
An Evolutionary Approach to Discovering Execution

Mode Boundaries for Adaptive Controllers

Anthony J. Clarkú, Byron DeVries†, Jared M. Moore‡, Betty H. C. Cheng†, and Philip K. McKinley†
úComputer Science Department, Missouri State University, Springfield, MO, USA

†Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA
‡School of Computing and Information Systems, Grand Valley State University, Allendale, MI, USA

AnthonyClark@MissouriState.edu

Abstract—Adaptive controllers enable cyber-
physical systems, such as autonomous robots, to
manage uncertain conditions during execution.
However, there is a limit to the range of conditions
that can be handled by a given controller. When this
limit is exceeded, a controller might fail to respond
as expected, not only rendering it ine�ective but
possibly putting the entire system at risk. In this
paper, we describe a method based on evolutionary
search for automatically enhancing, and discovering
the boundaries of, a given adaptive controller.
Collectively, these boundaries define an execution

mode for that controller. Explicit specification of mode
boundaries facilitates the development of decision logic
that determines, based on system state and sensed
conditions, when to switch to a di�erent execution
mode and typically a di�erent controller, such as
one for providing fail-safe operation. To evaluate
the proposed approach, we apply it to a robotic fish
propelled by a flexible caudal fin that is governed
by a model-free adaptive controller. Experimental
results demonstrate that this approach is e�ective
in characterizing a controller’s ability to adapt to
environmental dynamics, including physical damage
to the robot itself.

I. Introduction

Cyber-physical systems integrate computational ele-
ments with physical processes, and therefore involve com-
binations of discrete and continuous dynamics. Many such
systems use adaptive controllers to help manage uncertain
conditions during execution [1]. In the control theory
domain, adaptation refers to a controller’s ability to au-
tomatically adjust control parameters during operation in
response to sensed feedback. A controller’s environment
includes any variables not directly controlled by the system.
For example, from the perspective of a robot’s control
software, the environment includes not only the physical
surroundings in which the robot operates, but also char-
acteristics of the body (morphology) of the robot. As with
the physical environment, the morphology is subject to
change: the material properties and behavior of physical
components can vary due to wear, changes in tempera-
ture, and physical damage. We use the term scenario to
describe a specific set of environmental parameters and
their respective values. Compared to a static (i.e., non-
adaptive) controller, the ability to adapt ensures that a

single controller will remain e�ective for many scenarios.
An important task for the cyber-physical system designer,
then, is to specify the limits of adaptation for the con-
troller. That is, by how much can any parameter change
before a controller fails and the system needs to switch to
a di�erent mode of execution driven by another controller?

In this paper, we explore the role of evolutionary compu-
tation (EC) in both enhancing and discovering the limits of
adaptive controllers. We employ a particular evolutionary
algorithm—di�erential evolution [2]—and combine it with
a dynamic simulation in order to evolve adaptive controller
parameters. In the proposed method, over the course of
evolution we expose controllers to di�erent scenarios not
only to enhance the adaptive capabilities of the controller,
but also to identify conditions under which the controller
will fail. This information can be used to define the
boundaries of an execution mode, enabling the system
designer to implement higher-order strategies for switching
among execution modes, when the system detects that a
change is necessary. The target platform for this study is
a 3D-printed robotic fish, shown in Figure 1(a), propelled
by a flexible caudal (tail) fin. The oscillating frequency
of the fin is governed by a model-free adaptive controller
(MFAC) [3], which “learns” how to control the system by
continually updating link weights in an artificial neural
network (ANN); additional details are provided in Sec-
tions II and III. Such a controller needs to adapt to dy-
namics in the external environment (e.g., water currents)
as well as changes to the robot morphology.

The main contribution of this study is an approach
that addresses uncertainty for autonomous robots at two
levels. First, we evolve adaptive control to handle in-
creasingly more adverse/diverse environmental conditions.
And second, we automate the process of discovering the
boundaries of adaptation.

