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Abstract

Designing a robotic fish is a challenging endeavor due to the
non-linear dynamics of underwater environments. In this pa-
per, we present an evolutionary computation approach for de-
signing the caudal fin of a carangiform robotic fish. Evo-
lutionary experiments are performed in a simulated envi-
ronment utilizing a mathematical model to approximate the
hydrodynamic motion of a flexible caudal fin. With this
model, time-consuming computational fluid dynamic simu-
lations can be avoided while maintaining a physically realis-
tic simulation. Two approaches are employed to maximize
a robotic fish’s average velocity. First, a hill-climbing algo-
rithm is applied to find the optimal stiffness for a fixed shape
caudal fin. Next, both fin stiffness and shape are simultane-
ously optimized with a genetic algorithm. Additionally, sim-
ulated caudal fins are compared to physically validated fins,
which were fabricated with the aid of a 3D printer and tested
on a robotic fish prototype. Results show a correlation be-
tween evolved results, model predicted behavior, and phys-
ical robot performance with some disparity due to the diffi-
culty in accurately approximating real world performance in
a simulation environment. Despite the disparity, evolutionary
design is shown to be a viable process.

Introduction
Inspired by natural systems, roboticists have modeled
robotic fish with the expectation that they will be as effi-
cient and capable as biological fish. Yet, as is the case with
many biomimetic systems, robots are not as proficient as
their biological counterparts; the materials and electrome-
chanics that make up a robotic fish simply are not as effec-
tive as organic tissue. However, robotic fish do have sev-
eral advantages over other underwater vehicles types such
as propeller-driven robots. First, fewer moving components
are necessary, which provides additional space for sensors
and reduces power requirements. Additionally, a true-to-life
appearance may be less intrusive to the inhabitants of a nat-
ural ecosystem. Given these characteristics, robotic fish find
applications in scenarios ranging from ecological monitor-
ing to biological studies.

The primary obstacle to developing robotic fish can be at-
tributed to domain uncertainty. Aquatic environments are

highly non-linear, which makes the design process a chal-
lenging endeavor. For this reason, mathematical models of
the hydrodynamic interactions encountered in such environ-
ments can improve the design process by providing a means
to test design theories. Even with a perfect mathematical
model, however, the design process remains a challenge due
to the large number of parameters involved in producing re-
alistic motion. Every combination of different materials and
electromechanical constraints will produce different perfor-
mance and requires detailed knowledge of material prop-
erties. For example, to fabricate a flexible caudal fin it is
necessary to know the modulus of elasticity of the target
material. In view of this complexity, it is desirable to cre-
ate an automated design process that can handle the high-
dimensionality of the problem.

Evolutionary computation techniques (genetic algo-
rithms, neuroevolution, genetic programming, and so on) are
well suited to such high-dimensional problems. By broadly
sampling the solution space, evolutionary algorithms are
able to test for and blend the beneficial aspects of unique
solutions in order to create efficient mixtures. By integrat-
ing a mathematical model into the evaluation phase of an
evolutionary algorithm, the idiosyncrasies of an aquatic en-
vironment can be exploited to produce effective, even novel,
solutions. From such solutions, roboticists can then gain in-
sight into what constitutes a good robotic fish design.

In this paper, we propose an evolution-based methodol-
ogy for the design of a robotic fish caudal fin. Evolutionary
optimization occurs in a rigid-body dynamics engine that
incorporates a mathematical model of the hydrodynamics
associated with a caudal fin. Simulated solutions are first
compared to mathematical predictions; a hill-climber algo-
rithm optimizes the stiffness of a fixed shape fin, and the
fitness landscape is compared to one derived directly from
the model. Next, results are validated by physically realiz-
ing a set of fins and testing them on a robotic fish prototype.
Fins are fabricated and tested with the aid of a 3D printer
and an aquatic test environment. Finally, an evolutionary al-
gorithm is used to optimize the physical characteristics of
the caudal fin. Specifically, the stiffness and dimensions
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of a rectangular caudal fin are simultaneously evolved for a
given control pattern. The chief contribution of this work is
an evolutionary design method based on recently developed
dynamic models that can be adapted into a general robotics
engineering process.

