22: Priority Queues and Heapsort

David Kauchak

Alexandra Papoutsaki
Lecture 22: Priority Queues and Heapsort

- Priority Queue
- Heapsort
Priority Queue ADT

- Two operations:
 - Delete the maximum
 - Insert

- Applications: load balancing and interruption handling in OS, Huffman codes for compression, A* search for AI, Dijkstra’s and Prim's algorithm for graph search, etc.

- How can we implement a priority queue efficiently?
Option 1: Unordered array

- The lazy approach where we defer doing work (deleting the maximum) until necessary.
- Insert is $O(1)$ (will be implemented as push in stacks).
- Delete maximum is $O(n)$ (have to traverse the entire array to find the maximum element).
public class UnorderedArrayMaxPQ<Key extends Comparable<Key>> {
 private Key[] pq; // elements
 private int n; // number of elements

 // set initial size of heap to hold size elements
 public UnorderedArrayMaxPQ(int capacity) {
 pq = (Key[]) new Comparable[capacity];
 n = 0;
 }

 public boolean isEmpty() { return n == 0; }
 public int size() { return n; }
 public void insert(Key x) { pq[n++] = x; }

 public Key delMax() {
 int max = 0;
 for (int i = 1; i < n; i++)
 if (less(max, i)) max = i;
 exch(max, n-1);

 return pq[--n];
 }

 private boolean less(int i, int j) {
 return pq[i].compareTo(pq[j]) < 0;
 }

 private void exch(int i, int j) {
 Key swap = pq[i];
 pq[i] = pq[j];
 pq[j] = swap;
 }
}
Practice Time

Given an empty array of capacity 10, perform the following operations in a priority queue based on an unordered array (lazy approach):

1. Insert P
2. Insert Q
3. Insert E
4. Delete max
5. Insert X
6. Insert A
7. Insert M
8. Delete max
9. Insert P
10. Insert L
11. Insert E
12. Delete max
PRIORITY QUEUE

Answer

<table>
<thead>
<tr>
<th>0 1 2 3 4 5 6 7 8 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
</tr>
<tr>
<td>insert P</td>
</tr>
<tr>
<td>Q</td>
</tr>
<tr>
<td>insert Q</td>
</tr>
<tr>
<td>P Q E</td>
</tr>
<tr>
<td>insert E</td>
</tr>
<tr>
<td>P E X</td>
</tr>
<tr>
<td>delete-max -> Q</td>
</tr>
<tr>
<td>P E X A</td>
</tr>
<tr>
<td>insert X</td>
</tr>
<tr>
<td>P E X A M</td>
</tr>
<tr>
<td>insert M</td>
</tr>
<tr>
<td>P E M A X</td>
</tr>
<tr>
<td>delete-max -> X</td>
</tr>
<tr>
<td>P E M A P</td>
</tr>
<tr>
<td>insert P</td>
</tr>
<tr>
<td>P E M A P L</td>
</tr>
<tr>
<td>insert L</td>
</tr>
<tr>
<td>P E M A P L E</td>
</tr>
<tr>
<td>insert E</td>
</tr>
<tr>
<td>E E M A P L X</td>
</tr>
<tr>
<td>delete-max -> P</td>
</tr>
</tbody>
</table>
Option 2: Ordered array

- The *eager* approach where we do the work (keeping the list sorted) up front to make later operations efficient.

- Insert is $O(n)$ (we have to find the index to insert and shift elements to perform insertion).

- Delete maximum is $O(1)$ (just take the last element which will be the maximum).
public class OrderedArrayMaxPQ<Key extends Comparable<Key>> {
 private Key[] pq; // elements
 private int n; // number of elements

 // set initial size of heap to hold size elements
 public OrderedArrayMaxPQ(int capacity) {
 pq = (Key[]) new Comparable[capacity];
 n = 0;
 }

 public boolean isEmpty() { return n == 0; }
 public int size() { return n; }
 public Key delMax() { return pq[--n]; }

 public void insert(Key key) {
 int i = n-1;
 while (i >= 0 && less(key, pq[i])) {
 pq[i+1] = pq[i];
 i--;
 }
 pq[i+1] = key;
 n++;
 }

 private boolean less(Key v, Key w) {
 return v.compareTo(w) < 0;
 }
}
Practice Time

- Given an empty array of capacity 10, perform the following operations in a priority queue based on an ordered array (eager approach):

 1. Insert P
 2. Insert Q
 3. Insert E
 4. Delete max
 5. Insert X
 6. Insert A
 7. Insert M
 8. Delete max
 9. Insert P
 10. Insert L
 11. Insert E
 12. Delete max
Answer

