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Motivations

Optimize Robotic Fish with Flexible Fins

Optimize for
— performance AND
— efficiency

While matching flexibility with control settings



Robotic Fish

Biomimetic Robots Sticklebacks

Boston Eng
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Compared with other aquatic
robots

— Smallerin size
— More maneuverable

Actuation
— less complex
— fewer moving parts
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Robotic Fish

Compared with other aquatic ~ Complexenvironment

robots — turbulence
In size
— More maneuverable Flexible components
— changing performance
Actuation
— less complex Limited supervision

— fewer moving parts — poor communication



Applications
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This Paper

efficiency
— focus of several recent studies
— important due to lack of supervision
— remain operational as long as possible

average velocity

* Constraints
— maximum power exerted by the motor
— ratio of length to width for the caudal fin
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Objective 1

Pareto-optimal
— best solutions

Dominated
— sub-optimal solutions

Infeasible
— violate constraints

Impossible
— unachievable

This study: NSGA-Il [Deb 2000]



Computational Evolution

 Fin characteristics
— flexibility

— length length
« Control parameters

— sinusoidal amplitude
— sinusoidal frequency

*  Why evolutionary multiobjective optimization?
— fewer evaluations and more effective than parameter sweep
— avoid local optima



Flexible Fins
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3D Printing Composite Fins
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Inner Thickness vs. Young's Modulus
3
© Measured Data
7 Least-Squares Fit
100 MPa

Young's Modulus (GPa)
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Efficient Simulation

MATLAB / Simulink

Hydrodynamics

— developed by Wang et al. [Wang
2012, Clark 2012]

— faster and less accurate compared
to CFD

Flexibility
— rigid bodies
— torsion springs (can be converted
to Young's modulus values)

Anthony Clark -- IEEE ICES @ IEEE SSCI 2014 13 of XX



Evolutionary Optimization

Task : quick and efficiently forward swimming

* Evolve
— fin flexibility
— fin dimensions
— sinusoidal control parameters

* NSGA-Il parameters
— 200 individuals in the population
— 500 generations for convergence
— 20 replicate experiments



Final Combined Pareto-Front
 Efficiency
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Discussion

Guidelines

1. Flexible fins are more efficient

2. Length-height ratio of

3. Finlength 2 the length of the body

4. Increase speed by increasing amplitude

Choosing a single Pareto-optimal value is specific to the task given to

the robotic fish.
— example : robotic fish needs to operate for 1 hour

— choose the fastest solution that is within the bounds for efficiency



Physical Trials

Combined Pareto-Front
4

Pareto-Front

\ Finl ® Solutions
\ + validated
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Label | Simulation (cm/s) | Reality (cm/s)
Finl 5.17 7.43
Fin2 5.39 4.00
Fin3 5.62 5.00

4.97

4.90
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Physical Results

Reality gap
— different dynamics
— printing fins
— noisier control

Pareto-front clustering
— all are good solutions

— tight clustering between
solutions
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Summary

In this study we,

— optimized a robotic fish for two objectives
* objectives: speed and efficiency
* evolved parameters: fin morphology and control

— we found a set of guidelines for designing
robotic fish of similar builds

— however, physical results are somewhat
inconclusive and will need to be expanded



Ongoing Research

How can we improve the transferability of evolved individuals?
— cross the reality gap through adaptive control

How can we get better generality during evolution?
— operate under different control conditions
— more complex tasks

How advantageous are more complex fins?
— include non-rectangular fins
— include non-uniform flexibility fins
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