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Abstract—Neural networks (NNs) are becoming an increas-
ingly important part of mobile robot control systems. Com-
pared with traditional methods, NNs (and other data-driven
techniques) produce comparable—if not better—results while
requiring less engineering knowhow. Training NNs, however, still
requires exploration of a significant number of architectural,
optimization, and evaluation options. In this study, we build
a simulation environment, generate three image datasets using
distinct techniques, train 652 models (including replicates) using
a variety of architectures and paradigms (e.g., classification,
regression, etc.), and evaluate the navigation ability of the model
in simulation. Our goal is to explore a large number of model
possibilities so that we can select the most promising for future
study with a physical device. Training datasets leading to the
best performing models were those that included a significant
amount of noise from seemingly inefficient actions. The most
promising models explicitly incorporated “memory” wherein
previous actions were included as an input in the next step.
Such models performed as good or better than conventional
convolutional NNs, recurrent NNs, and custom architectures
including two camera frames. Although trained models perform
well in an environment matching the distribution of the training
dataset, they fail when the simulation environment is altered
in a seemingly insignificant manner. In robotics research it
is often taken for granted that a model with good validation
characteristics will perform well on the underlying task, but
the results presented here show that there can often be a loose
relationship between validation metrics and performance.

Index Terms—robotics, neural networks, simulation, computer
vision, navigation

I. INTRODUCTION

With increasing frequency, neural networks (NNs) are being
incorporated into the control software of mobile robots and
providing state of the art results. Primarily, they are used
to process camera input to improve navigation, build a map,
or identify points of interest [1]. We are interested in how
to best incorporate NNs into the decision-making processes
of mobile robots. Specifically, we are concerned with how a
robot can learn to make effective decisions with respect to
its path and goals (e.g., continue on a walking path or cut
across a grass covered field) while taking into account energy
consumption and trade-offs in terrain difficulty. A NN can
be used, for example, to identify how easy the terrain ahead

is to navigate [2]. Before addressing this problem, however,
we first need to select a NN paradigm (i.e., single image
classification, recurrent model classification, regression, multi-
image classification, reinforcement learning) and investigate
training possibilities (i.e., different training dataset generation
techniques and whether pre-training should be used). In this
study, we explore the space of possible models by developing a
simulation environment and examining a variety of commonly
deployed methods. Our motivation is to discover general trends
in NN variants so that we can choose an appropriate option
to use on our physical device.

Though NNs are conceptually simple—they can learn a
function that maps input(s) to output(s)—it is not always
obvious how to produce an effective model. One must prepare
a training dataset, decide how to arrange or process the input,
and then select from among the numerous architectures and
modern learning techniques. Although many existing articles
compare architectures, our work extends beyond architectures
alone and presents a holistic view including different data gen-
eration techniques, various methods for constructing network
inputs, comparisons with sequence models, and metrics for
evaluation.

We systematically explore different possibilities and provide
recommendations for using a NN as a decision making com-
ponent for autonomous navigation. Specifically, we compare
(1) three methods for creating synthetic data, (2) the perfor-
mance of 43 model types, (3) pretrained and non-pretrained
models, and (4) the difference between validation accuracy
and behavior. We operate under the assumptions that data and
model design are more important than hyperparameter tuning,
and that our results will carry over when we continue with
our future work, which involves crossing the “reality gap” [3].
Tuning hyperparameters [4] will lead to improved results, but
such a process is likely more sensitive to the exact composition
of the training dataset and may not give insight into which
model types are best suited to our problem. In this study, we
instead focus on finding general trends with regards to datasets,
architectures, and model paradigms, and not on finding the best
possible model via hyperparameter tuning.



We built a simulation environment that enables us to effec-
tively generate image datasets and train a variety of different
model types. We examine the relationship between validation
loss and a model’s in situ performance in simulation. We
then take our evaluation a step further by looking at resulting
behaviors when the simulation environment is differently tex-
tured, which should represent a different distribution compared
to the training dataset—similar to how a real-world dataset
will be different than the training dataset. Additionally, we
compare training from scratch and that of using transfer
learning via pretrained models and fine tuning. Due to modern
deep learning techniques, training from scratch may achieve
comparable results to transfer learning even when training for
only tens of epochs.

