CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

23: Graphs

Alexandra Papoutsaki
she/her/hers

Tom Yeh
he/him/his
Lecture 23: Graphs

- Undirected Graphs
 - Graph API
 - Depth-First Search
 - Breadth-First Search
 - Connected Components

- Directed Graphs
 - Digraph API
 - Depth-First Search
 - Breadth-First Search
 - Topological Sort
 - Strongly Connected Components

Some slides adopted from Algorithms 4th Edition or COS226
Undirected Graphs

- **Graph**: A set of *vertices* connected pairwise by *edges*.

https://www.wikiwand.com/simple/Graph_(mathematics)
Why study graphs?

- Thousands of practical applications.
- Hundreds of graph algorithms known.
- Interesting and broadly useful abstraction.
- Challenging branch of theoretical computer science.
Protein-protein interaction graph

The Internet

https://www.opte.org/the-internet
Social media

Graph terminology

- **Path**: Sequence of vertices connected by edges
- **Cycle**: Path whose first and last vertices are the same
- Two vertices are **connected** if there is a path between them
Examples of graph-processing problems

- Is there a path between vertex s and t?
- What is the shortest path between s and t?
- Is there a cycle in the graph?
- **Euler Tour**: Is there a cycle that uses each edge exactly once?
- **Hamilton Tour**: Is there a cycle that uses each vertex exactly once?
- Is there a way to connect all vertices?
- What is the shortest way to connect all vertices?
- Is there a vertex whose removal disconnects the graph?
Lecture 23: Graphs

- Undirected Graphs
 - Graph API
 - Depth-First Search
 - Breadth-First Search
 - Connected Components

- Directed Graphs
 - Digraph API
 - Depth-First Search
 - Breadth-First Search
 - Topological Sort
 - Strongly Connected Components

Some slides adopted from Algorithms 4th Edition or COS226
Graph representation

- **Vertex representation**: Here, integers between 0 and V-1.
 - We will use a symbol table (dictionary) to map between names of vertices and integers (indices).
Basic Graph API

- **public class** Graph
 - **Graph(int V)**: create an empty graph with V vertices.
 - **void addEdge(int v, int w)**: add an edge v-w.
 - **Iterable<Integer> adj(int v)**: return vertices adjacent to v.
 - **int V()**: number of vertices.
 - **int E()**: number of edges.
Example of how to use the Graph API to process the graph

```java
public static int degree(Graph g, int v)
{
    int count = 0;
    for(int w : g.adj(v))
        count++;
    return count;
}
```
Graph density

- In a simple graph (no parallel edges or loops), if $|V| = n$, then:
 - minimum number of edges is 0 and
 - maximum number of edges is $n(n - 1)/2$.
- Dense graph -> edges closer to maximum.
- Sparse graph -> edges closer to minimum.
Graph representation: adjacency matrix

- Maintain a $|V|\times|V|$ boolean array; for each edge $v-w$:
 - $\text{adj}[v][w] = \text{adj}[w][v] = \text{true}$;
- Good for dense graphs (edges close to $|V|^2$).
- Constant time for lookup of an edge.
- Constant time for adding an edge.
- $|V|$ time for iterating over vertices adjacent to v.
- Symmetric, therefore wastes space in undirected graphs ($|V|^2$).
- Not widely used in practice.

```
V V  V V
A B C D
A 0 1 1 1
B 1 0 0 1
C 1 0 0 0
D 1 1 0 0
```
Graph representation: adjacency list

