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Adaptability of Autonomous Robots

Internal Uncertainties
• degrading and complex (flexible) components 
• changing objectives and control strategies

External Uncertainties
• dynamic environments
• significant damage
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Adaptive Control
Model-based

• require a precise model
• perform parameter 

identification

Data-driven 
• (or, model-free)
• input / output data
• “learns” how to adapt
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Limitations of Adaptive Control
• Adaptive controllers can continue to adapt as long as the 

system remains fundamentally unchanged
• That is, the system responds to inputs in roughly the same 

manner even after it changes

• For example, cut the tail fin of a robotic fish
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Robotic Fish

Applications
• autonomous 

mobile sensors
• biological studies 

(elicit natural behaviors)
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Robotic Fish

Research Platform
• benefit from flexible 

components
• operate in a nonlinear 

environment
• exhibit complex dynamics
• [Marchese 2014]
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This Study
1. Improve adaptive controllers, AND
2. Find the limits of these adaptive controllers.

• Using evolutionary computation

• From controller’s perspective:
• Reference signals are part of the environment
• Fin morphology is part of the environment
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Enhancing Adaptive Control

Exploit EC to Enhance an MFAC [Cheng 2000]
• differential evolution [Storn 1997]
• evolve MFAC parameters
• controlling a robotic fish
• adapt to:
• changing fin flexibilities
• changing fin length
• changing control demands
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Adaptive Neural Network

Network Activation
• feed-forward network
• propagated error
• sigmoid activation

Network Update
• minimize error
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Adaptive Neural Network
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Evolvable Parameters

Adaptive Neural Network
• neural network size/shape
• learning rate
• upper and lower error bounds
• controller gain
• controller update timing
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MFA
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Output of the MFAC
• regulates speed of the robotic fish
• frequency of oscillation
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Tracking Behavior
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Adaptation



Anthony J. Clark – Missouri State University

Limitations of Adaptation
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Evolve Base 
Morphology

Generate Base 
Scenario and add to S

Evolve MFAC
Against S

DoneGenerate/Select
Next Scenario

Add New
Scenario to S

S is a set of scenarios
(initially empty) used
during evolution.

Output:
mode boundaries
MFAC parameter values
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Boundary Selection Method
1. Select a scenario parameter 

i.e., fin length, height, flexibility

2. Select a direction 
(increase value or decrease value)

3. Increase/decrease parameter until 
the system becomes infeasible

4. Add scenario to S

Evolve Base 
Morphology

Generate Base 
Scenario and add to S

Evolve MFAC
Against S

Don
e

Generate/Select
Next Scenario

Add New
Scenario to S

S is a set of scenarios
(initially empty) used
during evolution.

Output:
mode boundaries
MFAC parameter values
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Boundary Scenarios

Length Depth

Flexibility

100 MPa

3.0 GPa

2.0 cm

20 cm

1.0 cm

4.0 cm
6.0 cm

8.4 cm

2.5 GPa

0.5 cm

2.7 cm
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2D Views of Cuboid
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“Ground-Truth”
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Volume Selection Method
1. Randomly generate 25 scenarios

2. Evaluate all against the current 
best MFAC

3. Select the feasible scenario that 
produces the most error

4. Add scenario to S

Evolve Base 
Morphology

Generate Base 
Scenario and add to S

Evolve MFAC
Against S

Don
e

Generate/Select
Next Scenario

Add New
Scenario to S

S is a set of scenarios
(initially empty) used
during evolution.

Output:
mode boundaries
MFAC parameter values
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Volume Scenarios
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Volume Scenarios
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Mean-Absolute-Error Comparison
Scenario)Name Boundary Volume

Base 2.76&% 2.60)%
Min&Length 9.30&% 7.63)%
Max&Length 2.74&% 2.73 %
Min&Depth 6.23&% 4.87)%
Max&Depth 3.12&% 2.92)%
Random&Boundary 4.70&% 4.54 %
Random&Volume 3.19&% 3.14)%
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Adapting to Damage
Fin length

• 8.0 ! 6.4 cm

Fin Depth
• 2.6 ! 2.1 cm

Fin Flex
• 3.0 ! 2.1 GPa

Damage&Point
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Summary
• Automatically discover limits of an adaptive controller
• While at the same time optimizing the controller against 

“good” scenarios
• These limits define an execution mode
• Our future work involves combining this technique with self-

modeling processes to account for automated switching 
between modes



Anthony J. Clark – Missouri State University

The authors gratefully acknowledge the contributions and 
feedback on the work provided by the BEACON Center at 
Michigan State University. 

This work was supported in part by National Science 
Foundation grants CNS-1059373, DBI-0939454, and CNS-
1305358, the Ford Motor Company, General Motors Research, 
and a grant from the Air Force Research Laboratory.



Anthony J. Clark – Missouri State University

Thank You.
Questions?


