
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

20-21: Hash tables

SEARCHING

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

Alexandra Papoutsaki

TODAY’S LECTURE IN A NUTSHELL

Lecture 20-21: Hash tables

▸ Hash functions

▸ Separate chaining

▸ Open addressing

2

Some slides adopted from Algorithms 4th Edition or COS226

HASHING

Basic plan for implementing dictionaries using hashing

▸ Goal: Build a key-indexed array (table or hash table or hash map) to model
dictionaries for efficient (search).

▸ Hash function: Method to transform key into an array index

▸ Also known as the hash value.

‣ hash(“California”) = 2

▸ Issues:

▸ Computing the hash function.

▸ Method for checking whether two keys are equal.

▸ How to handle collisions when two keys hash to same index.

O(1)

3

(California,
39.24)

0

1

2

3

4

‣ hash(“Texas”) = 2 ???

HASHING

Computing hash function

▸ Ideal scenario: Take any key and uniformly “scramble” it to produce a table/dictionary index.

▸ Requirements:

▸ Consistent - equal keys must produce the same hash value.

▸ Efficient - quick computation of hash value.

▸ Uniform distribution - every index is equally likely for each key.

▸ Although thoroughly researched, still problematic in practical applications.

▸ Examples: Dictionary where keys are social security numbers.

▸ Bad: if we choose the first three digits (geographical region and time).

▸ Better: if we choose the last three digits.

▸ Best: use all data.

▸ Practical challenge: Need different approach for each key type.

4

HASHING

Hashing in Java

▸ All Java classes inherit a method hashCode(), which returns an integer.

▸ Requirement: If x.equals(y) then it should be
x.hashCode()==y.hashCode().

▸ Ideally (but not necessarily): If !x.equals(y) then it should be
x.hashCode()!=y.hashCode().

▸ Default implementation: Memory address of x.

▸ Need to override both equals() and hashCode() for custom types.

▸ Already done for us for Integer, Double, etc.

5

HASHING

Equality test in Java

▸ Requirement: For any objects x, y, and z.

▸ Reflexive: x.equals(x) is true.

▸ Symmetric: x.equals(y) iff y.equals(x).

▸ Transitive: if x.equals(y) and y.equals(z) then
x.equals(z).

▸ Non-null: if x.equals(null) is false.

▸ If you don’t override it, the default implementation checks
whether x and y refer to the same object in memory.

6

HASHING

Java implementations of equals() for user-defined types

▸ public class Date {  
 private int month;  
 private int day;  
 private int year;  
 …  
 public boolean equals(Object y) {  
 if (y == this) return true;  
 if (y == null) return false;  
 if (y.getClass() != this.getClass()) return false;  
 Date that = (Date) y;  
 return (this.day == that.day &&  
 this.month == that.month &&  
 this.year == that.year);  
 }  
}

7

HASHING

General equality test recipe in Java: x.equals(y)

▸ Optimization for reference equality.

▸ if (y == this) return true;

▸ Check against null.

▸ if (y == null) return false;

▸ Check that two objects are of the same type.

▸ if (y.getClass() != this.getClass()) return false;

▸ Cast them.

▸ Date that = (Date) y;

▸ Compare each significant field (i.e. instance variable).

▸ return (this.day == that.day && this.month == that.month && this.year == that.year);

▸ If a field is a primitive type, use ==.

▸ If a field is an object, use equals().

▸ If field is an array of primitives, use Arrays.equals().

▸ If field is an area of objects, use Arrays.deepEquals().

8

HASHING

Java implementations of hashCode()

▸ public final class Integer {  
 private final int value;  
 …  
 public int hashCode() {  
 return (value);  
 }  
}

▸ public final class Boolean {  
 private final boolean value;  
 …  
 public int hashCode() {  
 if(value) return 1231;  
 else return 1237;  
 }  
}

9

HASHING

Java implementations of hashCode() for user-defined types

▸ public class Date {  
 private int month;  
 private int day;  
 private int year;  
 …  
 public int hashCode() {  
 int hash = 1;  
 hash = 31*hash + ((Integer) month).hashCode();  
 hash = 31*hash + ((Integer) day).hashCode();  
 hash = 31*hash + ((Integer) year).hashCode();  
 return hash;  
 //could be also written as  
 //return Objects.hash(month, day, year); 
 }  
}

10

31x+y rule

HASHING

General hash code recipe in Java

▸ Combine each significant field using the 31x+y rule.

▸ Shortcut 1: use Objects.hash() for all fields (except arrays).

▸ Shortcut 2: use Arrays.hashCode() for primitive arrays.

