
PAYS 2023
INTRODUCTION TO PROGRAMMING USING PYTHON

Alexandra Papoutsaki

she/her/hers

3: print vs return

TODAY’S LECTURE IN A NUTSHELL

Lecture 3: print vs return

▸ print function

▸ Multiline strings and docstrings

2

PRINT FUNCTION

print function

3

▸ Use it when you want to “print” (i.e. display on the screen)
certain expressions (e.g., numbers, strings, contents of
variables, messages, etc.).

▸ Extremely useful for figuring out how our code works.

PRINT FUNCTION

Using the print function to understand our code

4

▸ If you wanted to figure out why it was that high, you could
temporarily add some print statements in the code.

PRINT FUNCTION

Don’t forget to remove unnecessary print statements

5

▸ We can dig further if we'd like by adding more print statements.

▸ E.g.,

▸ When you're done, don’t forget to
REMOVE ALL PRINT STATEMENTS!

▸ In most cases, we're adding print statements to help us debug
our program.

▸ debugging: the process of finding and removing
programming errors.

PRINT FUNCTION

print vs return

6

▸ print

▸ the print function displays the value to the screen/shell.

▸ return

▸ a return statement has two parts, return [expression]

▸ When the program gets to this line, it evaluates the expression.

▸ Whatever value this expression evaluates to then is "returned"
from that function and represents the value at where the
function was called.

PRINT FUNCTION

print_vs_return.py

7

▸ Similar calculations but VERY different behavior.

PRINT FUNCTION

print_vs_return.py

8

▸ print_square(10) and return_square(10) appear to do the same thing,
but they are different.

▸ print_square(10) is actually printing to the shell inside the function.

▸ return_square(10) evaluates to 100, then that value is printed because
the default behavior for the shell is to print the value.

▸ This difference is highlighted in the next 4 statements:

▸ x = print_square(10) calls print_square(10) which prints but does
NOT return a value. Therefore, x remains undefined.

▸ y = return_square(10) calls return_square(10) which does NOT
print out the value (100) but returns it, therefore y is assigned the value 100.

PRINT FUNCTION

print_vs_return.py

9

▸ If you hit Run (green triangle), you get:

PRINT FUNCTION

print_vs_return.py

10

▸ When you run a file, it starts at the top and executes each statement/line one at a time.

▸ print_square(5) prints 25.

▸ print("#") prints #

▸ return_square(5) does NOTHING. It returns a value, but then we don't do anything with it (just as if
we'd typed 5*5 there) so the result of the calculation is lost.

▸ print("##") prints ##

▸ print(print_square(5)) calls print_square(5) which again prints 25. Then, when we return,
we try and print out the value that was returned from print_square(5). Since print_square does
not return a value, we get “None”.

▸ print("###") prints ###

▸ print(return_square(5)) prints 25 because return_square(5) returned it!

▸ print("####") prints ###

PRINT FUNCTION

return statement

11

▸ When the interpreter reaches a return statement the
program indicates a disruption in flow.

▸ We have to leave that function.

▸ Therefore any code in a function body that directly
follows a return statement cannot be reached.

TODAY’S LECTURE IN A NUTSHELL

Lecture 4: print vs return

▸ print function

▸ Multiline strings and docstrings

12

MULTILINE STRINGS AND DOCSTRINGS

Multiline strings

13

▸ So far we've seen double quotes and single quotes to
enclose strings.

▸ If we want a string to span over multiple lines we have a
few options

▸ there is a special character '\n' that represents the end
of the line. E.g.,

MULTILINE STRINGS AND DOCSTRINGS

Multiline strings using triple quotes

14

▸ Previous approach has a few drawbacks:

▸ hard to read as a human

▸ hard to get formatting/alignment right

▸ if it's a long string (e.g., a paragraph) it's going to go off the screen

▸ pain to copy and paste multiline text from somewhere else

▸ Use triple quotes instead, e.g.,

▸

MULTILINE STRINGS AND DOCSTRINGS

Docstrings

15

▸ Docstring: a string immediately following a definition.

▸ Another form of commenting.

MULTILINE STRINGS AND DOCSTRINGS

Using the help function to read docstrings

16

▸ If you pass a method as an argument to the help function, you will get
back the docstring of that method. E.g.,

▸ This can be VERY useful when you're using code that you haven't written!

MULTILINE STRINGS AND DOCSTRINGS

Conventions

17

▸ We're going to be defining docstrings for ALL functions we
write from here on out.

▸ We’ll always use triple quotes for docstrings (even if
they're just one line).

▸ For simple functions, a one line docstring is sufficient.

▸ For longer ones, first give a description of what it does,
then describe what each of the parameters represents.

MULTILINE STRINGS AND DOCSTRINGS

Good style

18

▸ Use good variable/function names.

▸ Use whitespace (both vertical and horizontal) to make
code more readable.

▸ Comment code, including both comments and docstrings.

▸ Try and write code as simply as possible (more on this as
we go).

ASSIGNED READINGS AND PRACTICE PROBLEMS

Resources

▸ Textbook: Continue reading Chapter 4.

▸ print_vs_return.txt

▸ multiline_strings.txt

▸ bbq-functions-commented.txt

19

Practice Problems
▸ Practice 1 (solution)

https://runestone.academy/ns/books/published//thinkcspy/PythonTurtle/toctree.html
https://cs.pomona.edu/classes/pays/2023/examples/Lecture3/print_vs_return.txt
https://cs.pomona.edu/classes/pays/2023/examples/Lecture3/multiline_strings.txt
https://cs.pomona.edu/classes/pays/2023/examples/Lecture3/bbq-functions-commented.txt
https://cs.pomona.edu/classes/pays/2023/problems/practice1.txt
https://cs.pomona.edu/classes/pays/2023/problems/practice1-solution.txt