II. Background and Related Work

We begin by briefly reviewing areas of study that pro-
vide a foundation for this work: adaptive control, evolu-
tionary algorithms, and their combination.
Adaptive Control. Control theory focuses on how to
modify the behavior of dynamic systems using feedback.
The control of a cyber-physical system typically involves

978-1-5090-4240-1/16/$31.00 ©2016 IEEE

(a) (b)

Fig. 1. (a) A prototype 3D-printed robotic fish with a flexible
caudal fin (top cover removed for illustration). (b) Rendering of the
simulated robotic fish; the fin appears to extend above the surface of
water for visualization purposes only.

monitoring the output of a system (e.g., speed, temper-
ature, flow-rate, etc.) and adjusting the system input
accordingly. Often the goal of a control system can be re-
ferred to as tracking. The objective for a tracking controller
is to generate a signal that drives the controlled system to
behave in a similar manner to an input reference signal.
Alternatively stated, the goal of a tracking controller is
to minimize the error between a reference signal and the
actual system output. Two examples of controlling the
speed of a robotic fish are shown in Figure 2. The system
input reference signal (the black, dashed line) and the
system output (blue line) are the desired and measured
speeds, respectively, of the robot. The error between these
two values, which acts as an input to the controller, is
shown in red. In Figure 2(a), the controller exhibits poor
tracking, that is, the system output does not closely track
the reference signal (notice that the output speed oscillates
around the desired speed). In contrast, Figure 2(b) shows
a controller that is e�ectively tracking.

(a)

(b)

Fig. 2. Examples of a robotic fish controller tracking an input
reference signal representing desired speed. (a) is an example of
relatively poor tracking, whereas (b) demonstrates e�ective tracking.

Figure 3 illustrates the di�erence between a conven-
tional feedback controller and an adaptive controller. Both
use the error e between the reference signal r and measured
output y in order to produce an input u to the target
system (or plant). While a non-adaptive controller enables
the system to respond to dynamic conditions by adjusting
the value of u, the manner in which it does so is fixed.
Specifically, once tuned for a particular system and ex-
pected set of conditions, the parameters to the equations
defining u are constants. An example is the widely used
PID controller, where u is the weighted sum of terms
involving e (Proportional term), its integral (Integral
term), and its derivative (Derivative term).

Controller Plant /
System

Adaptive
Laws

r e u yx
d

+-

Fig. 3. A block diagram for a feedback control system. The shaded
block shows the additional components necessary for adaptive con-
trol. The signals r, y, and e denote the reference signal, system
output, and system error, respectively, while u and d are the control
signal and disturbances, respectively. All of these signals vary as a
function of time.

In contrast, an adaptive controller automatically ad-
justs control parameters online according to adaptive laws
(i.e., rules typically derived using Lyapunov stability that
dictate how control parameters will be updated). One
promising approach is called model-free adaptive control
(MFAC), which is also referred to as data-driven con-
trol [3], [4]. Like other adaptive control approaches, an
MFAC attempts to minimize the error between desired and
actual outcomes. However, instead of updating process-
specific control parameters, an MFAC controls the system
by updating link weights in an ANN. MFACs are intended
for “gray box” situations, where only partial and possibly
inaccurate knowledge of the physical process is available.
However, one di�culty in using model-free control is that
several parameters of the MFAC, discussed later, must be
specified at design time. The approach explored here is
to evolve these MFAC parameters by integrating physics-
based simulation into evolutionary algorithms.
Evolving Adaptability. In studying animal behavior,
zoologists recognize the importance of the evolved rela-
tionships among morphology, perception, action, and en-
vironment. This concept is also relevant to cyber-physical
systems, where embedded computer systems need to inter-
pret sensed information and respond accordingly through
actuators. Evolutionary computation (EC) methods codify
the basic principles of genetic evolution in computer soft-
ware and are particularly e�ective in addressing problems
involving large, multidimensional search spaces [5].

In the realm of cyber-physical systems, EC has been ap-
plied extensively in robotics. In evolutionary robotics [6],

a genome encodes a robot’s control system and possibly
aspects of its morphology. Researchers have investigated
the open-ended evolution of both individual and collective
behaviors [6], [7]. Other studies have investigated how
EC can be used to enhance more traditional engineering
methods. For example, Coelho et al. [8] used evolution-
ary methods to improve the performance of an adaptive
controller by evolving a neural compensator. For this
work, we applied di�erential evolution (DE) [2], a global
optimization algorithm that operates in a similar manner
to other evolutionary algorithms.