Our results indicate that synthetic datasets should be gen-
erated using techniques that imitate human-like behavior but
with added perturbations. Although it is intuitive to remove
inefficient actions from the dataset, doing so makes it difficult
for the model to learn how to get back on course if it deviates
from the ideal path. Additionally, the best performing models
were simple classification networks and network architectures
that included an explicit memory where the input to the
model combined the current camera frame and the previous
output action of the model. Trained models perform very well
in an environment matching the distribution of the training
dataset. They fail, however, when the simulation environment
is updated with new textures even when they are similar in
pattern to the originals. The main limitation of this work is
that it relies exclusively on synthetic datasets, and the primary
contribution is our wide exploration and comparison of NN
models applied to a navigation task.

II. RELATED WORK

NNs have gained traction in a variety of fields, and robotics
is no exception. The high-dimensional state spaces of real-
istic, unstructured environments pose problems to traditional
methods of control theory which often require near perfect
knowledge of the environment and tend to experience scaling
difficulty [1].

Though modern deep learning approaches provide clear
benefits to robotics, NNs commonly experience issues with
small datasets, slow convergence, and overfitting. In order to
address these obstacles to learning, deep learning engineers are
tasked with making key decisions in the design and methods
they choose to utilize in their robotics pipelines. For this
reason, we empirically compare a variety of NN architectures
whose differences directly affect the aforementioned factors.

A. Visual Navigation

Most commonly, NNs applied to navigation in robotics are
strictly vision-based systems due to the various limitations
and problems that arise when working with other sensors. In
particular, many mobile robots are limited in their carrying and
battery capacities due to safety and hardware constraints [5].
Though cameras are limited in providing depth information,
other sensors are often useless in certain domains, such as in

the presence of shiny or translucent objects. Cameras tend to
be cheaper, lighter, and as information-rich (if not more) as
alternatives [6], which makes them a natural choice for many
applications.

There are a variety of ways to pose the task of navigation for
a robot, including methods to devise subgoals that encourage
the attainment of the overarching goal. For instance, Richter
and Roy [6] designed a system to determine the probability
of a future collision given an image and some choice of
action, and to recognize novel images (those disparate from the
training set) so that a prior control policy could be utilized in
unfamiliar circumstances. Similarly, Palossi et al. [7] utilize
a system that predicts the steering angle and probability of
collision for the robot.

Another approach to navigation and obstacle avoidance
demonstrated by Kim et al [8] was to train a system that could
predict the optimal linear and angular velocities of the robot’s
wheels given an input image. Both Bansal et al. [9] and Anjian
et al. [10] take hybrid approaches that initially utilize NNs to
predict waypoints along the proposed path to a goal, and then
implements methods derived from classical feedback control
in order to generate smooth trajectories through the waypoints.
In our experiments, we compare several architectures which all
output discrete directions for each input image—-rotate left,
move forward, or rotate right.

B. Neural Network Architectures and Methods

Most articles comparing NN architectures tend to do so
by computing metrics on benchmark training datasets. Our
work focuses on convolutional NNs (CNNs) since they are
the most successful in the domain of image processing. For
example, Luo et al. [11] compared ResNet50, InceptionV3,
Densenet121, SqueezeNet, MobileNetV2, and MnasNet ar-
chitectures in terms of accuracy and complexity with the
AloTBench framework. Similarly, Bianco et al. [12] use the
ImageNet-1k challenge dataset to compare 40 architectures
(including VGG, SqueezeNet, ResNet, Inception, DenseNet,
ResNeXt, SE-ResNet, and SE-ResNeXt) in terms of accuracy,
complexity, memory usage, and inference time. In contrast to
this work, we generate three custom datasets and compare the
performance of network architectures in terms of their ability
to navigate the simulation environment.

In addition to the standard CNN architectures discussed
above, we also note that recurrent NNs (RNNs), deep rein-
forcement learning (DRL), and regression models are often
used for image processing and robot navigation. One type of
RNN that works well on data with spatial locality (e.g., image
data) is a Convolutional LSTM (ConvLSTM), as demonstrated
by Shi et al. [13] in their application of ConvLSTM for
forecast precipitation. As discussed by Zeng et al. [14], DRL
methods have recently become a research hotspot for visual
navigation. For a more complete comparison, we include
ConvLSTM, DRL, and regression models in this study.



