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Abstract
Robotic fish accomplish swimming by deforming their bodies or other fin-like appendages. As an
emerging class of embedded computing system, robotic fish are anticipated to play an important role
in environmentalmonitoring, inspection of underwater structures, tracking of hazardouswastes and
oil spills, and the study of live fish behaviors.While integration offlexiblematerials (into the fins and/
or body) holds the promise of improved swimming performance (in terms of both speed and
maneuverability) for these robots, such components also introduce significant design challenges due
to the complexmaterialmechanics and hydrodynamic interactions. The problem is further
exacerbated by the need for the robots tomeetmultiple objectives (e.g., both speed and energy
efficiency). In this paper, we propose an evolutionarymultiobjective optimization approach to the
design and control of a robotic fishwith aflexible caudalfin. Specifically, we use theNSGA-II
algorithm to investigatemorphological and control parameter values that optimize swimming speed
and power usage. Several evolved fin designs are validated experimentally with a small robotic fish,
wherefins of different stiffness values and sizes are printedwith amulti-material 3Dprinter.
Experimental results confirm the effectiveness of the proposed design approach in balancing the two
competing objectives.

1. Introduction

Similar to live fish, robotic fish accomplish swimming
by deforming their bodies or fin-like appendages. This
form of locomotion offers certain key advantages
relative to traditional propeller-driven aquatic vehi-
cles. First, robotic fish are potentially moremaneuver-
able, which is critical when operating in cluttered
underwater environments [1, 2]. Second, since robotic
fish produce very low acoustic noises and exhibit wake
signatures similar to those of live fish, they are less
intrusive to aquatic ecosystems and offer stealth in
security-related applications. Third, with fin/body
movements occurring at relatively low frequencies
(typically only a fewHz), these systems are less likely to
harm aquatic animals or become jammed with foreign
objects. Given these characteristics, robotic fish are
anticipated to play an important role in environmental
monitoring [1], inspection of underwater structures
[3], tracking of hazardous wastes and oil spills [4], and

the study of natural systems [5–8]. However, while
investigations of robotic fish have produced many
advances over the past two decades [9–16], robotic fish
still do not rival their biological counterparts in terms
of swimming abilities.

One approach to improving performance is to
integrate flexible, or compliant, materials into the
morphology (structure) of a robot [17, 18]. Passive,
compliant components are intended to partially
compensate for actuation capabilities that are pri-
mitive relative to those of biological organisms.
However, incorporating such materials into a robot
poses numerous challenges in the optimal design
and control of the system, due to complex material
mechanics, hydrodynamics, and interactions
between the flexible and rigid elements [19, 20].
Moreover, the interaction between geometry and
flexibility further complicates the underlying
dynamics. For example, determining the so-called
‘optimal’ foil-shape for robotic fish tail fins depends
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on a given performance metric (e.g., speed,
power) [21].

Several recent studies have addressed the design of
aquatic robots with compliant components [12, 22–
24]. For example, Low and Chong [12] used statistical
methods to investigate the effect of control and mor-
phological design parameters on the resulting thrust of
a robotic fish with a compliant caudal fin. Esposito
et al[24] performed a similar analysis of a caudal fin
with six independently actuated fin rays. While study-
ing a single kinematic parameter, the phase difference
between the driving angle at the base of a flexible cau-
dal fin and the fin-bending angle, Park et al [22] dis-
covered that maximal thrust occurs at a specific phase
difference, even when the morphology of the caudal
fin is changed. Although many recent works in this
area focus on flexible caudal fins, as evidenced by the
studies mentioned above, Daou et al [25] have investi-
gated a compliant body, where both the head and cau-
dalfinwere rigid.

Existing work on optimizing performance of
robotic fish with flexible fins or bodies has typically
dealt with a single optimization objective, for example
speed or thrust. However, in practical applications
robotic fish are often required to meet multiple objec-
tives, either simultaneously or within different tasks or
environments. For example, while speed is in general
an important specification, energy efficiency (and thus
operating duration) is often equally as important.
Maneuverability, the ability of the robot to make tight
turns or deal with disturbances, is also a particularly
significant objective.

In this paper we propose an evolutionary multi-
objective optimization (EMO) approach to the design
and control of flexible fins for robotic fish. For the
purpose of demonstration, we focus on the caudal fin
and two competing objectives: speed and power con-
sumption. In particular, we explore the interactions
between the stiffness, size, and the control pattern for
the flexible fin, and we investigate how the speed per-
formance and energy usage can be balanced. Some
situations may require speed be sacrificed for effi-
ciency (e.g., the systemmay need to return to port due
to a low battery), while in other situations speed may
be paramount (e.g., the system may need to escape a
hazard).

Finding combinations of morphological and con-
trol parameters that effectively balance speed and
energy consumption is challenging. In robotic fish that
incorporate compliant materials, morphological and
control parameters are highly interrelated. Specifi-
cally, any change to the flexibility of the caudal fin will
require a corresponding change to the control signal to
ensure that the frequency of oscillation matches the
naturalmotion of the fin.

