Admin

- Last quiz!
- Last assignment due next Friday (5/7)

Next week:
- Tuesday: balanced trees
- Wednesday: course feedback forms, ethics discussion, work session
- Thursday: recap/review

Shortest paths

What is the shortest path from a to d?

How can we find this?
Shortest paths

BFS visits vertices in increasing distance!

BFS with distances
Look at ShortestPaths.bfsDistances in GraphExamples

https://github.com/pomonacs622021sp/LectureCode/tree/master/GraphExamples

Shortest paths
What is the shortest path from a to d?

Shortest paths
We can still use BFS
Shortest paths

We can still use BFS

A

B

C

D

E

1

3

2

1

4

9

Shortest paths

We can still use BFS

A

B

C

D

E

10

Shortest paths

What is the problem?

A

B

C

D

E

11

Running time is dependent on the weights!

A

B

C

D

E

12
Shortest paths

Nothing will change as we expand the frontier until we've gone out 100 levels
Key idea

Explore the vertices in order of increasing distance from the starting vertex.

Keep track of the distances to each vertex.

If we find a better path, update that distance.

Dijkstra’s high-level

Explore the vertices in order of increasing distance from the starting vertex.

Use a priority queue to keep track of the shortest path found so far to a vertex.

Initialize: distance to start = 0 and all others infinity.

repeat

get vertex \(v \) with shortest distance

for each vertex, \(u \), adjacent to \(v \) (edge exists \(u \rightarrow v \))

if path \(u \rightarrow v \) is shortest then best path for \(v \) so far

update the distance for \(v \)

update the priority queue

Sequence of steps

1. Initialize: distance to start = 0 and all others infinity.
2. Repeat:
 - Get vertex \(v \) with shortest distance.
 - For each vertex, \(u \), adjacent to \(v \):
 - If path \(u \rightarrow v \) is shortest then best path for \(v \) so far:
 - Update the distance for \(v \).
 - Update the priority queue.

Graph representation

- Initial graph:
 - A to B: 3
 - A to C: 1
 - A to D: 4
 - B to C: 1
 - B to D: 1
 - C to E: 1
 - D to E: 2

- Updated graph:
 - A to B: 3
 - A to C: 1
 - A to D: 4
 - B to C: 1
 - B to D: 1
 - C to E: 1
 - D to E: 2
Initialize: distance to start = 0 and all others infinity
repeat
 get vertex v with shortest distance
 for each vertex, adj, adjacent to v (edge exists v → adj)
 if path v → adj is shortest then best path for adj so far
 update the distance for adj
 update the priority queue
Initialize: distance to start = 0 and all others infinity
repeat
 get vertex v with shortest distance
 for each vertex, adj, adjacent to v (edge exists v → adj)
 if path v → adj is shortest then best path for adj so far
 update the distance for adj
 update the priority queue
Initialize: distance to start = 0 and all others infinity

repeat
get vertex \(v \) with shortest distance

for each vertex, \(\text{adj} \), adjacent to \(v \) (edge exists \(v \rightarrow \text{adj} \))
if path \(v \rightarrow \text{adj} \) is shortest then best path for \(\text{adj} \) so far
update the distance for \(\text{adj} \)
update the priority queue
Initialize: distance to start = 0 and all others infinity
repeat
 get vertex \(v \) with shortest distance
 for each vertex, \(\text{adj} \), adjacent to \(v \) (edge exists \(v \rightarrow \text{adj} \))
 if path \(v \rightarrow \text{adj} \) is shortest then best path for \(\text{adj} \) so far
 update the distance for \(\text{adj} \)
 update the priority queue

Frontier?

All nodes reachable from starting node within a given distance
Initialize: distance to start = 0 and all others infinity

repeat
 get vertex \(v \) with shortest distance
 for each vertex, \(adj \), adjacent to \(v \) (edge exists \(v \rightarrow adj \))
 if path \(v \rightarrow adj \) is shortest then best path for \(adj \) so far
 update the distance for \(adj \)
 update the priority queue

Dijkstra's algorithm

```java
public static void dijkstraWeightedGraph(G, let start) {
  int[] distances = new int[numberVertices];
  boolean[] isVisited = new boolean[numberVertices];
  PriorityQueue<int[]> PQ = new PriorityQueue<int[]>();

  PQ.offer(start);
  distances[start] = 0;
  for (int i = 0; i < numberVertices; ++i) {
    if (i != start && distances[i] == Integer.MAX_VALUE) {
      distances[i] = distances[start] + weight(start, i);
      PQ.offer(new int[]{i, distances[i]});
    }
  }

  while (!PQ.isEmpty()) {
    int[] edge = PQ.poll();
    int adj = edge[0];
    int dist = edge[1];
    for (int i = 0; i < numberVertices; ++i) {
      if (!isVisited[i] && dist + weight(adj, i) < distances[i]) {
        distances[i] = dist + weight(adj, i);
        PQ.offer(new int[]{i, distances[i]});
      }
    }
  }
}
```
Dijkstra's algorithm