Background and Related Work
Robotic fish have practical applications in the study of nat-
ural fish morphology and behavior as well as in ecological
monitoring. They can provide researchers with controllable
imitations to assess the behavior of real fish (Faria et al.,
2010), or they can be used in the study of natural evolution
and other biological hypotheses (Long et al., 2006, 2011).
Recent work, in which robotic fish interact with golden shin-
ers, has shown that a tethered robot with a movable cau-
dal fin can elicit schooling behavior from a natural fish in a
water-flow tank (Marras and Porfiri, 2012). When the tail
structure remained stationary, however, the live fish did not
respond with a schooling behavior, supporting the hypoth-
esis that a biomimetic robot can aid in fish behavioral re-
search. As demonstrated by that work, fish can interact with
a realistic robot as if it were a natural fish. With increasingly
sophisticated designs, new insight into fish behavior can be
gained that would be impossible by simply observing bio-
logical fish in the wild or a static lab environment. Aside
from biological studies, robotic fish have been proposed as
a platform to monitor environmental conditions (Tan et al.,
2006), including activities such as oil spill monitoring in
the Gulf of Mexico and surveying oxygen content of inland
lakes. As robots more closely resemble natural fish, it may
be possible to deploy them as mobile sensor platforms that
do not disturb local ecosystems.

Research into fin design and fabrication has focused pri-
marily on modeling fin structures found in nature. Each
type of swimming locomotion (for example, anguilliform
and carangiform) requires a mathematical model to accu-
rately describe the governing dynamics. A ribbon-like fin
on a robot with a series of actuators connected by a mal-
leable material has been shown to be capable of replicat-
ing the thrust of real fins (Epstein et al., 2006). Further
research (Hu et al., 2009; Mason and Burdick, 2000; Chen
et al., 2010; Tan et al., 2010) has yielded insight into carangi-
form fish locomotion, in which forward propulsion is pre-
dominantly generated by the caudal fin. Recently, a mathe-
matical model has been proposed to encompass the different
aspects of locomotion that apply to a flexible carangiform
caudal fin (Wang et al., 2011, 2012).

Morphological evolution has been the focus of an abun-
dance of studies beginning with Sims’s evolution of virtual
creatures (Sims, 1994). A major hurdle to any simulation-
developed solution is how well it transfers into a physical
robot. A so-called “reality-gap” arises when solutions that
appear to work well in a simulated environment face issues
in a physical environment that were either unforeseen or in-

correctly modeled (Brooks, 1992; Jakobi, 1998; Koos et al.,
2010). Approaches to address this problem include evolv-
ing the simulator in conjunction with a robot (Bongard and
Lipson, 2004) and directly rewarding solutions for perform-
ing similarly in reality and simulation (Koos et al., 2010). In
the latter approach, only solutions that have a high transfer-
ability (a low disparity between simulation and reality) are
deemed highly fit. Further narrowing of the gap is possi-
ble by developing accurate models for environmental condi-
tions. In (Gomez and Miikkulainen, 2003), for instance, the
authors demonstrated that a detailed simulator can be com-
bined with an evolutionary algorithm to produce controllers
for finless rockets, which operate in highly non-linear en-
vironments. Recently, the reality gap has expanded to in-
clude material properties and their response to specific en-
vironmental conditions. Since modeling such interactions at
the molecular level is presently intractable, our approach is
to integrate evolutionary computation with rigorous math-
ematical modeling of material properties. Whereas evolu-
tionary computation guides the overall process, engineering
is needed to model how constituent materials behave when
forces are applied to them, enabling accurate evaluation of
the robot in simulation.