In an earlier study [9], we used DE to evolve the pa-
rameters of an MFAC in order to increase the controller’s
adaptability. Specifically, those experiments demonstrated
that exposing the MFAC to di�erent scenarios during
evolution produced a more resilient controller, even ca-
pable of adapting to conditions beyond those to which the
system was exposed during evolution. However, the focus
of that work was only adaptability, and the scenarios were
designed by hand. In addition, for some scenarios (such
as extensive damage to the fin), the controller was simply
unable to e�ectively adapt. In the study reported here, we
are interested not only in enhancing adaptive controllers,
but also in discovering the boundaries of adaptive behavior
with respect to the environmental conditions. Moreover,
we seek automated ways to select scenarios that, when
integrated with an evolutionary algorithm, most e�ectively
identify and characterize those boundaries.

III. Robotic Fish Platform

Robotic fish are a type of aquatic robot that swim by
deforming fins or their entire body. In addition to enabling
high maneuverability, this form of locomotion produces
less noise and water disturbance than propeller-driven lo-
comotion. Therefore, robotic fish are of particular interest
for applications such as environmental monitoring [10].
Fabricated Robot. The robotic fish shown in Figure 1(a)
was produced with the aid of a high-resolution Connex
350 3D printer. This system can print in multiple com-
binations of materials (from rigid to very soft plastic),
enabling fabrication of complex robot components. An
example is a fin that is relatively rigid at the base and in-
creases in flexibility toward the posterior. The 3D-printed
components include the main body, the caudal fin, and
other mechanical parts such as gears and battery/motor
housings. In this prototype, the caudal fin is detachable,
facilitating evaluation of performance using di�erent fins.
Flexible fins have been shown to produce more forward
thrust than rigid fins, but the optimal flexibility depends
on multiple factors [9]
Controller. Figure 4 shows a diagram of the MFAC
and its configuration in the robotic fish platform. The
input to the system is a reference signal r, which can be
any physical signal relating to the robotic fish. For this
study, r refers to a desired speed, and the output of the

robotic fish y is the actual (measured) speed. Generally,
reference signals are generated by a higher-level software
module directing the robot to adopt a particular speed
and heading as part of a larger task (e.g., following a
list of way-points and taking environmental samples). The
controller’s objective is to produce a control signal u (in
this case, a servo motor control pattern) such that y closely
tracks r. To do so, the MFAC must adapt to changes in fin
dynamics due to, for example, water temperature, material
decay, and accumulation of residue. The shape of the fin
itself can change due to physical damage. Indeed, from the
perspective of the controller, the fin can even appear to be
“lengthened” if it becomes entangled with an object, such
as plant material. The robot controller does not “know”
what has happened to the fin; it simply experiences a
di�erent response to the control signal.

Robotic
Fish

I2

I3

INI

I1 H1

H2

HNH

V KC+
+

Nrm

Adaptive
Laws

e u yr
+_

Fig. 4. A block diagram of the MFAC controller and the robotic
fish. Signals r and y denote the reference and measured speeds,
respectively, e is the di�erence between reference and measured
speeds, and u is the sinusoidal controller output.

An MFAC relearns how to control the system by con-
tinually updating link weights in an adaptive ANN. As an
input to the neural network, the MFAC takes a continu-
ous error signal and discretizes it based on a configured
sampling rate. By saving recent error signals and using
them as additional inputs to the ANN (labeled I1 to
I

NI

in Figure 4), the MFAC can take advantage of state
information, or so-called neural network memory [11].

Figure 5 shows the di�erence between a lack of adaptive
ability and a controller that is able to adapt. In both
figures the fin su�ers damage at the 30 second point
(denoted by the vertical orange line); specifically, the fin is
shortened from 8 to 5.2 cm and the flexibility is changed
from 3.0 to 2.1 GPa (flexibility is described later in this
section). Figure 5(a) shows the resulting behavior when
the system cannot handle the change; the system starts
oscillating around the target speed, but does not achieve
good tracking. Figure 5(b) shows an adaptive controller
that is able to regain tracking after damage.