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>P</td>
<td>Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>P</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>P</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>E</td>
<td>P</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>E</td>
<td>M</td>
<td>P</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>E</td>
<td>M</td>
<td>P</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>E</td>
<td>M</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>E</td>
<td>M</td>
<td>P</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>E</td>
<td>L</td>
<td>M</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>E</td>
<td>E</td>
<td>L</td>
<td>M</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>E</td>
<td>E</td>
<td>L</td>
<td>M</td>
<td>P</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- insert P
- insert Q
- insert E
- delete-max ⇒ Q
- insert X
- insert A
- insert M
- delete-max ⇒ X
- insert P
- insert L
- insert E
- delete-max ⇒ P
Option 3: Binary heap

- Will allow us to both insert and delete max in $O(\log n)$ running time.
- There is no way to implement a priority queue in such a way that insert and delete max can be achieved in $O(1)$ running time.
- Priority queues are synonyms to binary heaps.
Practice Time

- Given an empty binary heap that represents a priority queue, perform the following operations:

1. Insert P
2. Insert Q
3. Insert E
4. Delete max
5. Insert X
6. Insert A
7. Insert M
8. Delete max
9. Insert P
10. Insert L
11. Insert E
12. Delete max
Answer
Lecture 22: Priority Queues and Heapsort

- Priority Queue
- Heapsort
Basic plan for heap sort

- Use a priority queue to develop a sorting method that works in two steps:
 - 1) **Heap construction**: build a binary heap with all n keys that need to be sorted.
 - 2) **Sortdown**: repeatedly remove and return the maximum key.
O(n) Heap construction

- Ignore all leaves (indices \(n/2+1,...,n\)).
- \texttt{for(int k = n/2; k >= 1; k--)}
 \texttt{sink(a, k, n)};
- **Key insight:** After \texttt{sink(a, k, n)} completes, the subtree rooted at \(k\) is a heap.

![Diagram](image)
Practice Time

- Run the first step of heapsort, heap construction, on the array [2, 9, 7, 6, 5, 8].
Answer: Heap construction

Starting point (arbitrary order)

$k = n/2 = 6/2 = 3$

sink(3, 6)

$k = 2$

sink(2, 6)

$k = 1$

sink(1, 6)

result (heap-ordered)
Sortdown

- Remove the maximum, one at a time, but leave in array instead of nulling out.

```plaintext
while(n>1){
    exch(a, 1, n--);
    sink(a, 1, n);
}
```

- **Key insight**: After each iteration the array consists of a heap-ordered subarray followed by a sub-array in final order.
HEAPSORT

Sortdown

- while(n>1){
 exch(a, 1, n--);
 sink(a, 1, n);
}
Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

sink 1
Practice Time

- Given the heap you constructed before, run the second step of heapsort, sortdown, to sort the array [2,9,7,6,5,8].
HEAPSORT

Answer: Sortdown

Starting point (heap-ordered)

Exch(1,6) Sink(1,5)

Exch(1,5) Sink(1,4)

Exch(1,3) Sink(1,2)

Result (sorted)
Heapsort analysis

- Heap construction makes $O(n)$ exchanges and $O(n)$ compares.
- Sortdown and therefore the entire heap sort $O(n \log n)$ exchanges and compares.
- In-place sorting algorithm with $O(n \log n)$ worst-case!

Remember:

- mergesort: not in place, requires linear extra space.
- quicksort: quadratic time in worst case.

Heapsort is optimal both for time and space in terms of Big-O, but:

- Inner loop longer than quick sort.
- Poor use of cache.
- Not stable.
Sorting: Everything you need to remember about it!

<table>
<thead>
<tr>
<th>Which Sort</th>
<th>In place</th>
<th>Stable</th>
<th>Best</th>
<th>Average</th>
<th>Worst</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>X</td>
<td></td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>n exchanges</td>
</tr>
<tr>
<td>Insertion</td>
<td>X</td>
<td>X</td>
<td>$O(n)$</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>Use for small arrays or partially ordered</td>
</tr>
<tr>
<td>Merge</td>
<td></td>
<td>X</td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
<td>Guaranteed performance; stable</td>
</tr>
<tr>
<td>Quick</td>
<td>X</td>
<td></td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
<td>$O(n^2)$</td>
<td>$n \log n$ probabilistic guarantee; fastest!</td>
</tr>
<tr>
<td>Heap</td>
<td>X</td>
<td></td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
<td>Guaranteed performance; in place</td>
</tr>
</tbody>
</table>
Lecture 22: Priority Queues and Heapsort

- Priority Queue
- Heapsort
Readings:

- Textbook:
 - Chapter 2.4 (Pages 308-327), 2.5 (336-344)

- Website:
 - Priority Queues: https://algs4.cs.princeton.edu/24pq/

- Visualization:
 - Create (nlogn) and heapsort: https://visualgo.net/en/heap

Practice Problems:

- 2.4.1-2.4.11. Also try some creative problems.