- Maintain vertex-indexed array of lists.
- Good for sparse graphs (edges proportional to $|V|$) which are much more common in the real world.
- Algorithms based on iterating over vertices adjacent to v.
- Space efficient ($|E| + |V|$).
- Constant time for adding an edge.
- Lookup of an edge or iterating over vertices adjacent to v is $\text{degree}(v)$.
Adjacency-list graph representation in Java

```java
public class Graph {

    private final int V;
    private int E;
    private Bag<Integer>[] adj;

    //Initializes an empty graph with V vertices and 0 edges.
    public Graph(int V) {
        this.V = V;
        this.E = 0;
        adj = (Bag<Integer>[] new Bag[V];
        for (int v = 0; v < V; v++) {
            adj[v] = new Bag<Integer>();
        }
    }

    //Adds the undirected edge v-w to this graph. Parallel edges and self-loops allowed
    public void addEdge(int v, int w) {
        E++;
        adj[v].add(w);
        adj[w].add(v);
    }

    //Returns the vertices adjacent to vertex v.
    public Iterable<Integer> adj(int v) {
        return adj[v];
    }
}
```

A bag is a collection where removing items is not supported—its purpose is to provide clients with the ability to collect items and then to iterate through the collected items.
Lecture 23: Graphs

- Undirected Graphs
 - Graph API
 - Depth-First Search
 - Breadth-First Search
 - Connected Components

- Directed Graphs
 - Digraph API
 - Depth-First Search
 - Breadth-First Search
 - Topological Sort
 - Strongly Connected Components

Some slides adopted from Algorithms 4th Edition or COS226
Mazes as graphs

- Vertex = intersection; edge = passage

How to survive a maze: a lesson from a Greek myth

- Theseus escaped from the labyrinth after killing the Minotaur with the following strategy instructed by Ariadne:
 - Unroll a ball of string behind you.
 - Mark each newly discovered intersection and passage.
 - Retrace steps when no unmarked options.
- Also known as the Trémaux algorithm.
Depth-first search

- **Goal**: Systematically traverse a graph.
- **DFS** (to visit a vertex v)
 - Mark vertex v.
 - Recursively visit all unmarked vertices w adjacent to v.

- **Typical applications**:
 - Find all vertices connected to a given vertex.
 - Find a path between two vertices.
4.1 Depth-First Search Demo
Depth-first search

- **Goal**: Find all vertices connected to s (and a corresponding path).
- **Idea**: Mimic maze exploration.
- **Algorithm**:
 - Use recursion (ball of string).
 - Mark each visited vertex (and keep track of edge taken to visit it).
 - Return (retrace steps) when no unvisited options.
- When started at vertex s, DFS marks all vertices connected to s (and no other).
Depth-first search in Java

```java
public class DepthFirstSearch {
    private boolean[] marked; // marked[v] = is there an s-v path?
    private int[] edgeTo; // edgeTo[v] = previous vertex on path from s to v

    public DepthFirstSearch(Graph G, int s) {
        marked = new boolean[G.V()];
        edgeTo = new int[G.V()];
        dfs(G, s);
    }

    // depth first search from v
    private void dfs(Graph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v)) {
            if (!marked[w]) {
                edgeTo[w] = v;
                edgeTo[w] = v;
                dfs(G, w);
            }
        }
    }
}
```
Depth-first search Analysis

- DFS marks all vertices connected to s in time proportional to $|V| + |E|$ in the worst case.

- Initializing arrays `marked` and `edgeTo` takes time proportional to $|V|$.

- Each adjacency-list entry is examined exactly once and there are $2|E|$ such edges (two for each edge).

- Once we run DFS, we can check if vertex v is connected to s in constant time. We can also find the v-s path (if it exists) in time proportional to its length.
Lecture 23: Graphs

- Undirected Graphs
 - Graph API
 - Depth-First Search
 - Breadth-First Search
 - Connected Components

- Directed Graphs
 - Digraph API
 - Depth-First Search
 - Breadth-First Search
 - Topological Sort
 - Strongly Connected Components

Some slides adopted from Algorithms 4th Edition or COS226
Breadth-first search

- **BFS** (from source vertex \(s \))
 - Put \(s \) on a queue and mark it as visited.
 - Repeat until the queue is empty:
 - Dequeue vertex \(v \).
 - Enqueue each of \(v \)’s unmarked neighbors and mark them.