Although an MFAC adapts by updating ANN link
weights during execution, other parameters of the MFAC
determine its ability to adapt. Table I lists the nine
such parameters targeted in this study. Collectively, these
parameters define the responsiveness and sensitivity of the
controller, the structure and processing capabilities of the
ANN, and the update periods for the ANN weights and

(a)

(b)

Fig. 5. In (a) the robotic fish is controlled by a non-adaptive
controller, and in (b) the robot is controlled by an adaptive controller.
In both figures, the fin su�ers damage at t=30 s, and only the
adaptive controller is able to successfully regain the ability to track.

the controller output. These parameters are configurable
at design time, but typically do not change after deploy-
ment. Determining their optimal values is challenging and
depends on the application domain. Traditionally, MFAC
parameters are either chosen based on expert knowledge
or tuned using proprietary software specific to the appli-
cation [12]. Here we evolve these parameters.

TABLE I
Evolvable MFAC Parameters

Kc controller gain to amplify/reduce output
NI number of ANN input nodes
NH number of ANN hidden nodes
EB value used to normalize MFAC error inputs
÷ learning rate for ANN edge weights
Tout update period for generating MFAC output
Twt update period for MFAC weights
– sensitivity parameter, reactivity of MFAC
— sensitivity parameter numerator

Simulation Model. To enable evaluation of MFAC
performance within an evolutionary algorithm, we con-
structed a model of the robotic fish in Simulink [13], a
graphics-based environment for modeling and simulating
dynamical systems. An important part of the simulation
is modeling of the dynamics of the flexible caudal fin.
Here, we adopt an approach developed by Wang et al. [14],
which represents the flexible fin as multiple rigid segments
connected by springs and dampers. Figure 1(b) depicts the
simulated robotic fish, where the caudal fin is modeled as
5 segments. The spring constant between two consecutive
segments determines how sti� or flexible the caudal fin

behaves. The forces acting on each segment are summed
to produce the resulting thrust applied to the body. This
model has been demonstrated to be both accurate, in
capturing the dynamics of flexible materials in water, as
well as computationally e�cient [14].
Evolving a Base Morphology. Under this model, the
morphology of the caudal fin is described by three param-
eters: flexibility, depth (height), and length. Flexibility is
represented by a Young’s modulus (YM) value, measured
in Pascals (typically GPa). Rubber-like materials have YM
values in the range of 0.1 to 1.0 GPa, and hard plastics
have values in the range of 1.0 to 5.0 GPa. We begin by
evolving the three fin parameters and a sinusoidal signal,
which acts as the “controller,” for a simple task (maximum
average speed). The adaptive controllers evolved in the
next sections will be required to respond to changes in
this “base” morphology. We conducted 30 replicate DE
experiments. The robotic fish achieved a maximum aver-
age speed of 22 cm/s, with a length, depth, and flexibility
of 8.0 cm, 2.6 cm, and 3.0 GPa, respectively. In a prior
study [15], we validated the results of this process by 3D-
printing fins and testing them on physical robots.

IV. Methods

The primary goal of this study is to apply evolutionary
search in order to discover and explicitly define the bound-
aries of adaptability for an MFAC that controls a robotic
fish. Notably, this approach should also produce an MFAC
that can operate e�ectively within those boundaries. Our
basic approach is to expose the MFAC to multiple sce-
narios during the evolutionary process. Here, we focus
only on changes to morphology, which typically occur due
to uncertainty and unpredictable circumstances such as
damage or when the device becomes entangled. In this
section, we define precisely what constitutes a scenario and
how we determine whether a scenario is feasible, followed
by a description of the proposed algorithm.
Scenario Parameters. Each scenario includes the three
morphological parameters discussed earlier: fin length,
depth, and flexibility. Because the MFAC will be required
to track a variety of reference signals (i.e., desired be-
haviors), each scenario also includes a reference signal
whose parameters are generated randomly. For this study,
reference signals describe only dynamics associated with
the speed and acceleration of the robot, but the same
approach could address other more complex behaviors
and maneuvers. As depicted in Figure 6, each reference
signal comprises an interval of acceleration from zero cm/s
up to a constant speed S1, followed by either another
acceleration or a deceleration to a second constant speed
S2. The durations of the four intervals are defined by
parameters t1, t2 and t3. This approach enables generation
of reference signals that contain a rich set of dynamics
(i.e., di�erent maximum and minimum speeds and accel-
erations/decelerations).

Time

Sp
ee
d

t1 t2 t3 tF

S2

S1

0

Fig. 6. Reference signal scenario parameters include values to de-
scribe four time segments. In the first segment (from t=0 to t=t1)
speed ramps from 0 to S1, in the second segment the reference speed
remains steady at S1. In the third segment (from t=t2 to t=t3) the
speed ramps (up or down) to the final speed, which is held steady
during the final time segment.

