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Abstract

Neural networks are often chosen as controllers in evolutionary
robotics. In all but a few cases, neural networks are evolved
from scratch. In this study, we investigate the effect of pre-
training neural networks using a biologically inspired walking
gait. We first generate joint angles for a walking gait using an
inverse kinematics model. We then train a conventional feed-
forward neural network to reproduce these joint angles. The
pretrained model is used to seed an initial population of neural
networks, which are coevolved along with the morphology
of a quadrupedal robot using Lexicase selection. Our initial
results show that while pretraining does not necessarily lead
to higher fitness at the end of evolution, it does lead to more
consistent performance and more lifelike final behaviors. This
exploration has left us with many questions about the impor-
tance and process of pretraining in evolutionary robotics, and
we believe our results suggest the technique is worth further
investigation.

Introduction and Related Work
Neural networks (NNs) are a natural choice for controllers
in evolutionary robotics. We can evolve small NNs with few
parameters to exhibit simple behaviors such as those demon-
strated by Braitenberg vehicles (Braitenberg, 1986), but we
can also evolve the architecture and connectivity of networks
to produce more complex behaviors such as object grasp-
ing (Huang et al., 2014). Most evolutionary robotics studies
using NNs do so because of their open-ended nature—giving
more control over to evolution can often lead to unexpected
and interesting behaviors (Lehman et al., 2020).

Unsurprisingly, NN controllers are almost always evolved
from scratch, which encourages evolution of novel behaviors.
However, there are some advantages to seeding evolution
with a pretrained neural network (Moore and Clark, 2021).
For example, pretraining can help evolution by reducing the
number of generations required to reach a certain fitness
level.

In this study, we investigate the effect of pretraining on
evolution. Specifically, we simulate both the kinematics and
dynamics of a quadrupedal robot (see Figure 1), pretrain NN
controllers, and then continue optimizing NNs along with a

quadruped’s morphology using Lexicase selection (Helmuth
et al., 2015).

Figure 1: A four-legged quadrupedal animat with 24 degrees-
of-freedom. The animat has four legs, each leg has three
joints (a hip, knee, and ankle), and each joint is a two-degree-
of-freedom universal joint. The initial morphology and gait
were designed to match the walking pattern of a large breed
canine (although the animat is wider to improve stability).

We pretrain NNs using supervised learning (i.e., minibatch
stochastic gradient descent) and a dataset of joint angles gen-
erated by an inverse kinematics (IK) model. Our IK system,
implemented using the cyclic coordinate descent (CCD) IK
algorithm (Wang and Chen, 1991), generates joint angles
specifically for a quadrupedal animat. Pretraining details are
described in Section Kinematics and Pretraining and using
the pretrained network as a seed in evolution is described
in Section Gait Evolution. Code and data are available at
https://github.com/anthonyjclark/gaitpt.

Our preliminary results indicate that pretraining leads to
more consistent performance during evolution. These results
also point to pretrained networks leading to more “lifelike”
gaits, where the animat was more likely to take a higher step,
alternate leg movement, and keep its body raised. We suggest
that these smoother gaits are likely easier to transfer from
simulation to reality.

https://github.com/anthonyjclark/gaitpt


Kinematics and Pretraining
NN inputs include 24 joint angle sensor measurements corre-
sponding to the leg joints (see Figure 1), four touch sensors
(one attached to each foot), and a pure sinusoid (which helps
drive an oscillating pattern) for a total of 29 inputs. The
NN outputs 24 new joint angles, which are forwarded to the
animat’s motor controller.

The kinematic gait pretraining process includes (1) de-
signing a gait (e.g., walking, trotting), (2) stepping the gait
forward in time while computing joint angles using inverse
kinematics, and then (3) training a neural network to repro-
duce the joint angles.

Each step involves a number of design choices. In step (1),
we chose a stable quadrupedal walking gait for generating
joint angles (Datt and Fletcher, 2012). While computing joint
angles in step (2), for the sake of simplicity, each leg follows
a simple “robotic” path wherein the foot ramps up and ramps
down using the same number of time steps—instead of a more
lifelike path where the foot lifts and thrusts asymmetrically.
The kinematic model starts standing on all four legs in a
neutral position (as shown in Figure 1) and then initiates
a cyclic walking gait that repeats for a specified number
of cycles. We can also configure the number of repeated
cycles, which provides a way to adjust the balance between
the number of training examples corresponding to the initial
transient phase (transitioning from standing on all fours to
walking) and the steady-state gait.

Finally, in step (3) we can configure the training hyperpa-
rameters (e.g., learning rate, batch size, number of epochs,
data augmentations) and the NN architecture (e.g., number of
hidden layers, number of neurons per layer, activation func-
tions). We found that the most important hyperparameter for
improving the transfer from pretraining to simulation is the
noise added to the training data. Joint angles are augmented
each epoch by adding a random value sampled from a nor-
mal distribution (with a configurable magnitude) and touch
sensors are randomly flipped. Adding noise to the training
dataset helps the NN adapt from the pure kinematic train-
ing process to the physically constrained (e.g., motor torque
limits) and imperfect simulation environment (Tobin et al.,
2017). NNs are trained using PyTorch.