- Basic idea: BFS traverses vertices in order of distance from \(s \).
4.1 Breadth-First Search Demo
Breadth-first search in Java

```java
public class BreadthFirstPaths {
    private boolean[] marked; // marked[v] = is there an s-v path
    private int[] edgeTo;    // edgeTo[v] = previous edge on shortest s-v path
    private int[] distTo;    // distTo[v] = number of edges shortest s-v path

    public BreadthFirstPaths(Graph G, int s) {
        marked = new boolean[G.V()];
        distTo = new int[G.V()];
        edgeTo = new int[G.V()];
        bfs(G, s);
    }

    private void bfs(Graph G, int s) {
        Queue<Integer> q = new Queue<Integer>();
        distTo[s] = 0;
        marked[s] = true;
        q.enqueue(s);

        while (!q.isEmpty()) {
            int v = q.dequeue();
            for (int w : G.adj(v)) {
                if (!marked[w]) {
                    edgeTo[w] = v;
                    distTo[w] = distTo[v] + 1;
                    marked[w] = true;
                    q.enqueue(w);
                }
            }
        }
    }
}
```
Breadth-first search

- **DFS**: Put unvisited vertices on a stack.
- **BFS**: Put unvisited vertices on a queue.
- **Shortest path problem**: Find path from \(s \) to \(t \) that uses the fewest number of edges.
 - E.g., calculate the fewest numbers of hops in a communication network.
 - E.g., calculate the Kevin Bacon number or Erdős number.
- BFS computes shortest paths from \(s \) to all vertices in a graph in time proportional to \(|E| + |V|\)
 - The queue always consists of zero or more vertices of distance \(k \) from \(s \), followed by zero or more vertices of \(k+1 \).
Lecture 23: Graphs

- Undirected Graphs
 - Graph API
 - Depth-First Search
 - Breadth-First Search
 - Connected Components

- Directed Graphs
 - Digraph API
 - Depth-First Search
 - Breadth-First Search
 - Topological Sort
 - Strongly Connected Components

Some slides adopted from Algorithms 4th Edition or COS226
Connectivity queries

- **Goal**: Preprocess graph to answer questions of the form “is \(v\) connected to \(w\)” in constant time.

- **public class** `CC`

- `CC(Graph G)`: find connected components in \(G\).

- `boolean connected(int v, int w)`: are \(v\) and \(w\) connected?

- `int count()`: number of connected components.

- `int id(int v)`: component identifier for vertex \(v\).
Connected components

- **Goal**: Partition vertices into connected components.

- **Connected Components**
 - Initialize all vertices as unmarked.
 - For each unmarked vertex, run DFS to identify all vertices discovered as part of the same component.
Connected Components

▸ Goal: Partition vertices into connected components.

▸ Connected Components

▸ Initialize all vertices as unmarked.

▸ For each unmarked vertex, run DFS to identify all vertices discovered as part of the same component.
Connected Components in Java

```java
public class CC {
    private boolean[] marked; // marked[v] = has vertex v been marked?
    private int[] id; // id[v] = id of connected component containing v
    private int[] size; // size[id] = number of vertices in given component
    private int count; // number of connected components

    public CC(Graph G) {
        marked = new boolean[G.V()];
        id = new int[G.V()];
        size = new int[G.V()];
        for (int v = 0; v < G.V(); v++) {
            if (!marked[v]) {
                dfs(G, v);
                count++;
            }
        }
    }

    private void dfs(Graph G, int v) {
        marked[v] = true;
        id[v] = count;
        size[count]++;
        for (int w : G.adj(v)) {
            if (!marked[w]) {
                dfs(G, w);
            }
        }
    }
}
```
Lecture 23: Graphs

- Undirected Graphs
 - Graph API
 - Depth-First Search
 - Breadth-First Search
 - Connected Components

- Directed Graphs
 - Digraph API
 - Depth-First Search
 - Breadth-First Search
 - Topological Sort
 - Strongly Connected Components

Some slides adopted from Algorithms 4th Edition or COS226
Directed Graph Terminology

- **Directed Graph (digraph):** A set of vertices V connected pairwise by a set of directed edges E.

