Balancing Performance and Efficiency in a Robotic Fish with Evolutionary Multiobjective Optimization

Anthony J. Clark, Jianxun Wang, Xiaobo Tan, and Philip K. McKinley

Michigan State University, East Lansing, MI, USA

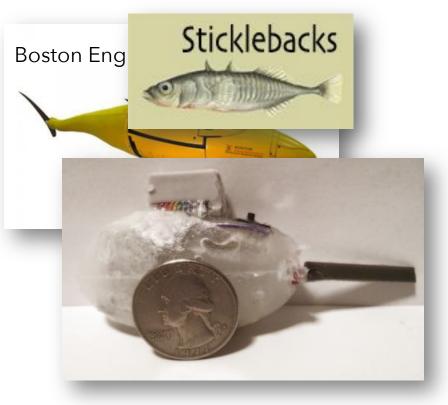
Motivations

Optimize Robotic Fish with Flexible Fins

Optimize for – performance AND – efficiency

While matching flexibility with control settings

Robotic Fish


Biomimetic Robots

Compared with other aquatic robots

- Smaller in size
- More maneuverable

Actuation

- less complex
- fewer moving parts

Robotic Fish

Biomimetic Robots

Challenges

Compared with other aquatic robots

- Smaller in size
- More maneuverable

Actuation

- less complex
- fewer moving parts

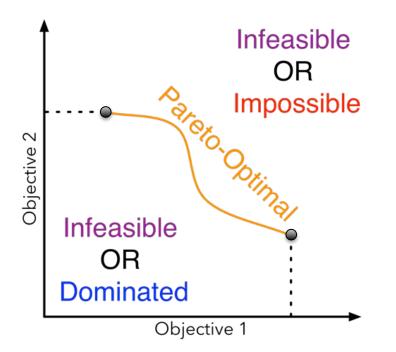
Complexenvironment – turbulence

Flexible components – changing performance

Limited supervision

poor communication

Applications



This Paper

- Maximize efficiency
 - focus of several recent studies [Low 2010, Park 2012]
 - important due to lack of supervision
 - remain operational as long as possible
- Maximize average velocity
- Constraints
 - maximum power exerted by the motor
 - ratio of length to width for the caudal fin