Methodology
To create such an environment, we built our simulator on top
of a mathematical model and an open source rigid-body dy-
namics engine, the Open Dynamics Engine (ODE) (Smith,
2012). Additionally, to ensure that results are meaningful,
we validated our simulator against fins that were physically
tested on a robotic fish prototype.

Mathematical Model
Using rigid-body dynamics, natural caudal fin motion can
be approximated by dividing the fin into multiple discrete
segments connected by a spring and damping system (Wang
et al., 2012). Still, the fluidic motion of a fin during loco-
motion can be hard to model in simulation and equally as
hard to replicate on a physical robot. However, with the ad-
vent of 3D printers, we can rapidly test a variety of different
materials and discover which are most capable of approxi-
mating that motion. Lighthill’s Elongated Body Theory of
Locomotion (Lighthill, 1971) was proposed to describe the
movement patterns of a real fish as if the entire body were
flexible. In Lighthill’s approach, the movement at any point
on a body can be approximated using equations that result
in the thrust and movement of that point.

All of the fins in this study were rectangular; we are con-
sidering other shapes in our on going investigations. The
mathematical model we use to compute the forces produced
by rectangular fins is based on Lighthill’s theory. In this
model, a caudal fin is divided into equal-sized segments
and the hydrodynamic forces are evaluated independently
for each segment along with an additional force acting at the
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tip (Wang et al., 2012). The fin segments in the mathemat-
ical model are assumed to be connected through a series of
spring and dampers that result in a flexible fin structure, as
shown in Figure 1.

Figure 1: Visual representation of the mathematical model
describing the forces acting on the segments of a passive
flexible caudal fin.

In the figure, three segments are shown along with the
forces that apply to each individual segment. Accord-
ing to the mathematical model, each fin segment generates
two component forces, a resistive component and a propul-
sive component. Each segment experiences hydrodynamic
forces described by Equation 1:

�f(τ) =

(
fX(τ),
fY (τ)

)
= −m

d

dt
(v⊥n̂), (1)

where m denotes the mass per unit length, τ is the location
on the fin where the force acts, and n̂ and v⊥, respectively,
are the unit direction and velocity perpendicular to the fin.
The tip of the final segment experiences an additional force
described by Equation 2:

�FL =

(
FLX

FLY
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]

τ=L

, (2)

where τ=L represents the posterior end of the fin, and m̂ and
v‖, respectively, are the unit direction and velocity parallel to
the fin. These hydrodynamic forces can be calculated given
the X and Y of each fin segment over time.

At the base of the fin, which is attached to the body, a
motor drives the rhythmic motion in a sinusoidal pattern.
The parameters for this sinusoidal motion includes the am-
plitude, frequency, and bias. Along with a material’s dimen-
sions, the Young’s modulus of elasticity determines flexibil-
ity, which is captured in the parameters for the springs and
dampers. This relationship provides a means of transferring
simulated designs into real materials using known and in-
ferred properties of materials.

Simulation Environment
In view of the unique challenges associated with model-
ing the fluid dynamics of an aquatic environment, ODE

was used in conjunction with the above mathematical model
to approximate the hydrodynamic forces acting on a cau-
dal fin. This method avoids costly computational fluid dy-
namics calculations. The reduction in computation time is
particularly advantageous for evolutionary experiments in
which thousands of solutions must be simulated. Consis-
tent with surface-swimming robots, the mathematical model
constrains motion to a two-dimensional plane and assumes
neutral buoyancy.

The simulated robotic fish is modeled after a physical
robotic fish prototype, which was originally constructed to
test the performance of different fin dimensions and material
stiffnesses. A representation of the virtual model can be seen
in Figure 2, showing the main body and a three-segment
caudal fin. Fin flexibility was approximated with passive
hinges between fin segments governed by predefined spring
and damper constraints. This spring system allows the fin to
flex at different rates depending on spring and damping coef-
ficients. Rotational movement of the fin is achieved through
an actuated hinge connecting the body and first fin segment.
The body-fin joint oscillates at 0.9Hz in a 30 degree sym-
metrical range of motion.