C. Simulation and Data Synthesis

Another important component of NN-based navigation is
generating or synthesizing a dataset. Previous approaches to
data generation have formulated ideal data generation policies
as those which either minimize the distance between the
distributions of the simulated and the real data, or maximize
the accuracy on the validation task [15]. Richter and Roy [6]
develop a SLAM system to generate a geometric map and
traverse the environment, acquiring robot configurations within
the map along with a corresponding image for each config-
uration; for each image-configuration pair, many randomly
selected actions are examined for safety. In contrast, Kim et
al. [8] employed a more laborious approach to data generation,
in which humans manually controlled a robot using a joystick
while collecting images with the linear and angular velocity
of the robot taken as the corresponding label for each image.
We create a similar dataset in simulation (our “handmade”
dataset—discussed in the next section) and compare it with
other approaches. In the learning and optimal control hybrid
approaches demonstrated in [9], [16], an obstacle map and
goal area is used along with model predictive control (MPC) in
order to obtain the optimal waypoint for the robot to navigate
towards, which is then used as the ground-truth label for the
corresponding tuple containing an image, the linear speed, and
the angular speed of the robot.

In prior work, we used ROS and Gazebo [17] to train a
model responsible for choosing paths over rough terrain [2].
Another recent tool for data collection is CARLA [18], which
uses the Unreal Engine (a video game engine) for rendering a
virtual environment. One downside shared by these approaches
is amount of time needed to collect data. In this study, we
build a fast simulator to test one kind of data synthesis
mechanism for imitation learning (creating our “handmade”
dataset), similar to the approach in [8], as well as two
automated methods (creating our “uniform” and “wandering”
datasets) more comparable with the approaches in [6], [9],
[16], in which simulation environment information is used
to compute intermediary values that determine labels for the
training data. Collecting images using our new simulator is
roughly 200 times faster than our work with Gazebo—it
takes only around 15 minutes to generate 100 000 images (we
discuss simulation details in the following section), and the
process can be parallelized to further improve speed.

For any particular use case, it is a priori unclear which of
the three components (model architecture, training paradigm,
or data generation) can be thought of as the most important
factors in the success of the system.

III. METHODS

Here we discuss the simulation environment, architectures,
training and evaluation methods.

A. Simulation Environment and Data Collection

One goal of this work is to compare different methods for
generating synthetic data. We built a simulation environment
comprising a map generator and a raycasting renderer. The

map generator uses the growing tree algorithm [19] to generate
maze-like corridors (i.e., no open spaces) with beginning and
end positions (see Fig. 1a). Our renderer takes a generate
corridor map and produces a virtual environment (see Figs. 1b
and 1c) in which an agent can move around and save images.
Generating a single frame and saving it to a PNG file takes
roughly 10 ms on our server (Intel Xeon E5 CPU; 256
GB RAM). Simulation environments have customizable map
sizes, start and goal positions, camera fields of view, cam-
era heights, camera pitches, output image sizes, and surface
textures. Code for the simulator and NNs can be found here:
https://github.com/anthonyjclark/raycasting-simulation.

As we are interested in image processing and not in mapping
or exploration, we label walls with the correct turn in the
form of an arrow. The agent can always discern the correct
turn by processing the camera frames. For example, the arrow
at the end of the corridor in Fig. 1b indicates that an agent
should turn left when it reaches the upcoming turn. Therefore,
navigating the map is done by processing camera frames and
acting accordingly.

We generated 20 training maps, and from these maps we
created three datasets using our simulator:

1) handmade (92 324 images): we created this dataset
by manually navigating each training map three times
and capturing an image after each action (i.e., moving
forward or rotating left or right);

2) uniform (100 000 images): we created this dataset by
positioning the camera uniformly at random along the
correct path (shown in green in Fig. 1a), perturbing both
the side-to-side position and heading in the corridor, and
then automatically computing a “correct” target angle
and action; and

3) wandering (113 702 images): we created this final
dataset by automatically navigating the map from be-
ginning to end; at each step we compute the “correct”
target angle and action, and then randomly perturb the
position and heading prior to taking the next step.

For the two automatically generated datasets (uniform and
wandering), we compute an exact angle that the agent should
take to reach the next turn at each step. For example, if
the agent should move forward down a corridor, then the
computed angle is 0°, if the agent is facing directly toward a
turn arrow while occupying a turning cell, then the computed
angle is ± 90°, and if the agent is approaching a left turn but
is currently facing right of center, then the computed angle
will be greater than 90°. The computed angle is used to label
each image in these two datasets, which enables us to create
regression based models in addition to classification models.
Specifically, a network can predict the correct angle of a turn
rather than just selecting a discrete action such as left, forward,
or right. For the uniform dataset we highlight that, unlike for
the others, there is no connection between any two images
captured sequentially. Thus, we cannot use the uniform dataset
when we are training a sequential model such as an RNN.