 E.g., $V = \{0,1,2,3,4,5,6,7,8,9,10,11,12\}$,

 $E = \\{(0,1), (0,5), (2,0), (2,3), (3,2), (3,5), (4,2), (4,3), (5,4), (6,0), (6,4), (6,9), (7,6), (7,8), (8,7), (8,9), (9,10), (9,11), (10,12), (11,4), (11,12), (12,9)\}$.

- **Directed path:** A sequence of vertices in which there is a directed edge pointing from each vertex in the sequence to its successor in the sequence, with no repeated edges.

 A simple directed path is a directed path with no repeated vertices.

- **Directed cycle:** A directed path with at least one edge whose first and last vertices are the same.

 A simple directed cycle is a directed cycle with no repeated vertices (other than the first and last).

- The length of a cycle or a path is its number of edges.
Directed Graph Terminology

- **Self-loop**: an edge that connects a vertex to itself.
- Two edges are **parallel** if they connect the same pair of vertices.
- The **outdegree** of a vertex is the number of edges pointing from it.
- The **indegree** of a vertex is the number of edges pointing to it.
- A vertex \(w \) is **reachable** from a vertex \(v \) if there is a directed path from \(v \) to \(w \).
- Two vertices \(v \) and \(w \) are **strongly connected** if they are mutually reachable.
Directed Graph Terminology

- A digraph is **strongly connected** if there is a directed path from every vertex to every other vertex.

- A digraph that is not strongly connected consists of a set of strongly connected components, which are maximal strongly connected subgraphs.

- A **directed acyclic graph (DAG)** is a digraph with no directed cycles.
Anatomy of a digraph

Anatomy of a digraph

A digraph and its strong components
Digraph Applications

<table>
<thead>
<tr>
<th>Digraph</th>
<th>Vertex</th>
<th>Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web</td>
<td>Web page</td>
<td>Link</td>
</tr>
<tr>
<td>Cell phone</td>
<td>Person</td>
<td>Placed call</td>
</tr>
<tr>
<td>Financial</td>
<td>Bank</td>
<td>Transaction</td>
</tr>
<tr>
<td>Transportation</td>
<td>Intersection</td>
<td>One-way street</td>
</tr>
<tr>
<td>Game</td>
<td>Board</td>
<td>Legal move</td>
</tr>
<tr>
<td>Citation</td>
<td>Article</td>
<td>Citation</td>
</tr>
<tr>
<td>Infectious Diseases</td>
<td>Person</td>
<td>Infection</td>
</tr>
<tr>
<td>Food web</td>
<td>Species</td>
<td>Predator-prey relationship</td>
</tr>
</tbody>
</table>
Popular digraph problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>s->t path</td>
<td>Is there a path from s to t?</td>
</tr>
<tr>
<td>Shortest s->t path</td>
<td>What is the shortest path from s to t?</td>
</tr>
<tr>
<td>Directed cycle</td>
<td>Is there a directed cycle in the digraph?</td>
</tr>
<tr>
<td>Topological sort</td>
<td>Can vertices be sorted so all edges point from earlier to later vertices?</td>
</tr>
</tbody>
</table>
| Strong connectivity | Is there a directed path between every pair of vertices?
Lecture 23: Graphs

- Undirected Graphs
 - Graph API
 - Depth-First Search
 - Breadth-First Search
 - Connected Components

- Directed Graphs
 - Digraph API
 - Depth-First Search
 - Breadth-First Search
 - Topological Sort
 - Strongly Connected Components
Basic Graph API

- **public class** Digraph
- **Digraph**(int V): create an empty digraph with V vertices.
- **void** addEdge(int v, int w): add an edge v->w.
- **Iterable<Integer>** adj(int v): return vertices adjacent from v.
- **int** V(): number of vertices.
- **int** E(): number of edges.
- **Digraph** reverse(): reverse edges of digraph.
DIRECTED GRAPHS