Determining Scenario Feasibility. Some combinations
of morphological parameters may produce a robot that
simply cannot be controlled e�ectively. For example, if
the fin is severely damaged or too flexible, then it might
be impossible to generate su�cient thrust to reach a
specified reference speed, much less maintain it. Such a
scenario is deemed infeasible, or invalid. We implemented
an automated procedure for identifying such scenarios, so
that they can be excluded from the resulting execution
mode (as well as from the evolutionary search process).
The feasibility procedure also considers the fact that the
MFAC used in this study cannot be applied to systems
that switch between direct and reverse acting. Direct (or
reverse) acting signifies that the system output, speed in
this case, will always increase (or decrease) as the system
input, frequency, increases (see Figure 7). For example, for
very flexible fins, speed can increase at low frequencies, but
start to decrease at higher frequencies [15].

Frequency (Hz)

Sp
ee

d
(c

m
/s

)

2.52.01.51.00.5

Reverse
Point

Invalid

Direct

Reverse

Fig. 7. Three behaviors are shown. The blue and green lines denote
systems that are direct and reverse acting, respectively. The red line
shows a system that switches acting modes and is deemed infeasible.

Before considering a randomly generated scenario for
integration in the evolutionary algorithm, it is first tested
for feasibility as follows. A robot with the specified fin
characteristics is simulated for 15 seconds with fin frequen-
cies of 0.5, 1.5, and 2.5 Hertz. For each frequency, the robot
is first allowed to reach a steady-state speed, and then an
average speed is sampled at 10 Hz over the final 5 seconds.
If the results show that the behavior changes from direct
to reverse acting, or if the robot fails to reach a speed of
15 cm/s, then the scenario is considered to be infeasible.
We chose 15 cm/s because the reference signal values are

allowed to include a maximum speed of 20 cm/s, which
is just below the maximum speed of the base morphology.
We note that no evolution (or feedback control) is involved
in these evaluations; rather, they are intended only to test
robot behavior at increasing frequencies.
Basic Algorithm. Figure 8 shows a flow chart of the
algorithm developed for this study, which we refer to as
the Mode Discovery Algorithm. As noted in Section III,
we begin by evolving the base morphology. The base fin
parameters are combined with a hand-designed reference
signal to produce the base scenario, which is placed in the
set of scenarios S applied in evolution. (The base reference
signal starts at 0, ramps up to 15 cm/s, and then ramps
down to 5 cm/s.) The algorithm then alternates between
evolving the MFAC against scenarios in S for a fixed
number of generations (by default, 10) and generating
a new scenario to add to S. Here fitness is based on
how closely the robot tracks the specified reference signal.
Specifically, we evaluate the robot/MFAC for each scenario
in S taking the mean-absolute-value of the sampled error
signal. Smaller average error translate to higher fitness.
The number of iterations through this basic loop is con-
figurable (also 10 by default). The population size for the
DE algorithm is 90. Evolving initially against only the
base scenario is intended to bootstrap MFAC evolution,
enabling the optimization process to start with an easier
objective before adding a pressure for adaptability. We im-
plemented and evaluated two methods for generating and
selecting scenarios, termed boundary selection and volume

selection. These methods, along with the corresponding
results, are described in the next section.

Evolve Base Morphology

Generate Base Scenario; Add to S

Evolve (DE)
MFAC Against S

Iter > MAXGenerate/Select
Next Scenario

Add New
Scenario to S

S is a set of scenarios
(initially empty) used
during evolution.

Output mode boundaries and
MFAC parameters values.

Yes

No

Fig. 8. Flowchart of the Mode Discovery Algorithm used to discover
execution mode boundaries and produce a MFAC parameter values.

V. Results and Discussion

In this section, we describe results for the two scenario
selection methods, and for a parameter sweep experiment
that provides a “ground truth” for the execution mode.
Both approaches aim to enhance adaptability while at
the same time providing information regarding execution
mode boundaries.