Search Space

Pareto-optimal

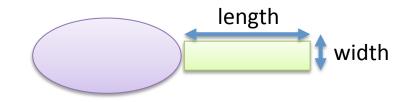
best solutions

Dominated

- sub-optimal solutions

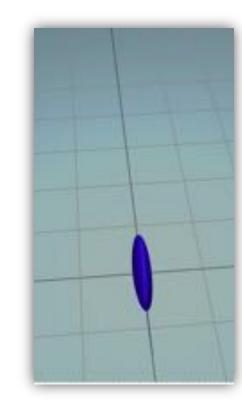
Infeasible

violate constraints

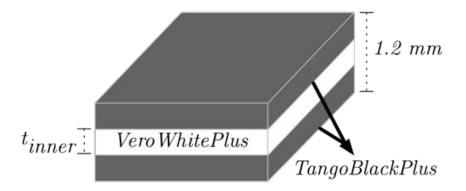

Impossible

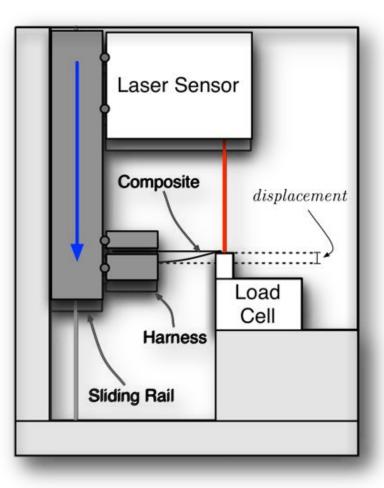
- unachievable

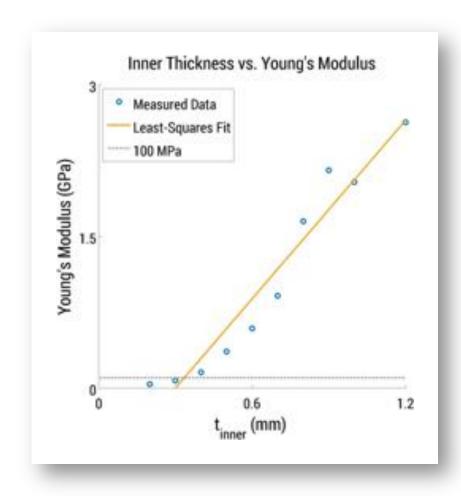
This study: NSGA-II [Deb 2000]


Computational Evolution

- Fin characteristics
 - flexibility
 - length
 - height
- Control parameters
 - sinusoidal amplitude
 - sinusoidal frequency
- Why evolutionary multiobjective optimization?
 - fewer evaluations and more effective than parameter sweep
 - avoid local optima

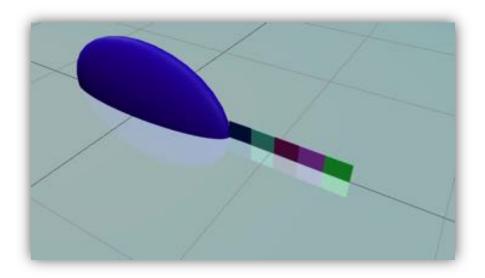

Flexible Fins


3D Printing Composite Fins



Anthony Clark -- IEEE ICES @ IEEE SSCI 2014

Efficient Simulation


MATLAB / Simulink

Hydrodynamics

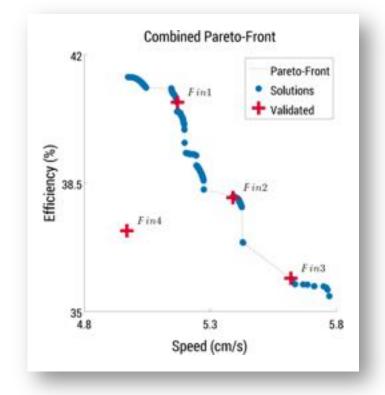
- developed by Wang et al. [Wang 2012, Clark 2012]
- faster and less accurate compared to CFD

Flexibility

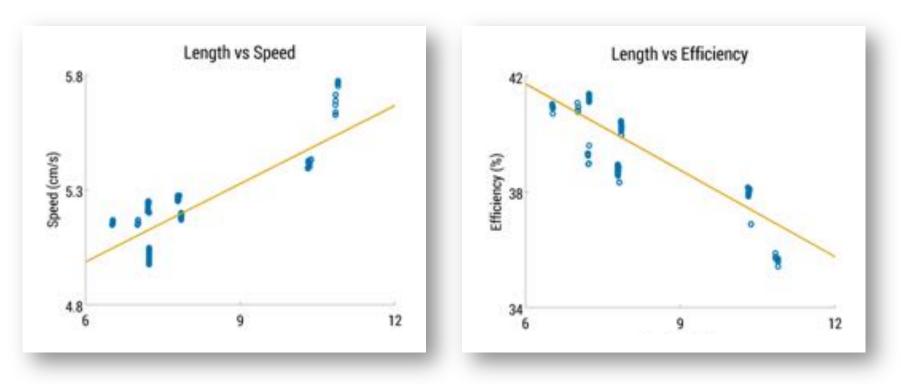
- rigid bodies
- torsion springs (can be converted to Young's modulus values)

Evolutionary Optimization

Task : quick and efficiently forward swimming


- Evolve
 - fin flexibility
 - fin dimensions
 - sinusoidal control parameters
- NSGA-II parameters
 - 200 individuals in the population
 - 500 generations for convergence
 - 20 replicate experiments