Evolutionary algorithms (EAs) have proven to be
effective for similar problems. For example, Gomez
and Miikkulainen evolved neural network controllers
to guide finless rockets [26]. Generally, EAs operate on

a population of individuals, each representing a solu-
tion to the problem under study. The genome of each
individual comprises a set of parameter values. In opti-
mizing a robot, for example, these parameters might
include values for the robot’s controller as well as
characteristics of the robot’s morphology (e.g., oscil-
lating frequency of the motor and the dimensions of
the fin). The initial population of individuals is either
generated randomly or seeded around a point of inter-
est, such as a solution to the problem that is known to
be effective. A fitness function measures the effective-
ness of a solution, such as the speed or distance tra-
veled in a fixed amount of time. In evolutionary
robotics (ER) [27–32], the fitness of an individual is
often evaluated with respect to one or more tasks per-
formed in a simulated environment. After evaluating
all individuals in the population, solutions exhibiting
higher fitness are preferentially selected to create the
next generation by combining and mutating their
parameters with genetic operators (e.g., crossover and
mutation). This cycle is typically repeated until one of
the following conditions is met: (1) the fitness values
plateau, (2) a maximum number of generations is
reached, (3) or a maximum amount of real time has
passed.

One of the primary benefits of ER methods is that
they can optimize both control and morphology,
which typically leads to better coupling (i.e., better
performance) between behavior and physical form
[33–36]. Evolved controllers usually take the form of
an array of control parameters (as is done for this
study) or use artificial neural networks [26, 37, 38],
central pattern generators [39, 40], or genetic pro-
grams [41, 42]. Recently, ER has been applied to pro-
blems in soft robotics [19]. Similar to the robotic fish
developed for this study, soft robots comprise (or con-
tain)malleable, flexible components, which are meant
to improve performance and/or safety [43–47]. For
example, Cheney et al [48] evolved locomotion for
voxel-based simulated robots, where each robot is
made up of a 3D-grid of cubic voxels and each voxel
can be evolved with differentmaterial properties. Che-
ney’s study demonstrates that evolving soft robots
with a generative encoding, based on principles from
developmental biology, dramatically improves loco-
motionwhen compared to direct encodings.

EMO algorithms operate using similar principles.
However, unlike traditional approaches to managing
multiple objectives in which fitness values are a weigh-
ted sum of different goals (a technique sometimes
referred to as scalarization) [49], EMO fitness func-
tions return a sequence of values, where each value
represents fitness with respect to a different objective.
Instead of locating a single optimal set of parameter
values, EMOs converge to a set of Pareto-optimal solu-
tions. Individuals belonging to a Pareto front are said
to be nondominated; that is, each of the solutions is
optimal with respect to some combination of the
objectives. The most common EMO algorithms, such
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as NSGA-II and SPEA2, use an elitism approach for
driving solutions toward the optimal Pareto front, and
a niching or crowding mechanism to ensure that the
entire set of Pareto-optimal solutions can be found
[50, 51]. Indicator-based EMOs also produce a set of
solutions, but do so by maximizing an indicator vari-
able, which acts as a single objective for evolving the
entire population [52, 53]. One of the most popular
indicator variables is hypervolume [54]. Bymaximizing
the hypervolume of a population, the algorithm effec-
tively drives search toward the user-defined goals
while maintaining a distance between evolved indivi-
duals in the solution space. The advantages of EMO
algorithms, when compared to single objective EAs
and parameter sweeps, include: (1) locating a Pareto
front with fewer evaluations, (2) automatically hand-
ling constraints, (3) not needing to specify the relative
importance among multiple objectives, and (4) auto-
matically sorting solutions according to feasibility and
domination. For this study, we apply the NSGA-II
algorithm [50], which is widely used in both research
and real-world applications. Compared with other
EMO algorithms, the main advantages of NSGA-II
include a faster sorting operation and a more effective
method for maintaining diversity (i.e., reducing pre-
mature convergence) [51, 55–57].

Optimized designs obtained via the NSGA-II algo-
rithm are validated on a robotic fish with a flexible
caudal fin driven by an electromagnetic actuator.
Evolved fin designs are prototyped with a multi-mate-
rial 3D printer. Experimental results of the robot
swimming with different fins demonstrate a trend in
the speed performance consistent with the corre-
sponding simulation results, although there is some
discrepancy in the exact speed values between the
experiments and simulation.

Preliminary investigations related to this work are
described in two earlier papers [58, 59]. In [58], we
explored how a conventional genetic algorithm could
be applied to optimize morphological characteristics,

including caudal fin flexibility, and control patterns
for a robotic fish prototype. However, that system had
limited capabilities (i.e., no sensory feedback, no com-
munication abilities, and a low-power micro-con-
troller), and optimization did not address multiple
objectives. In [59], we described our initial approach
to applying EMO methods to robotic fish. However,
that investigation also used a platform with limited
sensing capabilities. The electromagnetically driven
robotic fish in this work, shown in figure 1, is smaller,
has more computational power and sensing cap-
abilities, and enables a direct calculation of energy
usage, as discussed in section 2. We have also refined
and enhanced the simulation modeling for flexible fin
dynamics, and we have conducted more physical vali-
dation trials with the new robotic fish prototype.
Finally, whereas in [59]we focused on useful mechan-
ical power, here we are able to optimize for both the
robot’s speed and the average electrical power expen-
ded. As a result, the analysis of Pareto-optimal solu-
tions yields results not apparent in our earlier studies.

The remainder of the paper is organized as follows.
In section 2 we describe the robotic fish prototype,
simulation model, and optimization algorithm. In
section 3 we present the results of evolutionary opti-
mization. In section 4 we provide details for fabricat-
ing and testing flexible caudal fins, and report results
of the physical validation experiments. Finally, we pre-
sent our conclusions in section 5.

2. Roboticfish design and simulation

In this section we provide details of the target robotic
fish, the simulation model, and the evolutionary
algorithm.