(a) Map with Directions

(b) Rendered Frame (Default) (c) Rendered Frame (Alternate)

Fig. 1. (a) A randomly generated map; colors indicate the agent’s position
and direction (red), walls (dark), open corridors (yellow), the correct path
(green), and walls textured with turning arrows (blue). (b) A rendered frame
as seen from the perspective of the agent. (c) The same frame with an alternate
texture used during evaluation.

B. Network Architectures

We trained models using seven paradigms: (1) standard
CNN classification, (2) stacked input CNN classification, (3)
paneled input CNN classification, (4) hybrid image+command
classification, (5) RNN classification, (6) DRL classification,
and (7) CNN regression, For training models, we use the fastai
library [20]. Results from each model paradigm are used to
inform subsequent models. For example, we use our results
from CNN classification to narrow down the number of models
explored when training hybrid models.

For our initial exploration of CNN architectures, we
compared the 24 networks found in Table I, including
ResNets/X-ResNets/X-SE-ResNets/X-ResNeXts/X-SE-
ResNeXts [20], [21], Squeezenets [22], DenseNets [23],
VGGs [24], and AlexNet [25]. In the table, model names
ending with an “a,” “b,” or “c” indicate slightly modified
variants of the model as specified in the fastai documentation,
and any high performance models are shown in bold, where

high performance refers to a model’s ability to navigate on
average 90% through the validation mazes before getting
turned around and being unable to find the end goal. We
chose to bold all such models in the table as it draws attention
to performance differences among columns, and because we
are not able to display standard deviations (only averages)
for replicates. All classification networks include three output
corresponding to the agent actions left, forward, and right.

A common failing of classifiers used in navigation is that
they are susceptible to becoming stuck in a loop—particularly
when using a deterministic simulation. For example, a model
might direct an agent to turn right and then turn left (or vice
versa), which results in the agent returning to its previous
state and then looping through the same sequence of states.
This happens because they do not maintain a memory of past
inputs or actions. One method for preventing this is to add
a supervisor that disallows such action sequences; another is
to use a model that directly maintains some form of memory.
We employ both methods here. Specifically, we create custom
models that take as input the previous action or input (stacked,
paneled, and hybrid models) and an RNN.

Stacked and paneled models are given as input two se-
quential camera frames combined into single tensors of shape
height×width×6 (two RGB images stacked by channel) and
2height×width×3 (two RGB images paneled vertically), re-
spectively. Effectively, by processing two consecutive camera
frames at a time, these models should prevent the agent from
returning to a previous state and getting stuck in a loop.

Similarly, hybrid models take as input the current image
frame and the previous command as a single real-value number
(0, 1, and 2 representing left, forward, and right, respectively).
The command value is concatenated with the output of the
convolutional layers of the model. This is a common method
for providing the model with a simple one state memory [26].

The final models include an RNN, two DRL, and four
regression models. RNNs maintain an internal memory, unlike
stacked, paneled, and hybrid models that required a manually
created memory in the form of a different input. Here we
are using a ConvLSTM [13], which is specifically created
to operate on image inputs. Similar to the work by Justesen
et al. [27], we trained models using A2C and PP0 in our
procedurally generated environments. Our implementations are
from the Stable Baselines3 library [28]. Finally, regression
models are identical to the simple classifiers except that these
models output an angle in the range ± 180°, which is then
interpreted as a discrete action by the simulation environment.

C. Training and Evaluation

All classification models are trained separately on each
of the three datasets; both with and without pretraining;
using 8 epochs, 5% of the dataset for validation, and default
hyperparameters as specified by fastai [20]; and with four
replicate models for each configuration. Following the work
completed by Müller and Koltun [26], we also explored
different loss functions, but these did not result in a change
in performance. In total, we train 576 standard classification



models (24 architectures × 3 datasets × 2 pretraining options
× 4 replicates); 16 each of the stacked, paneled, and hybrid
models (4 architectures × 4 replicates); 4 RNN models; 8 DRL
models (2 methods × 4 replicates); and 16 regression models
(4 architectures × 4 replicates). All models are trained using
a server with 4 NVIDIA Tesla V100 GPUs, each with 32 GB
video memory.