Digraph representation: adjacency list

- Maintain vertex-indexed array of lists.
- Good for sparse graphs (edges proportional to \(|V|\)) which are much more common in the real world.
- Algorithms based on iterating over vertices adjacent from \(v\).
- Space efficient (\(|E| + |V|\)).
- Constant time for adding a directed edge.
- Lookup of a directed edge or iterating over vertices adjacent from \(v\) is \(\text{outdegree}(v)\).
Adjacency-list digraph representation in Java

```java
public class Digraph {

    private final int V;
    private int E;
    private Bag<Integer>[] adj;

    //Initializes an empty digraph with V vertices and 0 edges.
    public Digraph(int V) {
        this.V = V;
        this.E = 0;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < V; v++) {
            adj[v] = new Bag<Integer>();
        }
    }

    //Adds the directed edge v->w to this digraph.
    public void addEdge(int v, int w) {
        E++;
        adj[v].add(w);
    }

    //Returns the vertices adjacent from vertex v.
    public Iterable<Integer> adj(int v) {
        return adj[v];
    }
}
```
Lecture 23: Graphs

- Undirected Graphs
 - Graph API
 - Depth-First Search
 - Breadth-First Search
 - Connected Components

- Directed Graphs
 - Digraph API
 - Depth-First Search
 - Breadth-First Search
 - Topological Sort
 - Strongly Connected Components

Some slides adopted from Algorithms 4th Edition or COS226
Reachability

- Find all vertices reachable from s along a directed path.
Depth-first search in digraphs

- Same method as for undirected graphs.
 - Every undirected graph is a digraph with edges in both directions.
 - Maximum number of edges in a simple digraph is $n(n - 1)$.

- **DFS** (to visit a vertex v)
 - Mark vertex v.
 - Recursively visit all unmarked vertices w adjacent from v.

- Typical applications:
 - Find a directed path from source vertex S to a given target vertex V.
 - Topological sort.
 - Directed cycle detection.
4.2 Directed DFS Demo
Directed depth-first search in Java

```java
public class DirectedDFS {
    private boolean[] marked; // marked[v] = is there an s->v path?

    public DirectedDFS(Digraph G, int s) {
        marked = new boolean[G.V()];
        dfs(G, s);
    }

    // directed depth first search from v
    private void dfs(Digraph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v)) {
            if (!marked[w]) {
                dfs(G, w);
            }
        }
    }
}
```
Alternative iterative implementation with a stack

```java
public class DirectedDFS {
    private boolean[] marked; // marked[v] = is there an s->v path?

    public DirectedDFS(Digraph G, int s) {
        marked = new boolean[G.V()];
        dfs(G, s);
    }

    // iterative dfs that uses a stack
    private void dfs(Digraph G, int v) {
        Stack stack = new Stack();
        s.push(v);
        while (!stack.isEmpty()) {
            int vertex = stack.pop();
            if (!marked[vertex]) {
                marked[vertex] = true;
                while (int w : G.adj(vertex)) {
                    if (!marked[w])
                        stack.push(w);
                }
            }
        }
    }
}
```
Depth-first search Analysis

- DFS marks all vertices reachable from s in time proportional to $|V| + |E|$ in the worst case.

- Initializing arrays marked takes time proportional to $|V|$.

- Each adjacency-list entry is examined exactly once and there are E such edges.

- Once we run DFS, we can check if vertex v is reachable from s in constant time. We can also find the $s \rightarrow v$ path (if it exists) in time proportional to its length.
Lecture 23: Graphs

- Undirected Graphs
 - Graph API
 - Depth-First Search
 - Breadth-First Search
 - Connected Components

- Directed Graphs
 - Digraph API
 - Depth-First Search
 - Breadth-First Search
 - Topological Sort
 - Strongly Connected Components

Some slides adopted from Algorithms 4th Edition or COS226
BREADTH-FIRST SEARCH

Breadth-first search

- Same method as for undirected graphs.
 - Every undirected graph is a digraph with edges in both directions.

- BFS (from source vertex S)
 - Put S on queue and mark S as visited.
 - Repeat until the queue is empty:
 - Dequeue vertex v.
 - Enqueue all unmarked vertices adjacent from v, and mark them.