2.1. Roboticfish
Figure 1 shows the robotic fish used to test and validate
the methods proposed in this paper. The caudal fin is
detachable, enabling us to test many fin designs. This

Figure 1. (a) Small robotic fish cast from liquid rubber; the body has been painted gray and the printed caudalfins are detachable. (b)
The device’s customPCB and rechargeable battery.

3

Bioinspir. Biomim. 10 (2015) 065006 A JClark et al



robotic fish is intended to operate either autono-
mously or via remote control for up to three hours
under normal conditions (i.e., non-continuous com-
munication, average actuator usage). The device is
powered by a 150 mAh lithium–ion polymer battery,
which provides over two hours of continuous opera-
tion under maximum load (including wireless com-
munication, sensing, and actuation).

Body and fin fabrication: The body of the robotic
fish is designed to be as small as possible, while incor-
porating all components necessary for untethered
operation. The body is cast from liquid rubber
(Smooth-On Ecoflex®00-30), which results in a soft,
‘stretchy’ form. All electrical and mechanical compo-
nents are placed in a 3D-printed mold and the liquid
rubber is poured around them. Themold (see figure 2)
was produced with an Objet350 Connex printer. A
photograph of several 3D-printed caudal fins can be
seen in figure 3. Details regarding fin design and their
fabrication process will be discussed in section 4.

Custom printed circuit board (PCB): To control the
robotic fish, we designed a custom PCB, pictured in
figure 1(b). The PCB includes a 32-bit ARM micro-
controller (Atmel SAM D20), a six-axis inertial mea-
surement unit (IMU) (InvenSense MPU-6050), two
light sensors (Intersil ISL29101), and wireless

communication (Nordic Semiconductor nRF24L01-
+). The microcontroller is capable of executing com-
plex adaptive control algorithms while filtering
sensory data. The IMU enables the device to measure
its linear and angular accelerations, which can be fil-
tered to provide estimates of velocity. Wireless com-
munication allows the device to be controlled and
have its software updated remotely, as well as deliver
sensed information to a base computer.

Electromagnetic actuator: The electromagnetic
actuator is depicted in figure 4. The actuator com-
prises a coil of magnet wire (9.5 mm outside dia-
meter), a neodymium permanent magnet, an
external centering magnet, and an attachment point
for a caudal fin. To operate the actuator, a voltage is
applied across the coil’s terminals. The coil creates
an electromagnetic field that exerts a torque on the
permanent magnet, causing its poles to align with
the magnetic field. The actuator used in this study
has a fixed maximum amplitude of 38° and a center-
ing magnet that causes the actuator to return to its
center when no voltage is applied to the coil.
Equation (1) is used to calculate the angular accel-
eration of the permanent magnet resulting from an
applied voltage:

Figure 2. (a)A solidworksmodel of the roboticfishmold. (b), (c)Two images of the 3D-printed, clear plasticmold used during the
casting process.

Figure 3.Aphotograph of several 3D-printed caudal fins. Eachfinhas differentmorphological characteristics: length, height, and
flexibility.
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where α is the angular acceleration, V is the voltage
applied across the coil, 0m is the magnetic constant (or
the permeability of free space), N, l, and R are the
number of turns, length, and resistance of the coil, and
Ieffective is the moment of inertia for the permanent
magnet with an attached fin. This device exhibits a
torque of roughly 500μNmwith a volume of 35 mm3,
which yields a torque-per-volume of 15 μN per mm3.
In contrast, a typical commodity micro servo motor
provides a torque of approximately 75 mNm with a
volume of 2200 mm3 resulting in 35 μN per mm3

torque-per-volume. For our purposes, alternatives to
the electromagnetic actuator are either too large
(commodity servo motors), require higher voltages
(piezoelectric motors), or generate less torque (elec-
tropolymers and shape memory alloys) [60]. Likewise,
systems that need external magnetic fields, such as the
microrobots developed for medical applications [61],
are too limiting in terms of the types of environments
inwhich a robot could be deployed.

Electromagnetic actuators have been used as
motors for robotic fish by a few other research groups.
To support their fuel cell studies, Takada et al [62] used
a similar actuator for a robotic fish; this device was
10 cm in length, had diving capabilities, but did not
include any sensing. Shin et al [63] used a comparable
electromagnetic mechanism for robotic tadpoles,
which were less than 3 cm in length but did not
include any sensing or complex control capabilities.

Control signal: The actuator is controlled by sup-
plying a positive, negative, or zero voltage to the coil.
For this study, we do not consider voltages other than
0, 3.3 or−3.3 volts. This leaves two control parameters
for forward thrust: an oscillating frequency and a
pulse-width-ratio (PWR). Similar to a duty-cycle,
PWR defines the fraction of time the control signal is
active during a given period. We note, however, that
PWRhas negative components, as depicted in figure 5.
For the control signal example shown, PWR is set to
0.4, which results in an applied voltage that is active
only 40 percent of the period. With this setup,

adjusting PWR is the only way to alter energy con-
sumption. For example, a PWR of 0.8 will result in
twice the amount of energy consumed when com-
pared to the example signal.

PWR can range from 0 to 1 and the resulting con-
trol signal will be a constant zero or a square wave,
respectively. How to choose these two parameters (fre-
quency and PWR) depends on the dimensions of the
caudal fin and the desired balance between speed and
energy consumption. For instance, it is rarely useful to
set the PWR to 1, as doing so will result in wasted
energy. Specifically, the actuator will consume energy
while actively ‘pinning’ the fin to one side, which does
not generate any additional thrust.Moreover, the time
required for the fin to reach its maximum amplitude
depends on caudal fin dimensions. Since the actuator
will always generate the same torque, using a larger fin
will result in lower angular acceleration compared to
fins with less surface area because the fin is ‘pushing’
on a larger volume of water. While conducting initial
tests of the robotic fish, we found that the actuator was
effective only for fins with a surface area less
than 5 cm2.