Each of these models were evaluated on 20 validation maps,
which were not seen during training. A simulation supervisor
terminates model evaluation on a single map if the agent gets
turned around or stuck in place. Finally, the best performing
models were evaluated on 4 alternate validation maps in which
the wall textures were altered (see Fig. 1c).

IV. EXPERIMENTS AND DISCUSSION

A. CNN Classification

We start by comparing the performances of 24 classification
models (each with and without pretraining) on our three syn-
thetic datasets; Table I shows these results. The table provides
the number of parameters (#, in megabytes), the average
time to execute one epoch (T, in minutes and seconds), the
validation accuracy (Valid, as a percentage), and simulation
performance (Perf, as an average percentage of the map that
was navigated from beginning to end).

Unexpectedly, the handmade dataset leads to drastically
poorer performing models (as indicated by values in the Perf
columns). Our process for creating this dataset is typical of
many imitation learning experiments, but the dataset does not
include enough off-path examples to enable a model to learn
how to get back on course when it travels off what a human
would consider the “ideal” path. The uniform and wandering
datasets include examples in which the agent is facing off
target or is positioned near the walls—such examples were
missing from the handmade dataset.

Models are trained to a high validation accuracy (nearly all
above 90%) for all three datasets. However, there is virtually
no correlation between accuracy and performance when the
table is taken as a whole. The uniform dataset is relatively
easy to learn compared to the wandering dataset (signified by
the respective validation accuracies), but this does not lead to
better performance. In fact, pretrained models are overfit to
the uniform dataset (higher validation accuracy is correlated
with lower performance), but not to the wandering dataset.
Additionally, while pretrained models are better on average for
the uniform dataset, scratch models (those without pretraining)
are better for wandering.

Based on these results, we select the wandering dataset
and the following pretrained architectures for further investiga-
tion: XResNeXt18, XResNeXt50, AlexNet, DenseNet121. The
XResNeXt models were chosen for their high performance
and so that we can explore the differences in model depth
when models have similar employed techniques. AlexNet and
DenseNet121 were chosen so that we can verify if the relative
strengths of these networks remain the same when we change
the input or output formats. Specifically, AlexNet has fairly

average performance across the datasets, and DenseNet121
performs poorly.

Analyzing model performance on each map suggests that
some maps are quite easy to navigate (nearly every model
reaches the end goal), whereas other maps are troublesome
for a large number of models. Examining maps more closely
shows that a rapid succession of turns is the main cause of
difficulty. Models were found to frequently get turned around
in the same locations of the more difficult maps. Though
some maps require more steps to navigate (as indicated by the
number of steps required by a human), this does not always
lead to poorer model performance. For example, one of the
shortest maps was the most difficult and one of the longest
maps was navigated by the majority of models.

B. Stacked and Paneled Input
As described in Section III, standard classifiers can become

stuck in a “loop.” One method for enabling a model to auto-
matically handle this problem is to provide it with information
about its past state. Here, we do so by passing stacked and
paneled images to the CNN classifiers. Table II shows the
performance of these models.

Despite having the same input available as the standard
classification models, stacked and paneled models trained
on the wandering dataset lead to mediocre results. For our
simulation environment, the additional input information (i.e.,
the previous camera frame) increases training difficulty with-
out any benefit. It may be that training these models for
additional epochs leads to performance comparable to the
standard classification models, but it is not worth the additional
training cost when the standard models perform well.

C. Hybrid Image+Command Input
Similar to the stacked and paneled models, the hybrid

input models include information about the previous time
step. Hybrid models, however, do so by explicitly including
the previous output of a model as an input during the next
step. Compared with the corresponding standard classifica-
tion models, hybrid models improve validation accuracy and
performance on average from 91.6 to 92.3 and from 82.5
to 95.3, respectively. The change is particularly dramatic in
the performance of the XResNeXt models, which increase
by nearly 23.1%. We also note that the while the hybrid
models perform better, they have lower validation accuracy
when compared to the stacked and paneled models.

D. Recurrent Neural Network
Another method for combining previous inputs and out-

puts is to use sequence models such as RNNs. Unlike the
Hybrid Image+Command architecture, RNNs maintain their
own internal memory and do not need a custom input format.
Moreover, RNNs like the LSTM “learn” how long they need to
remember information. They can theoretically retain historical
information for much longer than our stacked, paneled, and
hybrid models.