- Typical applications:
 - Find the shortest (in terms of number of edges) directed path between two vertices in time proportional to |E| + |V|.
4.2 Directed BFS Demo
Lecture 23: Graphs

- Undirected Graphs
 - Graph API
 - Depth-First Search
 - Breadth-First Search
 - Connected Components

- Directed Graphs
 - Digraph API
 - Depth-First Search
 - Breadth-First Search
 - Topological Sort
 - Strongly Connected Components

Some slides adopted from Algorithms 4th Edition or COS226
Depth-first orders

- If we save the vertex given as argument to recursive dfs in a data structure, we have three possible orders of seeing the vertices:
 - **Preorder**: Put the vertex on a queue before the recursive calls.
 - **Postorder**: Put the vertex on a queue after the recursive calls.
 - **Reverse postorder**: Put the vertex on a stack after the recursive calls.
Depth-first orders

```java
public class DepthFirstOrder {
    private boolean[] marked; // marked[v] = has v been marked in dfs?
    private Queue<Integer> preorder; // vertices in preorder
    private Queue<Integer> postorder; // vertices in postorder
    private Stack<Integer> reversePostOrder; // vertices in reverse postorder

    /**
     * Determines a depth-first order for the digraph (G).
     * @param G the digraph
     */
    public DepthFirstOrder(Digraph G) {
        postorder = new Queue<Integer>();
        preorder = new Queue<Integer>();
        reversePostOrder = new Stack<Integer>();
        marked = new boolean[G.V()];
        for (int v = 0; v < G.V(); v++)
            if (!marked[v]) dfs(G, v);
    }

    // run DFS in digraph G from vertex v and compute preorder/postorder
    private void dfs(Digraph G, int v) {
        marked[v] = true;
        preorder.enqueue(v);
        for (int w : G.adj(v)) {
            if (!marked[w]) {
                dfs(G, w);
            }
        }
        postorder.enqueue(v);
        reversePostOrder.push(v);
    }
}
```
TOPOLOGICAL SORT

Depth-first orders
Topological sort

- **Goal**: Order the vertices of a DAG so that all edges point from an earlier vertex to a later vertex.

 - Think of modeling major requirements as a DAG.

 - Reverse postorder in DAG is a topological sort.

 - With DFS, we can topologically sort a DAG in $|E| + |V|$ time.
4.2 Topological Sort Demo
Summary

- Single-source reachability in a digraph: DFS/BFS.
- Shortest path in a digraph: BFS.
- Topological sort in a DAG: DFS.
Lecture 23: Graphs

- Undirected Graphs
 - Graph API
 - Depth-First Search
 - Breadth-First Search
 - Connected Components
- Directed Graphs
 - Digraph API
 - Depth-First Search
 - Breadth-First Search
 - Topological Sort
 - Strongly Connected Components

Some slides adopted from Algorithms 4th Edition or COS226
Is a digraph strongly connected?

- Pick a random starting vertex s.
- Run DFS/BFS starting at s.
 - If have not reached all vertices, return false.
- Reverse edges.
- Run DFS/BFS again on reversed graph.
 - If have not reached all vertices, return false.
 - Else return true.
Lecture 23: Graphs

- Undirected Graphs
 - Graph API
 - Depth-First Search
 - Breadth-First Search
 - Connected Components
- Directed Graphs
 - Digraph API
 - Depth-First Search
 - Breadth-First Search
 - Topological Sort
 - Strongly Connected Components

Some slides adopted from Algorithms 4th Edition or COS226
Readings:

▸ Textbook: Chapter 4.1 (Pages 522-556), Chapter 4.2 (Pages 566-594)

▸ Website:
 ▸ https://algs4.cs.princeton.edu/41graph/
 ▸ https://algs4.cs.princeton.edu/42digraph/

Practice Problems:

▸ 4.1.1-4.1.6, 4.1.9, 4.1.11

▸ 4.2.1-4.27