2.2.Dynamicmodel
Evolutionary optimization is usually conducted with
the aid of a simulation environment, which provides a
means to execute a large number of evaluations in a
short amount of time. The main drawback of simula-
tion, however, lies with the so-called reality gap [64],
which arises when solutions that appear to work well
in a simulated environment perform differently in a
physical environment. In general, higher accuracy
simulations tend to have a better chance of crossing
the reality gap [65]. In this study, we use a dynamics
model developed by Wang et al [66] based on Light-
hill’s large-amplitude elongated body theory of loco-
motion [67]. This model has proven to be both
accurate and computationally efficient [58, 66]. Speci-
fically, simulating 10 s of time takes on average 0.5 s of
computation time on a single processor in our

Figure 4. (a)Top-view diagramof the actuator, and (b), (c)photographs of the electromagnetic actuator.
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compute cluster; each processor executes at 2.4 GHz
and has 64GBs of RAM.

Wang’s model assumes that all motion is con-
strained to a two-dimensional plane and that fins are
rectangular in shape. Themodel is based on the added-
mass effect, for which rigid bodies appearmoremassive
due to surrounding water. Specifically, the dynamic
model calculates thrust forces as if a volume of water
were pushing on the fin in direct opposition to its
motion. A critical aspect of simulation is modeling of
compliant caudal fin dynamics. Flexibility is modeled
as multiple rigid segments connected by springs and
dampers. The spring coefficient between two con-
secutive segments depends on the stiffness of the cau-
dal fin. Individual rigid segments can be seen in the
visualization rendered in figure 6. For this study, all
simulations were conducted with a ten-segment cau-
dalfin.

Figure 7 depicts the hydrodynamic forces acting
on a robotic fish, where a flexible caudal fin ismodeled
as three rigid segments for the purpose of illustration.
The force acting on each fin segment fi can be calcu-
lated independently with
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wherem denotes mass per unit length, τ is the location
on the fin where the force acts, and n̂ and v ,^
respectively, are the unit direction and velocity per-
pendicular to the fin. The tip of the final segment
experiences an additional force described by
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where Lt = represents the posterior end of the fin,
and m̂ and v ,& respectively, are the unit direction and
velocity parallel to the fin. The resulting thrust force FT
is simply the sum of all segment forces fi and the tip
force fL. Finally, the details for the evaluation of the
drag force FD, lift force FL, and the drag moment MD

on the robotic fish body, as well as the rigid body
dynamics, can be found in [66].

2.3. Evolutionary optimization
The dynamic simulation model described above takes
several parameters, including the frequency and PWR
of the control signal and the length, height, and

Figure 5.An example of the control voltage signal with the resulting simulatedmotor angle. The dashed, blue line depicts the control
signal with a frequency of 0.5 Hz and a PWRof 0.4 (PWR indicates the fraction of time spent at either 3.3 or−3.3 V). The solid, orange
line is the angle of themotor, which has a rise time related to the applied torque, and a fall time relating to the centering torque, due to
the centering permanentmagnet.

Figure 6.Rendering of the simulated robotic fish. Individual fin segments appear in different colors.
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flexibility (which dictates the spring and damping
coefficients for fin segments) of the caudal fin. Evolved
genomes comprise values for these parameters, and
the allowable range for each is listed in table 1. Values
in the table were determined by testing the physical
limitations of the physical robotic fish. For instance, if
the frequency is near or above 5 Hz, the caudal fin will
not have a sufficient amount of time to rotate before
the actuator reverses direction. In effect, the caudal fin
simply vibrates, producing very little thrust. The limits
on spring coefficients allow for caudal fins to behave
similarly to materials as flexible as rubber or as stiff as
hard plastic.

NSGA-II configuration: Asmentioned in section 1,
theNSGA-II algorithm [50]was chosen to conduct the
evolutionary multiobjective design. NSGA-II effi-
ciently sorts a combined population of parent and
children (created using genetic operators) into differ-
ent ranks of nondominated Pareto fronts. Selection
proceeds by accepting individuals from each rank in
sequence until N individuals are selected in total.
Crowding distance is used as a tie-breaker when an
entire rank cannot be selected (because it would
require acceptingmore thanN individuals). Crowding
distance is calculated as the Euclidean distance
between the fitness vectors of two individuals. This
method ensures that the elite (best) individuals are
retained because all individuals in the first rank are
Pareto-optimal. For evolving genomes comprising

real values, NSGA-II requires the user to set the fol-
lowing four parameters (values chosen for our experi-
ments are in parentheses): the probabilities of
crossover (90%) and mutation (20%), and the dis-
tribution index for both simulated binary crossover
(20) and polynomial mutation (20). Starting from
values recommended by Deb et al [50], these values
were determined experimentally and cause the popu-
lations to converge in relatively few generations (i.e.,
within 100 generations, which corresponds to
approximately 6400fitness evaluations).

Fin constraint: Along with evolving the above
parameters as real-valued numbers, NSGA-II also
accommodates constraints. In our study, the dynamic
model is only valid for an elongated fin in which fin
length is at least three times the fin height:

length 3 height 0, 4( ).-

where length and height refer to the evolved dimen-
sions of the robotic fish caudal fin. In NSGA-II this
limitation is configured as a constraint, which enables
the algorithm to smoothly follow a gradient from
infeasible (i.e., a solution that violates a constraint) to
feasible solutions.