We chose the ConvLSTM architecture, and through exper-
imentation we found that 15 hidden channels and 6 hidden



TABLE I
CLASSIFICATION VALIDATION ACCURACY AND SIMULATION PERFORMANCE

Handmade Uniform Wandering

Pretrained Scratch Pretrained Scratch Pretrained Scratch
Model # T Valid Perf Valid Perf Valid Perf Valid Perf Valid Perf Valid Perf

AlexNet 2.6 00:31 91.7 14.1 92.0 22.9 99.6 83.4 99.2 81.7 92.7 93.4 92.5 92.6
DenseNet121 7.6 06:38 91.5 16.9 91.0 27.6 99.5 63.7 99.3 80.8 91.7 87.5 92.5 91.8
DenseNet201 19.1 10:50 91.3 12.2 92.2 28.7 99.6 81.3 99.6 69.7 92.1 93.0 92.4 74.9

ResNet18 11.2 01:16 69.1 16.4 92.1 26.4 74.6 76.7 99.4 91.4 69.1 93.6 93.0 95.4
ResNet50 24.4 11:52 91.1 11.9 90.9 21.9 99.5 82.8 99.3 88.2 91.7 91.9 92.9 94.2

SqueezeNet1-1 1.2 01:00 91.5 10.2 91.5 15.1 99.3 86.8 99.2 86.7 92.3 85.5 92.0 92.5
VGG11-BN 9.3 04:09 91.6 9.9 91.9 16.4 99.2 89.9 99.5 76.2 92.3 96.4 92.2 91.8
VGG19-BN 19.6 09:15 91.4 10.6 91.4 18.8 99.6 83.1 99.4 87.0 91.4 92.7 92.8 94.5

X-ResNet18a 11.2 02:08 90.5 17.2 92.3 16.1 99.2 75.1 99.6 70.3 91.5 92.2 92.4 96.7
X-ResNet18b 13.9 03:31 90.6 24.1 91.8 19.5 98.8 77.8 99.6 52.1 91.4 82.1 92.4 96.8
X-ResNet18c 10.5 03:37 91.3 27.1 90.6 26.3 99.0 87.3 99.7 72.6 91.4 85.3 92.1 96.0
X-ResNet50a 24.4 11:48 90.6 10.2 91.6 21.2 99.3 74.7 99.5 81.2 91.8 91.7 92.7 96.0
X-ResNet50b 27.8 12:06 90.7 12.1 90.9 18.4 98.9 78.4 99.6 75.1 91.7 88.7 92.7 96.3
X-ResNet50c 30.0 10:31 91.4 12.3 91.6 30.0 98.9 68.7 99.5 73.5 91.6 90.3 92.8 96.6

XResNeXt18a 12.9 04:47 90.7 28.9 91.6 13.4 98.2 95.9 99.5 77.8 90.6 74.6 92.6 96.5
XResNeXt50a 23.9 07:01 90.5 17.6 92.2 22.3 98.9 90.7 99.5 81.4 91.5 72.7 92.3 98.0

X-SE-ResNet18 11.3 04:03 90.5 17.0 92.1 17.2 98.0 91.8 99.4 77.8 90.9 68.2 93.1 95.1
X-SE-ResNet50 121.0 13:36 90.6 22.3 91.8 24.8 98.7 76.5 99.4 76.0 91.9 78.6 92.7 97.5

X-SE-ResNeXt18a 13.0 05:09 90.7 25.6 91.7 19.5 98.1 93.0 99.5 75.2 91.1 63.8 92.4 94.8
X-SE-ResNeXt18b 15.3 05:23 90.4 30.9 91.4 25.9 98.4 87.8 99.7 68.5 90.1 64.2 92.7 96.6
X-SE-ResNeXt18c 11.8 04:53 90.2 37.1 91.2 23.8 98.4 90.8 99.6 75.1 91.0 68.3 93.3 96.7
X-SE-ResNeXt50a 26.4 07:55 90.4 14.2 91.6 17.2 98.6 91.9 99.4 71.1 90.6 74.7 92.7 97.2
X-SE-ResNeXt50b 30.3 08:12 90.7 19.0 91.7 20.2 98.5 56.1 99.6 80.9 91.8 71.4 91.9 98.0
X-SE-ResNeXt50c 26.7 07:32 91.4 22.6 91.7 30.0 98.7 80.5 99.5 78.9 91.9 67.9 92.4 96.8

layers were ideal on our navigation task given performance
and GPU memory constraints. Table II shows that this type
of model can achieve similar performance to that of a feed-
forward classification model. However, the ConvLSTM re-
quired significant hyperparameter tuning and longer training
times before we were able to achieve this result.