Boundary Scenario Selection. The method starts by
identifying the limits of each morphological parameter
(i.e., fin length, depth, and flexibility), using the feasibility
checking procedure described above. Specifically, we start
at the base value for each parameter and increase/decease
the value until the simulated system becomes infeasible.
During this process, we consider one parameter at a time,
while the other parameters are fixed at their base values.
The increment/decrement values were 1 mm for length
and depth and 0.5 MPa for flexibility. Boundaries values
(maximum and minimum for each parameter) are denoted
in Table II. We note that the maximum value for flexibility
is equal to the base value of 3.0 GPa, which is the
maximum value we can 3D-print [15].

TABLE II
Boundary Scenarios for Fin Parameters

(* Indicates Boundary Value)

Length Depth YM

scenarioBase 8.0 cm 2.6 cm 3.0 GPa*
scenariolength

min

6.0 cm* 2.0 cm 3.0 GPa
scenariolength

max

8.4 cm* 2.6 cm 3.0 GPa
scenariodepth

min

8.0 cm 1.0 cm* 3.0 GPa
scenariodepth

max

8.0 cm 2.7 cm* 3.0 GPa
scenarioY M

min

8.0 cm 2.6 cm 2.5 GPa*

Collectively, these feasibility tests produce the six
boundary scenarios listed in Table II. These are integrated
into the Mode Discovery Algorithm as follows. During
the first 10 generations, the MFAC evolves using only
the base scenario in fitness evaluation. At the start of
each subsequent iteration, one of the remaining scenarios
is randomly selected and added to set S. Adding one
scenario at a time gradually increases the di�culty of the
task. At the start of the fifth iteration (and the beginning
of the 60th generation overall) all six scenarios are in
use. Scenario insertion orderings will di�er across replicate
experiments, however, examination of the replicates shows
that order has little if any e�ect.

Consistent with our earlier study [9], adaptive con-
trollers resulting from this process exhibit enhanced adapt-
ability when compared to those evolved against only the
base scenario (results not shown due to space limitations).
However, this approach has a drawback: it does not con-
sider the interactions among morphological parameters.
In earlier experiments [9], we observed combinations of
parameters that were feasible, despite lying outside the
feasible regions defined by the boundary values in Table II.
For example, when a caudal fin is shortened it will gener-
ally continue to work well if it is su�ciently flexible. For
instance, when we test the feasibility of a fin with a length
of 6.4 cm and a Young’s modulus of 2.1 GPa (below the
discovered 2.5 GPa threshold) we find that it is, in fact,
feasible.

These observations led us to explore the execution mode
boundaries in two additional ways. The first is a brute
force approach that tests for feasibility as described above,
considering all combinations of the three fin parame-

ters simultaneously. This method enables us to find the
“ground truth” for the execution mode. While applicable
to this relatively small problem, we emphasize that such
an approach would likely be infeasible on a more complex
system due to computational requirements. The second
approach is to determine if we can find similar boundaries
using the Mode Discovery Algorithm. Each approach is
discussed in turn.
Simultaneous Parameter Sweep. We performed a pa-
rameter sweep across the three morphological parame-
ters, using the same granularity as before. Results for
these simulations, 62,068 in total, are shown in Figure 9.
Each blue dot represents a feasible scenario (and which
theoretically an MFAC can handle), while each gray dot
represents infeasible scenario. Collectively, the regions of
blue dots define a possible execution mode for an adaptive
controller. The red boxes represent the areas found by
the boundary selection method, and the diagonal line in
Figure 9 is due to a constraint in the simulation model of
the flexible fin, which requires that the length must be at
least three times the depth [14]. As shown in Figure 9,
these parameter sweeps reveal much larger and more
complex feasible regions than the boundary experiments.
Volume-Based Scenario Selection. Given these re-
sults, we developed a second scenario selection method
that takes into account interactions among parameters.
Since it is woven into the evolutionary process, it produces
both the execution mode boundaries (at lower cost than
sweeps) as well as an adaptive controller for that mode.
Table III describes the range from which scenario param-
eter values are randomly selected. Unlike the boundary
selection method, where the reference signal was always
the same base pattern, here we randomize the reference
signal values for each scenario, which adds an additional
challenge for the adaptive controllers (i.e., they must
adapt to di�erent control requirements in addition to
di�erent caudal fin dynamics). Each evaluation takes 60s
of simulation time. The time values (t1, t2, and t3) shown
in Figure 6 were produced by generating three random
numbers such that t1 = t

rand1 , t2 = t1 + t
rand2 , and

t3 = t2 + t
rand3 . Each of the first three time segments

is in the range [5, 25] s, and if t3 is less than 60 seconds
then the final segment includes all time remaining.