Figure 2: Depiction of the virtual fish model with a three-
segment rigid-body caudal fin.

Physical Validation
To validate the proposed method, test fins were fabricated
using an Objet Connex350 multi-material 3D printer. Fins
were printed with a combination of different physical ma-
terials to yield flexibilities that resemble the motion ob-
served in simulation. As demonstrated in (Richter and Lip-
son, 2011), a 3D printer can considerably improve the effi-
ciency of an experimental design process. Several iterations
of printed parts can be fabricated in a matter of hours. The
printed fins were attached to a robotic fish prototype and
evaluated in an aquatic test environment. An image of the
physical robot with attached fin is shown in Figure 3.

Time trials were used to determine the average velocity
achieved by each fin, while visual observations helped de-
termine the flexibility of fins during movement. In these
physical trials, the height, length, and thickness of each fin
were fixed at 2.5, 8.0, and 0.1 cm, respectively. The Young’s
modulus of elasticity was provided by the manufacturer data
sheets. For each of the printed fins, the robot was placed in
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Figure 3: The robotic fish prototype. Movement of the 3D-
printed rectangular caudal fin is accomplished using a servo
motor with a set range of motion and period of oscillation.

a test tank and allowed to reach a stable swimming speed
before the average velocity was computed. The stiffness of
each fin can be calculated with Equation 3:

Ks =
Edh3

12l
, (3)

where Ks represents a material’s torsion spring constant, d
and l denote the height and length of the fin, respectively,
E represents Young’s modulus of elasticity for the material
itself, and h is the thickness of a fin. These values can be di-
rectly used in simulation during optimization trials and pro-
vide a means of effectively comparing simulation and phys-
ical results.

Experiments and Results
The methodology proposed in this paper can be divided into
three separate parts: mathematical model validation, physi-
cal validation, and evolutionary optimization. We first com-
pared our simulation results with data derived directly from
the mathematical model. Next, we performed a similar com-
parison between simulation and data gathered from physical
experiments. Once our simulation environment was vali-
dated, we applied evolutionary computation techniques to
a flexible fin design process.

Mathematical Model and Simulation
Prior to physical validation and evolutionary experiments,
it was important to ensure that our simulation environment
matched the mathematical model. Any disparity between
simulation and model could signify an error that would make
evolutionary results meaningless. With this in mind, two
algorithms were employed to optimize the stiffness of the
simulated caudal fin. In both experiments, only the Young’s
modulus was allowed to change.

The first algorithm was a basic hill-climber. For this ex-
periment, 100 independent runs were conducted. Every run

was initialized with a different seed and a Young’s modulus
value chosen uniformly at random from the range [0, 5 GPa].
Every Young’s modulus value was evaluated by translating
it, with Equation 3, to the spring coefficients that govern
caudal fin flexibility. Once the simulated robotic fish was
configured, it was allowed to swim for 10 seconds. The
fitness of each Young’s modulus was computed as the av-
erage velocity achieved over this evaluation period. Each
hill-climber run began with the evaluation of the randomly-
chosen initial Young’s modulus value. Subsequent values
were generated by displacing the current value by a ran-
dom number chosen uniformly from a Gaussian distribu-
tion with a mean of 0 and a variance of 0.1. The result-
ing Young’s modulus was then evaluated, and the better per-
forming (higher average velocity) value was kept and used
to generate the next test case. In each run, this process was
repeated until 100 candidate values had been evaluated. Ev-
ery hill-climber instance converged to an optimum Young’s
modulus of roughly 1.9 GPa, and given enough time it is
suspected that all final values would converge to a single op-
timal value.