Gait Evolution
The Lexicase selection algorithm is seeded with the pre-
trained NNs and the morphology used during the inverse
kinematics pretraining stage. Lexicase selection is a many-
objective optimization algorithm (Helmuth et al., 2015); in
this study, we maximize distance traveled, minimize power
consumption, and optimize behaviors for stability and fewer
leg direction switches. These objectives were chosen to en-
courage fast and stable gaits. Evolution will search for the
best NN parameters (updating the pretrained values) and mor-
phologies (e.g., body and leg segment dimensions, resting
angles, maximum joint forces).

Evolutionary experiments are run for 2000 generations
with 120 individuals. We evaluate individuals by simulating
them for 10 seconds using a physics engine.

Results and Discussion
Here we compare two treatments, evolution with and without
pretraining. Both treatments were replicated 10 times with
different random seeds. In Figure 2, we plot the distance
traveled by the best individual in each generation for each
replicate run.
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Figure 2: Distanced traveled by the best individual in each
generation. Shaded regions indicate the 95% confidence in-
terval of the mean for the 10 replicate runs of each treatment.

Treatments result in similar distances traveled, but the
pretraining treatment included the overall farthest traveling
individual, a higher minimum distanced traveled by the best
individual in each replicate, and a higher mean distanced
traveled by the best individuals from each replicate. The
pretraining treatment also had a smaller standard deviation in
the best individuals, indicating more consistent performance.
This consistency can be seen in Figure 2 where the pretrain-
ing treatment shows a more continual increase in distance
traveled over time, and a tighter confidence interval. These
relative performance gains were also seen when changing the
pretraining process (e.g., changing the amount of noise or the
number of gait cycles in the training dataset). Visualized gaits
also appear smoother for the pretraining treatment, though
we do not include a metric for this quality.

Future Directions. We are continuing this work and ex-
ploring the following directions: different gaits (i.e., amble,
trot, canter, gallop), more biologically consistent gaits with
asymmetric lift and thrust, incorporating pretraining in the
evolution loop, exploring different neural network architec-
tures (e.g., recurrent and convolutional networks), and adding
NN outputs for controlling motion of the spine.

Acknowledgements
Thanks to Pomona College and Grand Valley State University
for supporting this research.



References
Braitenberg, V. (1986). Vehicles: experiments in synthetic psychol-

ogy. Bradford book psychology. MIT Press, 9. print edition.

Datt, V. L. and Fletcher, T. F. (2012). Gaits: Gait footfall patterns.

Helmuth, T., Spector, L., and Matheson, J. (2015). Solving uncom-
promising problems with lexicase selection. IEEE Transac-
tions on Evolutionary Computation, 19(5):630–643.

Huang, P.-C., Lehman, J., Mok, A. K., Miikkulainen, R., and Sentis,
L. (2014). Grasping novel objects with a dexterous robotic
hand through neuroevolution. In 2014 IEEE Symposium
on Computational Intelligence in Control and Automation
(CICA), pages 1–8. IEEE.

Lehman, J., Clune, J., Misevic, D., Adami, C., Altenberg, L.,
Beaulieu, J., Bentley, P. J., Bernard, S., Beslon, G., Bryson,
D. M., Cheney, N., Chrabaszcz, P., Cully, A., Doncieux, S.,
Dyer, F. C., Ellefsen, K. O., Feldt, R., Fischer, S., Forrest, S.,
Fŕenoy, A., Gagńe, C., Le Goff, L., Grabowski, L. M., Hodjat,
B., Hutter, F., Keller, L., Knibbe, C., Krcah, P., Lenski, R. E.,
Lipson, H., MacCurdy, R., Maestre, C., Miikkulainen, R.,
Mitri, S., Moriarty, D. E., Mouret, J.-B., Nguyen, A., Ofria, C.,
Parizeau, M., Parsons, D., Pennock, R. T., Punch, W. F., Ray,
T. S., Schoenauer, M., Schulte, E., Sims, K., Stanley, K. O.,
Taddei, F., Tarapore, D., Thibault, S., Watson, R., Weimer, W.,
and Yosinski, J. (2020). The surprising creativity of digital
evolution: A collection of anecdotes from the evolutionary
computation and artificial life research communities. Artificial
Life, 26(2):274–306.

Moore, J. M. and Clark, A. J. (2021). Supervision and evolution:
Pretraining neural networks for quadrupedal locomotion. In
The 2021 Conference on Artificial Life. MIT Press.

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., and Abbeel,
P. (2017). Domain randomization for transferring deep neural
networks from simulation to the real world. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 23–30. IEEE.

Wang, L.-C. and Chen, C. (1991). A combined optimization method
for solving the inverse kinematics problems of mechanical
manipulators. IEEE Transactions on Robotics and Automation,
7(4):489–499.


	Introduction and Related Work
	Kinematics and Pretraining
	Gait Evolution
	Results and Discussion
	Acknowledgements