TABLE III
Volume Scenario Limits

Minimum Maximum Base

Fin Length 2.0 cm 20.0 cm 8.0 cm
Fin Depth 0.5 cm 4.0 cm 2.6 cm
Fin YM 0.1 GPa 3.0 GPa 3.0 GPa
Si 0.0 cm/s 20.0 cm/s 15.0 cm/s
trand

i

5.0 s 25.0 s 15.0 s

As with the boundary approach, this method starts
with the base scenario and adds one new scenario at
the beginning of each iteration of the Mode Discovery
Algorithm. However, since randomly generated scenarios

(a) (b) (c)

Fig. 9. Parameter sweep plots: (a) length vs. depth; (b) length vs. flexibility (c) depth vs. flexibility. The red boxes denote the limitations
of adaptability found by the boundary selection method, and the black line in (a) relates to the length-depth limitation of the simulation
model.

(a) (b) (c)

Fig. 10. Plots for mode discovery using volume selection: (a) length vs. depth; (b) length vs. flexibility; (c) depth vs. flexibility.

are not guaranteed to be feasible, we generate multi-
ple (25) candidate scenarios per iteration. From these
candidate scenarios, we choose the feasible scenario that
produces the worst fitness score (largest average error)
when evaluated with the current best MFAC controller.
Essentially, we seek scenarios that are the most di�cult for
the adaptation process. At the end of the experiment, the
set S contains 11 total scenarios. However, for comparison
purposes, we cap the volume-based selection method to
have a comparable number of evaluations as the boundary
selection method. So, for each iteration, if |S| is greater
than five, only five scenarios are randomly selected for use
in evolution. The 40 replicate experiments, 10 iterations,
and testing of 25 random scenarios per iteration, yields
10,000 tested scenarios in total. Figure 10 shows that
with far fewer simulations (10K vs approximately 62K),
the volume scenario method defines the same boundaries
as the full parameter sweeps shown in Figure 9. The

advantage in e�ciency is expected to increase with the
number of scenario parameters, which will be the case for
many cyber-physical systems. In fact, parameter sweeps
may be completely infeasible under some circumstances.

The reader will notice that in Figure 10, some gray
dots (representing infeasible scenarios) seem to fall within
the discovered mode boundaries. This phenomenon is
particularly evident in the depth vs. YM plot. We note
that this appearance is simply a side e�ect of the pair-
wise plotting of the three parameters. Specifically those
scenarios are infeasible because of the value of the third
parameter (length in the case of the depth vs. YM plot).
This relationship is also present in the data plotted in
Figure 9, but does not appear in those plots because in
the parameter sweeps, the values of parameters vary at
regular intervals, and blue dots cover all the gray ones.

In addition to defining mode boundaries, the volume
method generated e�ective adaptive controllers by sequen-
tially integrating “di�cult” scenarios into the evolution-

ary process. Figure 11 shows an example behavior of a
simulated robotic fish that experiences damage halfway
through operation. At 60 seconds, the fin length is re-
duced from 8.0 to 6.4 cm, depth is reduced from 2.6 to
2.1 cm, and flexibility is changed from 3.0 to 2.1 GPa.
Despite these rather severe changes, the controller is able
to quickly adapt and re-establish tracking.

Fig. 11. An evolved MFAC adapting to sudden damage. At 60
seconds all fin morphology parameters are abruptly changed.

When comparing the two scenario selection methods,
we found that both lead to similar algorithm convergence
rates and similar MFAC behaviors. Table IV compares the
fitness scores (the average mean-absolute-error recorded
for each scenario used during fitness evaluation) for the
overall best set of MFAC parameters from each exper-
iment (lower values are better). The rand

boundary

and
rand

volume

rows represents the mean fitness score for 100
randomly generated, feasible scenarios that are within
the modes found by the boundary and volume selection
methods, respectively. The table shows that the volume-
based scenario generation approach does an equal or better
job in every test case.