The second algorithm deployed was a conventional ge-
netic algorithm. The primary use of this experiment was to
confirm that the simulation environment could be used ef-
fectively with an evolutionary algorithm. This experiment
comprised 30 independent runs. Each run was seeded with
a different value and a population of 125 randomly gener-
ated individuals. Every individual was evaluated in a pro-
cess identical to that used in the hill-climber experiment.
The populations were evolved for 100 generations with mu-
tation as the only evolutionary operator. After population
initialization, subsequent generations were created by using
a three-individual tournament selection process and a Gaus-
sian mutation operator (identical to the hill-climber displace-
ment operator). Additionally, to ensure that the highest fit-
ness individuals were not lost, the most fit 10% of the popu-
lation was considered elite and copied to the next generation
without modification.

Results from the evolutionary experiment closely resem-
bled those of the hill-climber, with the most fit individuals,
in every run, having a Young’s modulus near 1.9 GPa. Data
generated from the mathematical model can be seen in Fig-
ure 4, and results from the two simulation experiments are
shown Figure 5. The experimental results show that both the
hill climber and evolutionary approaches yield near identi-
cal solutions (i.e. a Young’s modulus of 1.9 GPa). This is an
expected result, as both experiments rely on the same simu-
lation environment.

Comparing Figures 4 and 5, a disparity between model
and simulation results is apparent. Specifically, the model
predicts a maximum velocity of roughly 5.1 cm/s at a
Young’s modulus near 0.9 GPa, while simulation results
achieve a maximum average velocity closer to 1.4 cm/s at
a Young’s modulus near 1.9 GPa. Despite the differences,
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Figure 4: Predicted velocities for different Young’s Modulus
values from the mathematical model calculations. Note that
this assumes that the body is anchored.

both figures show the same trend, in which intermediate val-
ues of the Young’s modulus produce the fastest robotic fish.
Additionally, the disparity between figures can be explained
by closer examination of the model and simulator. The most
marked differences are that the mathematical model assumes
the robotic fish body does not affect caudal fin motion, and
the caudal fin segments are without mass. Neither of these
assumptions is carried over into the simulation environment,
and both of these factors would cause simulated robotic fish
to appear slower than model data would predict. In the
next section, physical results will be examined to determine
whether the simulation results are physically meaningful.

Figure 5: Results of the hill climber and evolutionary runs
for determining the optimum stiffness of a fixed dimension
fin. Both methods converged on a common stiffness yielding
the highest average velocity. Darker shades indicate clus-
tered results from different trials.

Physical Validation
To validate observations taken from simulation, we fabri-
cated caudal fins with a 3D printer and tested them on a
robotic fish prototype in an aquatic environment. Six unique
fins were printed, each with a different Young’s modulus.
The materials ranged from extremely flexible (TangoBlack-
Plus) to nearly inflexible (VeroWhite). Each printed fin was
attached to the robot and tested in the aquatic environment;
the average velocity was measured over 5 separate trials.
The results of this experiment are plotted in Figure 6. Con-
sistent with the predicted performance, the plot shows that
an intermediate flexibility produces the highest average ve-
locity. However, direct comparisons between simulation and
reality are not possible due to current limitations of the 3D
printed materials. Specifically, the materials do not have an
exact Young’s modulus value, but rather the manufacturer
provides a range of possible values for each material (ma-
terials properties are not guaranteed to remain constant be-
tween print jobs). For example, VeroWhite has a modulus in
the range of 2-3 GPa, while the other materials have lower-
value ranges.

In view of the fact that the mathematical model, simu-
lation, and physical data are all for fins of identical shape,
some comparisons can yet be made. First, the velocity val-
ues of the physical robotic fish are closer to mathematical
model predictions than they are to simulation results. The
data collected from these experiments will be vital in im-
proving the model and simulation environment. In addition,
the optimal Young’s modulus for all results is in the range
of 1-2 GPa. The reason for the disparity in the model pre-
dictions was discussed in the previous section, however it is
also apparent that simulation results do not perfectly match
reality. The maximum velocity of 3.7 cm/s in the physical
experiments is nearly twice the maximum simulation veloc-
ity. As with the model, certain approximations were made in
the simulation environment. For instance, distributed forces
were treated as single point forces, and the flexible fin was
split into just three segments. By decreasing the size of each
segment and increasing the number of segments, the motion
and discretization of forces will be more realistic and likely
increase the accuracy of the simulation.