Fitness evaluation: Each individual in the popula-
tion is evaluated for 10 s of simulation time; however,
only the second half of this period determines fitness.
This setup allows the robotic fish to reach a cruising
speed and final heading, with average speed calculated
over the final 5 s. In our preliminary study [59], effi-
ciencywas defined as the ratio between useful and total
power, where useful power was calculated using the
product of the total propulsive force projected onto
the trajectory of travel and the travel speed, and the
total power was calculated using the sum of all
mechanical power exerted by the caudal fin. These cal-
culations require instantaneous power to be calculated
at every simulation time step. In contrast, since PWR
of the control signal is known, in the current study

Figure 7.Graphical representation of the simulated hydrodynamics for a roboticfishwith a rigid body and flexible caudal fin. Linear
velocity v and angular velocityw are the result of thrust force FT, drag force FD, lift force FL, and dragmomentMD. FT is calculated as
the sumof all forces acting on thefin segments.

Table 1.Range of evolved parameters.

Min Max

Frequency (Hz) 0.1 5.0
Pulse-width-ratio 0.1 1.0
Fin length (cm) 1.0 4.0
Fin height (cm) 0.3 1.3
Spring constant (Nm rad−1) 5e-5 1e-1
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average electrical power is directly calculated using the
following equation:

P P PWR, 5avg MAX ( )= *

where Pavg and PMAX refer to the average and
maximum instantaneous electrical power delivered to
the motor, respectively. Since PMAX and PWR are
known values, a control signal’s energy consumption
can be calculated directly.

3. EMOsimulation results

We conducted 25 replicate EMO simulations trials,
each with populations of 64 individuals evolving for
100 generations. Simulation parameters for the
robotic fish dynamics, other than those related to the
flexible fin and the control signal, are based on the
robotic fish prototype (see section 2.1) to be used for
physical validation. Most replicates (23 of 25) con-
verged to nearly identical Pareto fronts. Figure 8
displays the evolutionary history of one replicate
simulation. The population is randomly initialized
(figure 8(a)), and then evolves toward the final,
optimal Pareto front (figure 8(f)).

Figure 9(a) plots the average power and speed of
every evolved (feasible) individual from all replicate
simulations, with the Pareto-optimal individuals
appearing in colors other than light gray. Jitter appears
in the final Pareto fronts (some non-gray points
appear to be dominated) because replicate simulations
do not find identical sets of Pareto-optimal solutions.
The results are grouped into three clusters. First is the
energy cluster, which includes individuals that on aver-
age consume low amounts of power. These individuals

appear in the lower, left-hand section of the figure, and
have speeds less than 5 cm s−1 and consume less than
60 mW of power on average. Second, the speed cluster
includes individuals that are in the middle, right-hand
section of the figure, and which consume roughly
twice the amount of power but also swim twice as fast.
The local-optimum cluster is the set of individuals that
have converged to a local optimum and appear in the
upper, center section of the plot. The replicate run
depicted in figure 8 appears to have encountered the
same local optimum (shown in plot 8(c)) but was able
to find an evolutionary path toward the final Pareto
front.

These three clusters are highlighted in
figures 9(b)–(d). The closer views show that within
each cluster a smaller Pareto front is formed (max-
imizing speed and minimizing power usage). Inspect-
ing how each of the parameters evolved gives insight
into what created these distinct clusters. For example,
figure 10 shows that caudal fin morphology (length,
height, and flexibility) remains fairly consistent for all
Pareto-optimal individuals even across clusters; the
data shown in this figure is scaled between 0 and 1 so
that each parameter can be plotted on the same axis.

Convergence of morphology parameters indicates
that for this particular robotic fish an ideal caudal fin is
approximately 3.4 cm in length, 1 cm in height, and
has the minimum allowed spring constant (i.e., a flex-
ibility resembling a rubbermaterial). Since the fins dif-
fer only slightly among solutions, we can infer that the
control parameters account formost of the diversity in
the final populations. A pairwise comparison of the
parameters’ variances using the Brown–Forsythe
equality of variances test (and the Bonferroni

Figure 8.The evolutionary history of a single replicate simulation run. Every individual (including dominated individuals) in the
population at a given generation is plotted in eachfigure. For allfigures, the units for speed and power are cm s−1 andmW,
respectively.
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multiplicity correction resulting in a P value of 0.005)
shows that the variances in the control parameters
(frequency and PWR) are significantly higher than
those of themorphological parameters (length, height,

and flexibility). Referring again to figures 9(b)–(d), we
conclude that three distinct control strategies have
been evolved, two of which are practical. Specifically,
the energy-based control strategy, which has a

Figure 9. (a)Every evolved individual among all 25 replicate simulations (excluding infeasible solutions). Graymarkers denote
‘dominated’ individuals and non-graymarkers denote individuals that were Pareto-optimal for a given replicate experiment. Three
clusters have been identified and given different colors. The remaining plots display individuals belonging to the energy cluster (b),
speed cluster (c), and local-optimumcluster (d). Please note that the cluster plots do not share the same ranges for their axes.

Figure 10.Box plots (top row) and histograms (bottom row) of the distributions of each evolved parameter, scaled between 0 and 1,
for all of the Pareto-optimal individuals. For each box-plot, the central red line indicates themedian, the light blue box outlines the
25th through 75th percentiles, the dashed light blue vertical lines denote the boxwhiskers (non-outliers), and the dark blue circles
denote outliers. In each histogram, the horizontal axes are scaled parameter values and the height of each bin indicates the density
around a given value.
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maximum speed of roughly 5 cm s−1, and the speed-
based strategy, which has a minimum average power
exerted of approximately 100 mW. This result sug-
gests that, at least for the robot used in this study,mor-
phology can be fixed and the trade-offs between the
two objectives can be adjusted online by choosing a
different set of parameters from the Pareto front.

