Evolving Aquatic Robots

Anthony J. Clark, Jared M. Moore, and Philip K. McKinley

techniques

- Aquatic dynamics
- Passive components
- Flexible components
- Self-modeling uncertainty

motivations for small aquatic robots

major issues

- Speed and maneuverability
 - Limited actuation capability for small, inexpensive devices
- Accommodating aquatic environment
 - Highly dynamic conditions
 - Uncertainty in external conditions and robot orientation
- Overcoming hardware decay and physical damage
 - Controller designed/evolved for specific morphology
 - How can compensatory behaviors be generated dynamically if the a fin or flipper is damaged?

NSF-sponsored testbed

- Facilities
 - Configurable robots
 - 4,500 gallon test tank
 - flow tank
 - Multi-material 3D printer
 - Compute cluster

3D printer

general process

Create Simulation

- Develop models
- Validate model

Evolve solutions

- Evolve in simulation
- Evolve online

target applications

Industrial

- Water quality
- Ecological monitoring

Biological research

- Elicit schooling
- Act as predator

aquatic dynamics

- Lighthill's: Large-amplitude elongated-body theory of fish locomotion (1971)
- Validated on the physical device

passive components

Passive joints

- Evolved for flat terrain and water
 - fin dimensions
 - oscillating frequency

Evolved for both ground and aquatic environments

Evolved for both ground and aquatic environments

flexible components

- Paddles are flexible and sticky
- Evolution
 - arm length
 - foot radius
 - flexibility

flexible caudal fin

- Flexible caudal fin
 - spring coefficients
 - material properties
- Evolve with control
 - neural oscillators
 - resonant frequency for a given morphology

physical validation

3D maneuvers

- Increases complexity
 - no longer on the surface

- Station keeping
 - maintain position against laminar flow

3D maneuvers

- Fitness
 - transient phase
 - spherical gradient

3D maneuvers

self-modeling and uncertainty

- Physical damage can render a robot helpless
- Need to dynamically generate new behaviors to mitigate or overcome changes in actuation
- Approach based on Bongard-Lipson's Exploration-Estimation Algorithm (EEA)

Damaged robot

Best performer from original EEA

Best performer from extended EEA

future work

- Increased complexity
 - tasks
 - adaptive control

- Continue evolution online
 - refine simulated solutions
 - self-modeling to handle damage

conclusions

- Simulation is course-grain
 - good for prototyping techniques/concepts
 - i.e. flexibility, passive parts, algorithms etc.
 - gain insight into problem before fabrication

- Online evolution will be necessary
 - finer grain evolution

acknowledgements

- The SENS Lab
- The Smart Microsystems Laboratory
- The BEACON Center

National Science Foundation grants CNS-1059373, CNS-0915855, DBI-0939454, CCF-0820220, IIS-0916720, ECCS-1050236, ECCS-1029683, CNS-0751155.

THANK YOU

research projects

- Mathematical modeling
- Amphibious robot
- Crawler with flexible paddles
- Robotic fish
- Aquatic robot