E. Deep Reinforcement Learning

DRL models were trained using the PPO and A2C methods
with approximately the same number of frames and network
updates as the classification models. Table II shows that
these models performed quite poorly. In fact, based on our
early work with the simulation environment, the DRL models
perform only slightly better than a random agent. (DRL
methods do not perform validation in the same manner as the
supervised learning classification models, so the Valid column
is marked as “N/A” in the table.) Models trained for much
longer were able to achieve better results (nearing 30% map
completion), but for a fair comparison we limited the number
of frames seen during training. Regardless, we aim to focus
on generalizable vision models, and our initial experimental
results with DRL models suggest that they would require much
more hyperparameter tuning and would be very specific to a
particular environment.

F. CNN Regression

Our final model type was identical to the standard CNN
classification networks in all but one aspect: the output was a
turn angle instead of a predicted action. The wandering and
uniform datasets are labeled with the rotation angle needed
to make the agent face the correct heading. For all other
networks, this angle was simplified into a discrete action (left,
forward, right); for our regression networks, we use the angle
as the target output of the network. Table II indicates that
while this approach produces decent results, they fall short of
hybrid models.

G. Evaluate With New Textures

Finally, we altered the simulation environment by changing
wall textures (see Fig. 1c) and then reevaluated four of
the top performing models: XResNeXt18a, XResNeXt50a,
ConvLSTM, Image+Command (with a XResNeXt50a as the
CNN component). Each of these models were able to navigate
on average 15% of the distance through the validation mazes.
While this indicates that they were able to navigate a turn or
two, the performance is clearly much worse than when they
operate in the unaltered simulation environment. This result
is, in hindsight, unsurprising as the training dataset does not
include any variation in textures. To improve performance,



TABLE II
ADVANCED MODEL SIMULATION PERFORMANCE

Model Valid Perf

Stacked
AlexNet 95.8 81.8

DenseNet121 95.3 86.0
XResNeXt18a 95.8 66.0
XResNeXt50a 95.0 79.6

Paneled
AlexNet 96.0 60.0

DenseNet121 95.5 30.8
XResNeXt18a 92.6 60.9
XResNeXt50a 93.6 39.4

Image+Command
AlexNet 92.2 94.3

DenseNet121 92.4 93.3
XResNeXt18a 92.4 96.3
XResNeXt50a 92.3 97.1

RNN
ConvLSTM 90.8 87.6

RL
A2C N/A 7.7
PPO N/A 7.6
Regression

AlexNet N/A 86.2
DenseNet121 N/A 53.7

XResNeXt18a N/A 83.0
XResNeXt50a N/A 91.9

models must be explicitly trained to handle such changes to
the environment—similar to how they need to able to correct
their course if they wander off the ideal path.

V. CONCLUSION

Our goal for this work was to discover training regimes
and model architectures that are worth pursuing when using
a physical device. Our experiments indicate that, similar to
our wandering dataset, we should incorporate both human-
like behavior and a significant amount of noise in our training
dataset. This is in contrast to our uniform dataset, which was
not generated by traversing a map, but rather was generated
by randomly selecting locations in the map and computing the
corresponding correct action. Moreover, based on our model
validation experiments, we believe that the Image+Command
hybrid models are most likely to provide generally good
performance—they are inexpensive to train when compared
to the RNN models, but they still include a form of state
memory. The exact underlying CNN architecture is less im-
portant, and we should consider secondary aspects such as the
training time and the time to process a single input during
inference. Examining our results more closely, we also infer
that training models from scratch may lead to better results
for our particular navigation task, and that it is not important
to use models with the largest number of parameters.

Our future work involves three key additions to this study.
First, we will test our simulation trained models on a real-
world device. Second, we will explore methods to cross the
gap between simulation and reality such that our physical de-
vice can still benefit from simulation-trained models. Finally,
we will incorporate hyperparameter tuning.
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