a reconfig-
urable wheel-legged robot,” The International Jour-

nal of Robotics Research, vol. 23, no. 10-11, pp. 1041–
1058, 2004.

[15] L. M. Smith, R. D. Quinn, K. A. Johnson, and W. R.
Tuck, “The Tri-Wheel: A novel wheel-leg mobility
concept,” in Proceedings of the 2015 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), Sep. 2015, pp. 4146–4152.

[16] Y. She, C. J. Hurd, and H. J. Su, “A transformable
wheel robot with a passive leg,” in Proceedings of
the 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Sep. 2015,
pp. 4165–4170.

[17] Z. Wei, G. Song, Y. Zhang, H. Sun, and G. Qiao,
“Transleg: A wire-driven leg-wheel robot with a
compliant spine,” in Proceedings of the 2016 IEEE
International Conference on Information and Au-
tomation (ICIA), Aug. 2016, pp. 7–12.

[18] M. Iwasa, T. Obo, and N. Kubota, “Motion gen-
eration of multi-legged robot by using knowledge
transfer in rough terrain,” in Proceedings of the
2016 IEEE Symposium Series on Computational
Intelligence (SSCI), Dec. 2016, pp. 1–5.

[19] R. Storn and K. Price, “Di�erential evolution–a sim-
ple and e�cient heuristic for global optimization over
continuous spaces,” Journal of Global Optimization,
vol. 11, no. 4, pp. 341–359, 1997.

[20] A. J. Clark, P. K. McKinley, and X. Tan, “Enhancing
a model-free adaptive controller through evolution-
ary computation,” in Proceedings of the 2015 ACM
Genetic and Evolutionary Computation Conference
(GECCO), Madrid, Spain, Jul. 2015, pp. 137–144.

[21] T. Moore and D. Stouch, “A generalized extended
Kalman filter implementation for the Robot Operat-
ing System,” in Proceedings of the 13th International
Conference on Intelligent Autonomous Systems (IAS-
13), Springer, Jul. 2014.

[22] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner,
M. Parizeau, and C. Gagne, “DEAP: Evolutionary
algorithms made easy,” Journal of Machine Learning
Research, vol. 13, pp. 2171–2175, Jul. 2012.

[23] S. Das and P. N. Suganthan, “Di�erential evolution:
A survey of the state-of-the-art,” IEEE Transactions
on Evolutionary Computation, vol. 15, no. 1, pp. 4–31,
Feb. 2011.

[24] E. Mezura-Montes, C. A. Coello Coello, and E. I.
Tun-Morales, “Simple feasibility rules and di�erential
evolution for constrained optimization,” in Proceed-
ings of the 2004 Mexican International Conference on
Artificial Intelligence (MICAI). Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 707–716.

[25] E. L. Ruud, E. Samuelsen, and K. Glette, “Memetic
robot control evolution and adaption to reality,”
in 2016 IEEE Symposium Series on Computational
Intelligence (SSCI), Dec. 2016, pp. 1–7.