As a secondary measure of performance between the sim-
ulation and physical experiments, we observed the flexibil-
ity of fins as they oscillated. Figure 7 presents a side by side
comparison between a simulated flexible caudal fin and the
3D printed version on the robot. Both series of images dis-
play the flexibility of a fin as it oscillates. This visual obser-
vation helps to reinforce the viability of simulating flexible
caudal fins.

Evolution of Fin Morphology
Upon completion of comparisons between mathematical
model and simulation results, optimization was expanded
into a full evolutionary computation run in which the

Evolutionary Design and Experimental Validation of a Flexible Caudal Fin for Robotic Fish

329 Artificial Life 13



Figure 6: Observed average velocity for different materials
used in printed fins. Stiffness increases from left to right in
the plot.

Young’s modulus and dimensions of a rectangular caudal
fin were simultaneously evolved. Fin shape was allowed
to evolve under the constraint that the overall area of the
length-height face and the thickness of the fin remain fixed.
This created a state in which the height of the fin was depen-
dent upon the length of the fin. As such, the two parame-
ters to evolve were the Young’s modulus and length of a fin.
Practical considerations on the overall dimensions of the fin
were also taken into account as a maximum length of 14
cm (length of the robotic fish body) and a minimum length
of 4 cm (half the length of previous experiments) were im-
posed upon evolution. Values outside of this range could
suffer from transferability issues given electromechanical
constraints such as the maximum torque exerted by a servo.
Again, an individual run consisted of 125 individuals evolv-
ing for 100 generations. Similar to the previous evolution-
ary experiments, tournament selection, of size 3, and elitism
were used to select the parents for the next generation. Un-
like earlier experiments, however, single point crossover was
added so that individuals could be generated as a combina-
tion of two selected parents. In total, 30 replicate runs were
conducted to find the relationship between fin stiffness, fin
shape, and average velocity.

From the evolutionary runs, a set of optimum values was
found for both the Young’s modulus and dimensions of the
fin. The Young’s modulus found in the trial was 7.55 GPa,
and the caudal fin length and height were 14 and 1.43 cm
respectively. Hence, the fittest solutions reached the max-
imum fin length allowed at a cost of fin width. This re-
sult was expected, as a longer fin will be able to generate
larger propulsive forces, while width has a lesser effect on
this force. This characteristic can be seen by close examina-
tion of Equation 2, where the length of a fin is a linear factor,

Figure 7: Visual performance of the evolved flexible fin in
simulation (left) versus a fabricated flexible fin tested on the
prototype robot (right).
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and longer fins will have a higher angular velocity near the
posterior of the fin.

While the Young’s modulus found in the trial is larger than
that found in prior experiments, the resulting material stiff-
ness is similar: 1.35 × 10−3 N m for the original experi-
ments, and 1.73 × 10−3 N m for the full evolutionary ex-
periments. This result suggests that a single stiffness value
may be adequate for any rectangular caudal fin dimensions.
The reason these stiffness values are similar is that as length
increased, the Young’s modulus also increased to maintain
a fairly constant value. Figure 8 presents the three dimen-
sional fitness landscape found in the evolutionary run. As
shown, a peak is located at a modulus of elasticity of 7.55
GPa and a length of 14 cm. This combination yielded an
average velocity of 2.2 cm/s. This landscape would suggest
that for each set of dimensions there is a specific Young’s
modulus that correlates to the overall best performance for a
fin.