TABLE IV
MFAC Performance Comparison

Boundary Volume

Base 2.76% 2.60%
lengthmin 9.30% 7.63%
lengthmax 2.74% 2.73%
depthmin 6.23% 4.87%
depthmax 3.12% 2.92%
Y Mmin 2.98% 2.93%
randboundary 4.70% 4.54%
randvolume 3.19% 3.14%

VI. Conclusions and Future Directions

In this paper, we proposed an approach to automati-
cally discover the boundaries of adaptability for a cyber-
physical system. Specifically, this approach characterizes
the range of operation (i.e., mode) for a robotic fish and
its adaptive control software. From the software’s point-of-
view, the morphological properties of the robot are aspects
of an uncertain environment. The proposed approach to
discovering mode boundaries involves generating scenarios
within the range of the conditions that the system is
expected to encounter and evolving an adaptive controller
for those scenarios. Through a series of experiments, we

found the volume-based scenario selection method to be
both e�ective and computationally e�cient. Although this
approach accurately defined the mode in terms of the
ground truth, for higher dimensional spaces more strategic
methods of generating and selecting scenarios might be
warranted. Additionally, once the boundaries of a mode
are discovered, it will be useful to find control strategies for
adjacent modes, as well as logic to switch among modes.
In this way, the system can have predefined controllers
that are e�ective for multiple scenarios, including fail-safe
operation (e.g., when the system is damaged it can still
be controlled to return to a base station). These topics
are included in our ongoing investigations.

Acknowledgments

This work was supported in part by National Science
Foundation grants CNS-1059373, DBI-0939454, and CNS-
1305358, the Ford Motor Company, General Motors Re-
search, and a grant from the Air Force Research Labora-
tory.

References

[1] P. Ioannou and J. Sun, Robust Adaptive Control. Dover
Publications, Mineola, NY, 2012.

[2] R. Storn and K. Price, “Di�erential evolution–a simple and e�-
cient heuristic for global optimization over continuous spaces,”
Journal of Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.

[3] G. S. Cheng, “Model-free adaptive (MFA) control,” Computing
and Control Engineering, vol. 15, no. 3, pp. 28–33, 2004.

[4] Z.-S. Hou and Z. Wang, “From model-based control to data-
driven control: Survey, classification and perspective,” Informa-
tion Sciences, vol. 235, pp. 3 – 35, 2013.

[5] J. H. Holland, Adaptation in Natural and Artificial Systems.
Cambridge, MA, USA: MIT Press, 1992.

[6] D. Floreano, P. Husbands, and S. Nolfi, “Evolutionary
Robotics,” in Handbook of Robotics. Berlin: Springer Verlag,
2008.

[7] H. Lipson, “Evolutionary robotics and open-ended design au-
tomation,” in Biomimetics, B. Cohen, Ed. CRC Press, 2005,
pp. 129–155.

[8] L. S. Coelho, M. W. Pessôa, R. Rodrigues Sumar, and A. Au-
gusto Rodrigues Coelho, “Model-free adaptive control design
using evolutionary-neural compensator,” Expert Systems with
Applications, vol. 37, no. 1, pp. 499–508, 2010.

[9] A. J. Clark, P. K. McKinley, and X. Tan, “Enhancing a model-
free adaptive controller through evolutionary computation,” in
Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation, ser. GECCO ’15. New York, NY,
USA: ACM, 2015, pp. 137–144.

[10] X. Tan, “Autonomous robotic fish as mobile sensor platforms:
Challenges and potential solutions,” Marine Technology Society
Journal, vol. 45, no. 4, pp. 31–40, 2011.

[11] S. Haykin, Neural networks and learning machines. Prentice-
Hall, 2009.

[12] G. Cheng, MFA in Control with CyboCon. CyboSoft, General
Cybernation Group, Inc, Rancho Cordova, CA, 2002.

[13] “Simulink: Dynamic system simulation for MATLAB, User’s
Guide,” The MathWorks Inc., Natick, Massachusetts, USA,
1990-2013.

[14] J. Wang, P. K. McKinley, and X. Tan, “Dynamic modeling
of robotic fish with a base-actuated flexible tail,” Journal of
Dynamic Systems, Measurement and Control, vol. 137, no. 1,
August 2014.

[15] A. J. Clark, X. Tan, and P. K. McKinley, “Evolutionary mul-
tiobjective design of a flexible caudal fin for robotic fish,”
Bioinspiration & Biomimetics, special issue on Bioinspired Soft
Robotics, vol. 10, no. 6, November 2015.