Figure 11 compares parameters among the three
different control strategies. The PWR of evolved con-
trol patterns is lower for lower power-consuming
individuals (median value of 0.2), and higher for faster
individuals (median value of 0.5). This result is expec-
ted, as the only way to minimize energy usage is to
reduce the amount of active time for the actuator.
Active time refers to the duration of time that a voltage
is applied to the electromagnetic coil of the robot’s
actuator. Additionally, faster swimming individuals
exhibit higher frequencies (median value of 4.0) than
low power-consuming individuals (median value
of 1.5).

The frequencies for lower power-consuming indi-
viduals suggest that they are sacrificing speed by evol-
ving lower frequencies (i.e., since higher frequencies
generally lead to higher speeds but increasing fre-
quency does not affect power consumption). How-
ever, as will be discussed later, increasing frequency of
these individuals actually reduces speed. As for the
local optimumcluster, it appears thatNSGA-II located
a region in the search space where speed was max-
imized by increasing the PWR and sacrificing power

consumption. Likely due to its exploitative nature, the
algorithm was unable to escape this region of the
search space in some replicates. That is, NSGA-II
expands its current Pareto front by searching the
neighborhood around current Pareto-optimal indivi-
duals. Therefore, it seems that it is difficult to find an
evolutionary trajectory from this local optimum to the
actual optimal Pareto-front.

Additionally, Pareto-optimal solutions tend to
have either high frequency and high PWR or relatively
low values for both parameters. This trend occurs
because a high frequency with a low PWRwill result in
very little fin motion, due to the duration of time that
the actuator would remain active. For example, with a
frequency of 5 Hz (the maximum allowed value) and a
PWR of 0.4, the actuator will remain active for only 40
ms at a time, which is not enough time to rotate the
caudal fin for generating thrust. For comparison, the
median value for activation duration for all Pareto-
optimal solutions (excluding the local optima) is 64ms
with a standard deviation of 10 ms, and the minimum
and maximum possible values are 10 and 1000 ms,
respectively. Thus, although most solutions require
the actuator to be active for relatively short durations,
there appears to be a lower limit of approximately
50ms.

To explore the generality of evolved solutions, we
selected three evolved individuals and a solution with
hand-chosen parameters to examine further. The
values for these parameters are listed in table 2. These

Figure 11.A comparison of control parameters among the three Pareto-optimal clusters. Frequency (right) and the PWR (left) are
both increased to achieve faster swimming speeds and decreased to attain lower power consumption. For each box-plot, a central red
line indicates themedian, a box outlines the 25th through 75th percentiles, a vertical, dashed line denote the boxwhiskers (non-
outliers), and redmarkers denote outliers.

Table 2.Parameter sets selected for further investigation.

Description Frequency PWR Length Height Spring constant

Best speed 3.8 Hz 0.50 3.8 cm 1.0 cm 50 uNm rad−1

Best energy 1.1 Hz 0.12 3.0 cm 1.0 cm 94 uNm rad−1

Dominated 3.0 Hz 0.64 3.9 cm 1.3 cm 48 uNm rad−1

Hand chosen 1.0 Hz 1.00 3.3 cm 1.1 cm 100 uNm rad−1
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parameter sets include morphologies near the optimal
values listed previously, and exhibit a range of control
parameter values. The best speed and best energy para-
meters refer to evolved individuals near the end points
of the Pareto front (the highest speed and lowest
power consumption), the dominated parameters refer
to a randomly selected individual from an early gen-
eration that is not near the Pareto front, and hand cho-
sen represents parameter values that we have chosen
using expert knowledge.

For each fin design shown in table 2, we first con-
ducted a parameter sweep over the control para-
meters. The purpose of these control parameter
sweeps is to evaluate individuals under a range of oper-
ating conditions, because for many practical applica-
tions it will be useful to dynamically adjust the relative
importance of the two objectives. In such a situation,
the morphology is fixed and only the control patterns
can be adjusted. For example, if a robotic fish is able to
charge its batteries via a solar cell, it will be more
important to conserve energy when operating in lim-
ited sunlight. However, under ideal conditions the
robotic fish may be able to sacrifice power consump-
tion for better performance (e.g., swimming speed).
Furthermore, even under ideal conditions there may
be valid reasons to swim at speeds lower than themax-
imum value (e.g., if the robotic fish is tracking another
object). Thus, during these sweeps all parameters
relating to fin morphology were fixed. Results from
two experiments (best speed and best energy) are plotted
in figure 12. Plots for dominated and hand chosen are
not shown as they display characteristics similar to
those demonstrated by best energy. We have not pro-
vided data for the parameter sweeps against average
power, as average power is directly proportional
to PWR.