Final Combined Pareto-Front

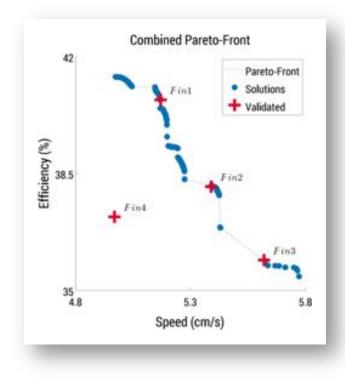

- Efficiency
 - 35 to 40 percent
 - similar to values found in other studies

Velocity

 4.8 to 5.8 cm/s

Caudal Fin Length

Discussion

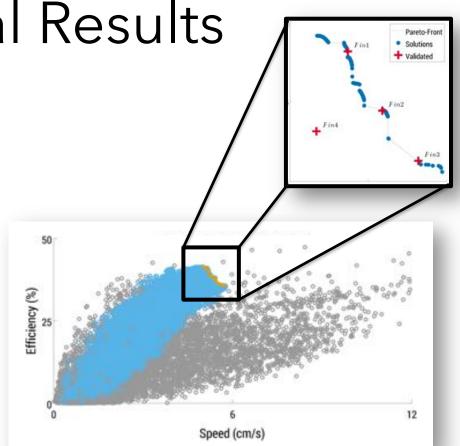

Guidelines

- 1. Flexible fins are more efficient
- 2. Length-height ratio of 3-to-1
- 3. Fin length $\frac{1}{2}$ the length of the body
- 4. Increase speed by increasing amplitude

Choosing a single Pareto-optimal value is specific to the task given to the robotic fish.

- example : robotic fish needs to operate for 1 hour
- choose the fastest solution that is within the bounds for efficiency

Physical Trials


Label	Simulation (cm/s)	Reality (cm/s)
Fin1	5.17	7.43
Fin2	5.39	4.00
Fin3	5.62	5.00
Fin4	4.97	4.90

Physical Results

Reality gap

- different dynamics
- printing fins
- noisier control

Pareto-front <u>clustering</u> – all are good solutions – tight <u>clustering</u> between solutions

Summary

In this study we,

- optimized a robotic fish for two objectives
 - objectives: speed and efficiency
 - evolved parameters: fin morphology and control
- we found a set of guidelines for designing robotic fish of similar builds
- however, physical results are somewhat inconclusive and will need to be expanded

Ongoing Research

How can we improve the transferability of evolved individuals? – cross the reality gap through adaptive control

How can we get better generality during evolution?

- operate under different control conditions
- more complex tasks

How advantageous are more complex fins?

- include non-rectangular fins
- include non-uniform flexibility fins

Thank You

The authors gratefully acknowledge the contributions and feedback on the work provided by:

- Jared Moore and
- the BEACON Center at Michigan State University.

This work was supported in part by National Science Foundation grants IIS-1319602, CCF-1331852, CNS- 1059373, CNS-0915855, and DBI-0939454, and by a grant from Michigan State University.

References

[Wang 2012] : Dynamic modeling of robotic fish with a flexible caudal fin.

• In Proceedings of the ASME 2012 5th Annual Dynamic Systems and Control Conference, joint with the JSME 2012 11th Motion and Vibration Conference, Ft. Lauderdale, Florida, USA, October 2012.

[Clark 2012] : Evolutionary design and experimental validation of a flexible caudal fin for robotic fish.

• In Proceedings of the Thirteenth International Conference on the Synthesis and Simulation of Living Systems, pages 325–332, East Lansing, Michigan, USA, July 2012.

[Low 2010] : Parametric study of the swimming perfor- mance of a fish robot propelled by a flexible caudal fin.

• Bioinspiration & Biomimetics, vol. 5, no. 4, 2010.

Park [2012] : Kinematic condition for maximizing the thrust of a robotic fish using a compliant caudal fin.

• IEEE Transactions on Robotics, vol. 28, pp. 1216–1227, 2012.