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ABSTRACT
The nonlinear dynamics of an aquatic environment make
robotic fish behavior di�cult to predict and subsequently
di�cult to optimize. In this paper, we present a method
for optimizing robotic fish propulsion through the evolution
of control patterns and caudal fin flexibility. Evolved solu-
tions are evaluated in a physics-based simulation environ-
ment. Control signals are generated with both simple sinu-
soids and neural oscillators. This study demonstrates how
evolutionary algorithms can be utilized to handle the com-
plex interactions among material properties, physical form,
and control patterns in an aquatic environment.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics—Autonomous ve-

hicles,Kinematics and dynamics
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1. INTRODUCTION
Designing a robotic fish is a challenging engineering en-

deavor. The nonlinearity of an aquatic environment and
the complex interactions between morphology (i.e., physi-
cal form and material properties) and control give rise to a
system that is di�cult to model. However, dynamic models
recently developed by Wang et al. [6] encapsulate the hydro-
dynamic interactions contributing to robotic fish thrust and
can be incorporated into a simulation environment. These
models account for di↵erent caudal fin dimensions and de-
grees of flexibility. Our work integrates these hydrodynamic
models into an evolutionary algorithm in order to optimize
robotic fish morphology and control.

A common method for controlling a robotic fish is to ap-
ply an oscillating signal to the caudal fin. With a sinusoid
control signal, the resulting velocity of a robotic fish can
be adjusted by varying the frequency and amplitude, and
turning can be achieved by adding a constant bias (a ver-
tical shift of the wave). While this method is simple, the
more complex signals produced by neural oscillators may
produce motion that more closely resembles the changing
amplitude patterns of live fish. We have implemented the
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neural oscillator proposed by Matsuoka in [4], referred to as
a Matsuoka Neural Oscillator (MNO), and compared it to
sinusoidal controllers. In our experiments, evolution is re-
sponsible for optimizing both control and morphology in or-
der to improve propulsion. Through controller-morphology
evolution, the complex internal interactions between actua-
tion and material properties can be exploited to produce a
system that matches the needs of its environment.

In prior work [2], we investigated flexible caudal fins using
a fixed controller. In this study, we allow evolution to opti-
mize both the morphological characteristics of a caudal fin,
as well as the control patterns governing its motion. The pri-
mary contribution of this paper is a demonstration of how an
evolutionary algorithm can handle the complex interactions
among material properties, physical form, and control pat-
terns in an aquatic domain. This result is demonstrated by
comparing the performance of MNOs against pure sinusoid
waves in maximal velocity experiments. Additional details
of this study are available in a technical report [1].

2. METHODS
Figure 1 shows the physical device and the derived simu-

lated approximation. The only actuated component of both
the physical and simulated robots is the caudal fin. On
the prototype, a servo motor controls the angle between the
body and fin by rotating the caudal fin around the body-
fin pivot point. Likewise, the simulated fish can change the
angle of a hinge between the body and fin. The hinge has
minimum and maximum angles of ± 55 degrees, and a maxi-
mum absolute angular velocity of one revolution per second,
roughly half the angular velocity of a typical unloaded servo
motor.

To address the challenges associated with simulating flexi-
ble materials and an aquatic environment we relied on Open
Dynamics Engine (ODE) [5], an open source physics pack-
age, and a dynamic model. The dynamic model, developed
by Wang et al. [6], is based on Lighthill’s Elongated Body
Theory of Locomotion [3]. The model accounts for flexibil-
ity by segmenting the fin into multiple sections. The force
acting on each fin segment can be calculated independently,
and the resulting thrust force is calculated as the combina-
tion of all segment forces as well as an additional tip force
acting at the posterior of the fin.

All of our evolutionary experiments were performed us-
ing a variant of the conventional genetic algorithm (GA).
In general, every individual in the population encodes the
controller parameters as well as the caudal fin flexibility.
We start by randomly initializing the population, and then
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Figure 1: Overview of the simulated robotic fish. (a) The robotic fish prototype at the basis of our study and utilized in
model development; (b) the virtual robotic fish; and (c) the virtual flexible caudal fin composed of three rigid segments.

continue through a sequence of generations in which each
individual is evaluated and stochastically reproduced based
on fitness. All experiments included 200 individuals and 100
generations of evolution. The GA utilizes size 3 tournament
selection for recombination, crossover, and mutation.

3. RESULTS AND DISCUSSION
The primary goal of our experiments was to explore the

e↵ectiveness of evolution as it applies to optimizing robotic
fish propulsion. To determine the utility of our proposed
method, we performed a series of experiments in which we
compare MNOs to pure sinusoidal signals. In these experi-
ments, the target of evolution is to reach a maximal average
velocity. To ensure that initial MNO transients and starting
bias do not a↵ect the stable average velocity measurement,
which is our fitness metric, all evaluations began after a 5
second start-up period; the total evaluation period is 15 sec-
onds.

Figure 2 summarizes all of the experiments. To provide a
basis for our evolution experiments we first limited evolution
to the control parameters with a fixed morphology. In these
experiments, MNO and sinusoid controllers had similar per-
formance. Next, we allowed evolution to alter both control
and morphological parameters. In these experiments, the
average velocity was substantially higher than when only
control parameters were evolved. Additionally, in these ex-
periments we found that pure sinusoids outperformed the
MNO-based controllers.

This study demonstrates that evolutionary algorithms can
handle the complex interactions found among material prop-
erties, physical form, and control patterns. Our ultimate
goal is to utilize evolutionary computation to help design
robotic fish that are faster and more maneuverable than cur-
rent systems.
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Figure 2: Paths of the best evolved solutions.
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