Considering the parameter sweep plots, a desirable
trait is the ability to adjust speed to specific values. The
only set of parameters to demonstrate this trait is the
best speed individual, as shown in figures 12(a), (b).
This configuration allows the robotic fish to swim at
speeds ranging from 1 to 9 cm s−1 by adjusting the fre-
quency or PWR. Additionally, as depicted in
figure 12(b), the robotic fish can swim at a range of
speeds by adjusting the PWR value, which means that
the robotic fish can effectively adjust its average power
consumption from 20 to 220 mW and its average
speed from 0.2 to 9 cm s−1. Moreover, the apparent
linear relationship between PWR and speed allows us
to consider the trade-offs between power consump-
tion and swimming speed without worrying about
drastic performance changes that can occur under cer-
tain conditions. Specifically, we do not need to avoid
certain values for PWR due to a nonlinear relationship
over a smaller interval. However, any value over
120 mWof average delivered power (corresponding to
a PWR of 0.5) appears to waste energy, as average
power increases but speed does not. The remaining
three sets of parameters (best energy, dominated, and

hand chosen) do not exhibit the same ability to adjust
speed. However, different speeds may be achieved by
these individuals by adjusting both frequency and
PWR simultaneously.

We also conducted similar sweeps over the mor-
phological parameters: fin length, height, and flex-
ibility. In these sweeps, the control parameters were
fixed. Results are again plotted for the best speed and
best energy parameter values; this data can be found in
figure 13. For the best speed individual (figures 13(a)–
(c)) it is apparent that themorphology is optimized for
speed. Specifically, any change in morphology results
in a speed reduction. However, speeds attained by
parameter values that lead to lower energy consump-
tion (figures 13(d)–(f)) are less affected by the mor-
phological parameters. That is, changing the
morphology results in smaller changes to speed.

4. Experimental validation of evolved
designs

One goal of this study is to evolve solutions that can be
applied to a physical robot. The increased fabrication
complexity of flexible materials can be addressed in
part with the aid of rapid prototyping equipment, such
as 3D printers, which can decrease the time between
design and physical testing [68]. Recent advances in
3D printing technology allow for multiple materials to
be jetted simultaneously, which enables the printing of
compositematerials as employed in this study.

To confirm what we see in simulation carries into
reality we selected three evolved designs and one
hand-chosen parameter set to validate experimentally.
In this section we first describe the method for fabri-
cating caudal fins [59], and then we present results
fromphysical experiments.

4.1. Fin fabrication and testing
In simulation,flexibility of the caudalfin is determined
by spring coefficients. However, the flexibility for
actual materials is expressed as a physical property
such as the Young’s modulus. Therefore, we require
the following equation, which relates a spring coeffi-
cient to the Young’s modulus of a 3D-printed
component:

K
Edh

l12
, 6s

3
( )=

where Ks and E refer to the spring coefficient and
Young’s modulus values, respectively, and d, h, and l
represent the height, thickness, and length of a
rectangular fin, respectively.

To match the Young’s modulus of printed materi-
als with evolved spring coefficients, we needed away to
fabricate a fin for a given Young’s modulus value. To
do so, we designed composite fins in which flexibility
is adjusted by varying the relative thickness of two dif-
ferent materials, as shown in figure 14. The fin

11

Bioinspir. Biomim. 10 (2015) 065006 A JClark et al



Figure 12.Control parameter sweeps for two sets of parameters: (a), (b) an evolved individual with high speed, and (c), (d) an evolved
individual with low energy consumption.

Figure 13.Morphological parameter sweeps for two sets of parameters: (a), (b) an evolved individual with high speed, and (c), (d) an
evolved individual with low energy consumption.
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comprises two outer layers of a rubber-like polymer,
and an inner layer of a more rigid plastic. When dis-
cussing composite materials, flexibility is often refer-
red to as an effective Young’s modulus to distinguish
from uniformly fabricated materials. Thus, specifying
the thickness of the inner layer, tinner, and fixing the
overall thickness to 1.2 mm limits the range of possible
effective Young’smodulus values.

To determine the 3D-printable range of effective
Young’s modulus values, we set up the experiment
shown in figure 15 and measured the Young’s

modulus values for a series of composite materials
with different values of tinner. For this experimental
setup, the Young’smodulus E is evaluatedwith:

E
L P

I w3
7b

b

3
L

L
( )=

where Lb and Ib are the length and area of moment
inertia of the test composite, respectively, and PL and
wL are the load and displacement at the tip of the
composite, respectively.

Figure 14. (a)Diagramof a compositematerial for a 3D-printedflexible caudalfin (note: the caudal finwould be on its side). (b)Top-
view photograph of a 3D-printed caudalfinwith an inner thickness of 0.38 mm.The overall thickness is a constant 1.2 mm. The
effective Young’smodulus value for the compositematerial depends on the relative thickness (tinner) of the inner VeroWhitePlus layer
with respect to the twoflexible TangoBlackPlus outer layers.

Figure 15.Testing of physical fins. (a)Diagramof the same experiment showing the testing process. (b)Photograph of the
experimental setup formeasuring the effective Young’smodulus of 3D-printed compositematerials.
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As shown in figure 15, a sample of composite
material is fixed to a harness while its tip rests against a
load cell. Displacement at the tip is adjusted using a
sliding rail and measured with a laser sensor. Three
replicate sets of load and displacement data are gath-
ered for each composite material, in which each set
comprises five data points at different displacements.
A least square error method is adopted to find the
slope between force and displacement for each of the
three sets, and the effective Young’s modulus for each
composite is evaluated as the average of the three repli-
cate experiments.

Figure 16 plots the results of these experiments for
different values of tinner. The evolvable range of spring
coefficients corresponds to an effective Young’s mod-
ulus of approximately 100MPa to 3 GPa. These values
correspond to a range of materials roughly from rub-
ber, which typically has a Young’s modulus of
10–100MPa, to hard plastics, which have a Young’s
modulus of 1–5 GPa. Here, we use the best fit line in
figure 16 to find the required tinner value for a given
Young’smodulus.

