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techniques

e Aquatic dynamics
* Passive components

* Flexible components
e Self-modeling uncertainty




motivations for small aquatic robots




major issues

* Speed and maneuverability
— Limited actuation capability for small, inexpensive devices

 Accommodating aquatic environment
— Highly dynamic conditions
— Uncertainty in external conditions and robot orientation

* Overcoming hardware decay and physical damage
— Controller designed/evolved for specific morphology

— How can compensatory behaviors be generated
dynamically if the a fin or flipper is damaged?



NSF-sponsored testbed

* Facilities
— Configurable robots
— 4,500 gallon test tank
— flow tank

— Multi-material 3D printer

— Compute cluster




3D printer




general process

Create Simulation Evolve solutions

* Develop models * Evolve in simulation
 Validate model  Evolve online




target applications

Industrial Biological research
 Water quality e Elicit schooling
* Ecological monitoring * Act as predator

Photograph by the State of Michigan



aquatic dynamics

* Lighthill’s: Large-amplitude
elongated-body theory of
fish locomotion (1971)

e Validated on the physical

device
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passive components

* Passive joints

 Evolved for flat terrain
and water

— fin dimensions

— oscillating frequency




Evolved for both ground and aquatic environments




Evolved for both ground and aquatic environments




flexible components

* Paddles are flexible and sticky

* Evolution
— arm length
— foot radius
— flexibility




flexible caudal fin

* Flexible caudal fin
— spring coefficients
— material properties

* Evolve with control

— neural oscillators

— resonant frequency for a
given morphology
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3D maneuvers

* Increases complexity
— no longer on the surface

e Station keeping

— maintain position
against laminar flow




3D maneuvers

* Fitness
— transient phase
— spherical gradient
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3D maneuvers




self-modeling and uncertainty

Physical damage can render
a robot helpless

Need to dynamically
generate new behaviors to
mitigate or overcome
changes in actuation

Approach based on
Bongard-Lipson’s
Exploration-Estimation
Algorithm (EEA)
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Damaged robot

Best performer from original EEA Best performer from extended EEA
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future work

* Increased complexity
— tasks
— adaptive control

e Continue evolution online
— refine simulated solutions
— self-modeling to handle damage



conclusions

* Simulation is course-grain

— good for prototyping techniques/concepts
* i.e. flexibility, passive parts, algorithms etc.

— gain insight into problem before fabrication

* Online evolution will be necessary

— finer grain evolution
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research projects

Mathematical modeling
Amphibious robot

Crawler with flexible paddles
Robotic fish

Aquatic robot