Dijkstra's algorithm

\[\text{distTo}(s) = 0; \]
\[\text{visited}(s) = \text{true}; \]
\[\text{distTo}(v) = \infty; \]
\[\text{visited}(v) = \text{false}; \]
while (visited\((s)\) is false)

\[\text{for all } (u, v) \in \text{adj}(s) \]
\[\text{if } \text{distTo}(u) + \text{weight}(u, v) < \text{distTo}(v) \]
\[\text{distTo}(v) = \text{distTo}(u) + \text{weight}(u, v); \]
\[\text{visited}(v) = \text{true}; \]
\[\text{decreaseKey}(v, \text{distTo}(v)); \]

BFS

\[\text{q.addLast}(s); \]
\[\text{visited}(s) = \text{true}; \]
\[\text{distTo}(s) = 0; \]
while (q.isEmpty() is false)

\[\text{for all } (u, v) \in \text{adj}(u) \]
\[\text{if } \text{distTo}(u) + \text{weight}(u, v) < \text{distTo}(v) \]
\[\text{distTo}(v) = \text{distTo}(u) + \text{weight}(u, v); \]
\[\text{visited}(v) = \text{true}; \]
\[\text{decreaseKey}(v, \text{distTo}(v)); \]

Why does it work?

When a vertex is removed from the priority queue, \(\text{distTo}[v]\)

is the actual shortest distance from \(s\) to \(v\)

- The only time a vertex gets removed is when the distance from \(s\) to that vertex is smaller than the distance to any remaining vertex
- Therefore, there cannot be any other path that hasn’t been visited already that would result in a shorter path

Dijkstra example

Look at ShortestPaths.dijkstra in GraphExamples

https://github.com/pomonacs622021sp/LectureCode/tree/master/GraphExamples

Why does it work?

When a vertex is removed from the priority queue, \(\text{distTo}[v]\)

is the actual shortest distance from \(s\) to \(v\)

- The only time a vertex gets removed is when the distance from \(s\) to that vertex is smaller than the distance to any remaining vertex
- Therefore, there cannot be any other path that hasn’t been visited already that would result in a shorter path

Does this make any assumptions?
What about this graph?

What's the shortest path from A to C?
What would Dijkstra's do?

What about this graph?

Dijkstra's only works on graphs with positive edge weights

Why does it work?

When a vertex is removed from the priority queue, distTo[v] is the actual shortest distance from s to v

- The only time a vertex gets removed is when the distance from s to that vertex is smaller than the distance to any remaining vertex
- Therefore, there cannot be any other path that hasn't been visited already that would result in a shorter path

Assuming no negative edge weights!

Relaxing an edge

This update is called “relaxing” an edge

```java
if( distTo[v] + e.weight() < distTo[adj] ) {
    distTo[adj] = distTo[v] + e.weight();
    edgeTo[adj] = v;
    pq.decreaseKey(adj, distTo[adj]);
}
```

We can apply this to an edge as many times as we want
This idea is used in other shortest path algorithms (e.g., Bellman-Ford)
Dijkstra in practice

don’t insert everything into pq
only insert starting vertex
insert when we discover a vertex

while (pq is not empty) {
 int v = pq.delMin();
 for (int adj : v.adj()) {
 if (distTo[v] + v.weight() < distTo[adj]) {
 distTo[adj] = distTo[v] + v.weight();
 edgeTo[adj] = v;
 if (pq.contains(adj)) { // decreaseKey
 pq.decreaseKey(adj, distTo[adj]);
 } else {
 pq.insert(adj, distTo[adj]); // insert when we discover a vertex
 }
 }
 }
}

Running time?

<table>
<thead>
<tr>
<th>Heap</th>
<th>V * delMin</th>
<th>E * decreaseKey</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array</td>
<td>O(</td>
<td>V</td>
<td>^2)</td>
</tr>
<tr>
<td>Bin heap</td>
<td>O(</td>
<td>V</td>
<td>log</td>
</tr>
</tbody>
</table>

Running time?

<table>
<thead>
<tr>
<th>Heap</th>
<th>V * delMin</th>
<th>E * decreaseKey</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array</td>
<td>O(</td>
<td>V</td>
<td>^2)</td>
</tr>
<tr>
<td>Bin heap</td>
<td>O(</td>
<td>V</td>
<td>log</td>
</tr>
<tr>
<td>Fib heap</td>
<td>O(</td>
<td>V</td>
<td>log</td>
</tr>
</tbody>
</table>
Shortest paths

Dijkstra’s: single source shortest paths for positive edge weight graphs

<table>
<thead>
<tr>
<th>What is single source?</th>
</tr>
</thead>
</table>

Shortest paths

Dijkstra’s: single source shortest paths for positive edge weight graphs

Many other variants:
- graphs with negative edges
- all pairs shortest paths
- ...