4.2. Physical validation
The physical experiments use the same control and
morphological parameters as their simulated counter-
parts (these values are listed in table 2). Making use of
the composite fins described in the previous section
enables 3D printing of caudal fins with a specified
morphology (fin dimensions and flexibility). The
fabricated fins are attached to the small robotic fish
pictured in figure 1. The robotic fish is then placed in a
large water tank, and speed is measured using a

method similar to that described in section 2 regarding
the evolutionary fitness evaluation. Specifically, the
robotic fish speed is measured after it reaches a steady
maximum speed. For physical experiments, each
reported speed value is the result of averaging data
from five trials. Results from these experiments can be
found in the table 3.

For three of the four validated parameter sets, the
results show a close relationship between simulation
and reality. And for all four sets of parameters, the
achieved speeds demonstrate a consistent order
between the simulation and the experimental mea-
surement; in other words, ranking the designs by their
achieved speeds will result in the same ordering in
simulation as in experiments. These observations pro-
vide support for the effectiveness of the simulation
model and the design approach. On the other hand,
we note that the best speed evolved parameters result in
a considerably faster speed in simulation than in
experiments. Analyzing high-speed video of the
robotic fish reveals that the physical caudal fin cannot
reach as large an amplitude as in simulation. This
behavior can likely be attributed to the high frequency

Figure 16.Effective Young’smodulus of compositematerials for different values of tinner.

Table 3.Comparison between speeds acquired in simulation and
speeds attained by the small roboticfish in awater tank.

Description
Simulation
speed

Measured
speed Absolute error

Best speed 8.6 cm s−1 3.8 cm s−1 4.8 cm s−1

Best energy 2.2 cm s−1 1.9 cm s−1 0.3 cm s−1

Dominated 3.2 cm s−1 3.5 cm s−1 0.2 cm s−1

Hand chosen 2.7 cm s−1 2.9 cm s−1 0.2 cm s−1
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at which the device is operating. As listed in table 2, the
frequency for this individual is 3.8 Hz, which is near
the upper limit we found to be physically possible dur-
ing our initial prototyping. Modeling of the electro-
magnetic actuator will need to be refined to ensure
that the simulation environment cannot be exploited
by the evolutionary algorithm, as occurs for the best
speed experiment.

Even with a higher accuracy simulation the reality
gap can still be an issue. For this reason,many research
groups are investigating explicit methods for counter-
ing the reality gap. Two of the most prominent are the
‘intelligent trial-and-error’ algorithm [69] and self-
modeling [70]. As an alternative to these methods, we
are currently investigating adaptive control as a
method for mitigating effects of the reality gap [71]. In
essence, the controller would adapt to the differences
between simulation and reality.

5. Conclusion

In this study, we proposed an EMO approach to the
design of morphology and control for a robotic fish
with a flexible caudal. As a way of illustration, we chose
two common objectives (maximizing swimming
speed andminimizing energy consumption), although
our approach would work with any combination of
objectives (for example, agility, speed, and energy
efficiency). The robotic fish used during validation
experiments utilizes an electromagnetic actuator,
which enables a direct calculation of energy consump-
tion. Simulation-based optimization allowed us to
explore trade-offs between the two competing objec-
tives. Certain evolved and hand-chosen sets of para-
meters were then selected for physical validation.With
the aid of a 3D printer, simulated caudal fins were
fabricated to match specifications, and simulation
results were validated in a large water tank. Aside from
individuals exhibiting the fastest speeds, physical trials
support the effectiveness of the proposed evolutionary
design approach.

Surprisingly, control parameters (frequency of
oscillation and PWR) were found to account for most
of the variation among Pareto-optimal individuals.
This discovery is intriguing, as it indicates that at least
for the robotic fish and objectives employed in this
study,most of the engineering effort can be invested in
controller design, while less time needs to be spent on
morphology. Specifically, morphology can be fixed
and control strategies can be designed such that most
of the Pareto-optimal solution space can be reached.
As a result, the robotic fish can move from high speed,
high energy states to low speed, lower energy states
that are near the final Pareto-front. Fixing the mor-
phological characteristics and performing parameters
sweeps on the control parameters enabled the dis-
covery of individuals that exhibit such generality.

The purpose of this study was to investigate how
compliant caudal fins should be matched with control
parameters while considering both performance and
energy consumption. However, the developed techni-
ques can be applied to the design of other physical sys-
tems incorporating soft/flexible components. In our
future investigations we intend to focus on four areas.
First, we will explore whether different objectives or
robotic fish configurations change the variance of
parameters in the final population. For instance, does
optimizing for agility and efficiency lead to amore var-
ied set of morphological parameters in the set of Par-
eto-optimal solutions? Second, we will remove the
limitations on caudal fin morphology (rectangular
shape) by extending our dynamicmodels to work with
fins of other shapes and nonuniform flexibilities.
Third, our fitness functions will incorporate more
complex tasks (e.g., station keeping) and control para-
digms (e.g., feedback controllers), which will encou-
rage the evolution of general robotic fish behaviors.
Fourth, we will develop algorithms for adjusting the
relative importance of multiple objectives online. For
example, under certain conditions it may bemore use-
ful to focus on speed, and at other times it will be
important to be more energy-efficient. More broadly,
the techniques presented in this study are intended to
be an initial step toward our goal of producing optimi-
zation methods that can be used for any robots incor-
porating soft/flexible components. Ultimately, we
intend to combine these techniques with advanced
control algorithms, including self-modeling [69, 72]
and adaptive control [71], to design systems that are
robust to their uncertain and changing environments.
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