Figure 8: Visualization of the fitness landscape for differ-
ent shape and stiffness fins. Note that height is dependent
upon length in determining shape, therefore, height has been
omitted from the data. As the length of the fin increases, the
Young’s Modulus increases as well to maintain similar stiff-
ness fins for different lengths.

The complex dynamics of an underwater environment
make designing efficient robotic fish a challenging engineer-
ing endeavor. Considering the difficulty, it is desirable to
create an automated design process by which robotic fish can
be optimized for a specific task. Making use of the hydro-
dynamic model for a robotic fish caudal fin, we have shown
that an in silico process can be used to optimize the Young’s
modulus of a flexible fin. In simulation, we observed that the
optimum Young’s modulus is dependent on both the caudal
fin motion and dimensions. Specifically, for any combina-
tion of fin frequency, amplitude, height, width and length
there will be a unique Young’s modulus optimum. However,

when the Young’s modulus was simultaneously evolved with
fin shape, we found that the overall resulting fin stiffness ex-
hibited comparable characteristics. Generally, higher values
of length and Young’s modulus produced faster swimmers.

Conclusion
In this paper, we demonstrated an evolutionary design
method for robotic fish caudal fins. We first developed a
simulation environment in which unique fin configurations
could be tested. The simulation environment was created
by combining a rigid-body dynamics engine with a mathe-
matical model of a flexible caudal fin’s hydrodynamics. To
test the simulation environment, we first implemented a hill-
climber algorithm. Given a fixed fin shape and control pat-
tern, the hill-climber algorithm mapped-out the fitness land-
scape for fin stiffness vs. velocity. These results were com-
pared to data generated directly from the model, which con-
firmed that the simulation and the mathematical model have
comparable dynamics, although the absolute values differ.

Hill-climber results were further validated through com-
parisons with physical experiments. With the aid of a 3D
printer, an aquatic test environment, and a robotic fish pro-
totype, we conducted a series of velocity tests for several
3D-printed fins. All fins were identical in shape, but had
stiffness values (i.e. Young’s modulus) ranging from very
low to nearly inflexible. Plots of stiffness vs. velocity for the
mathematical model, simulation, and physical experiments
all showed a similar trend in which average velocity was
maximal for intermediate caudal fin flexibility. This result
demonstrates that it is possible for a simulation environment
to capture key aspects of the dynamics of flexible materials.

To simultaneously optimize several fin parameters, we
progressed from the hill-climber experiments to an evolu-
tionary algorithm. A conventional genetic algorithm was
used to evolve both the Young’s modulus and shape of a fin.
From this series of experiments, we found that the most fit
fins generally evolved to be as long as possible while main-
taining a fairly constant stiffness value. This result is con-
sistent with the fact that longer fins generally produce larger
propulsive forces. Additionally, our results showed that for
each fin shape and control pattern there is an associated op-
timal Young’s modulus.

The simulated and physical results discussed in this paper
demonstrate the effectiveness of an evolutionary based ap-
proach given the high dimensionality of the solution space.
To continue this research, our future work will focus on im-
proving the design process. First, basic assumptions cen-
tral to the hydrodynamic model will be removed. For in-
stance, the body will no longer be considered anchored and
the fins no longer without mass. Our rigid-body simulator
will also be improved by converting our single-point forces
to more accurate distributed forces. These improvements
alone are likely to increase the accuracy of the simulation
and in turn facilitate the transfer of simulated solutions to
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reality. Next, we will gradually relax the constraints placed
on evolution. In biological fish, caudal fins predominantly
increase in height towards the posterior, and accordingly
evolution should be allowed to evolve non-rectangular fins.
Additionally, due to fin motion being a key component of
optimization, it is likely that evolution will be able to find
more appropriate control patterns. Ultimately, the goal is to
simultaneously evolve as many aspects of the robotic fish
as possible in a process that can be generalized to any non-
linear robotic environment.
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