▸ Shortcut 3: use Arrays.deepHashCode() for object arrays.

11

HASHING

Modular hashing

▸ Hash code: an int between and

▸ Hash value: an int between 0 and , where is the hash table size (typically a prime number or power of 2).

▸ The class that implements the dictionary of size should implement a hash function. Examples:

▸ private int hash (Key key){  
 return key.hashCode() % m;  
}

▸ Bug! Might map to negative number.

▸ private int hash (Key key){  
 return Math.abs(key.hashCode()) % m;  
}

▸ Very unlikely bug. For a hash code of , Math.abs will return a negative number!

▸ private int hash (Key key){  
 return (key.hashCode() & 0x7fffffff) % m;  
}

▸ Correct.

−231 231 − 1

m − 1 m

m

−231

12

HASHING

Uniform hashing assumption

▸ Uniform hashing assumption: Each key is equally likely to hash to an
integer between and .

▸ Mathematical model: balls & bins. Toss balls uniformly at random into
 bins.

▸ Bad news: Expect two balls in the same bin after ~ tosses.

▸ Birthday problem: In a random group of 23 or more people, more
likely than not that two people will share the same birthday.

▸ Good news: load balancing

▸ When , the number of balls in each bin is “likely close” to .

0 m − 1

n
m

(πm /2)

n > > m n/m

13

TODAY’S LECTURE IN A NUTSHELL

Lecture 20-21: Hash tables

▸ Hash functions

▸ Separate chaining

▸ Open addressing

14

SEPARATE CHAINING

Separate/External Chaining (Closed Addressing)

▸ Use an array of distinct linked lists
(chains)
[H.P. Luhn, IBM 1953].

▸ Hash: Map key to integer between and
.

▸ Insert: Put key-value pair at front of i-th
chain (if not already there in which case we
only update the associated value).

▸ Search: Need to only search the i-th chain.

m < n

i 0
m − 1

15

SEPARATE CHAINING

Separate Chaining Example

16

▸ Let’s assume we implement a dictionary using hashing and separate chaining for
collisions.

▸ The size of the table is 5, that is .

▸ We will hash the keys S, E, A, R, C, H, E, X, A, M, P, L, E where I will provide you with
their hash values.

▸ Every time we hash a key, we go to the chain attached to that index and traverse
the linked list.

▸ If we find a node with the same key we want to insert, we just update its
corresponding value.

▸ If no node contains our key, we insert the key-value pair at the head of the
chain.

m = 5

SEPARATE CHAINING

Separate Chaining Example

17

0

1

2

3

4

Next step: Insert (S, 0)

SEPARATE CHAINING

Separate Chaining Example

18

Key Hash Value

S 2 0
0

1

2 S, 0

3

4

Next step: Insert (E, 1)

SEPARATE CHAINING

Separate Chaining Example

19

Key Hash Value

S 2 0
E 0 1

0 E, 1

1

2 S, 0

3

4

Next step: Insert (A, 2)

SEPARATE CHAINING

Separate Chaining Example

20

Key Hash Value
S 2 0
E 0 1
A 0 2

0 A, 2 E, 1

1

2 S, 0

3

4

Next step: Insert (R, 3)

SEPARATE CHAINING

Separate Chaining Example

21

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3

0 A, 2 E, 1

1

2 S, 0

3

4 R, 3

Next step: Insert (C, 4)

SEPARATE CHAINING

Separate Chaining Example

22

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4

0 A, 2 E, 1

1

2 S, 0

3

4 C, 4 R, 3

Next step: Insert (H, 5)

SEPARATE CHAINING

Separate Chaining Example

23

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4
H 4 5

0 A, 2 E, 1

1

2 S, 0

3

4 H, 5 C, 4 R, 3

Next step: Insert (E, 6)

SEPARATE CHAINING

Separate Chaining Example

24

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4
H 4 5
E 0 6

0 A, 2 E, 6

1

2 S, 0

3

4 H, 5 C, 4 R, 3

Next step: Insert (X, 7)

SEPARATE CHAINING

Separate Chaining Example

25

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4
H 4 5
E 0 6
X 2 7

0 A, 2 E, 6

1

2 X, 7 S, 0

3

4 H, 5 C, 4 R, 3

Next step: Insert (A, 8)

SEPARATE CHAINING

Separate Chaining Example

26

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4
H 4 5
E 0 6
X 2 7
A 0 8

0 A, 8 E, 6

1

2 X, 7 S, 0

3

4 H, 5 C, 4 R, 3

Next step: Insert (M, 9)

SEPARATE CHAINING

Separate Chaining Example

27

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4
H 4 5
E 0 6
X 2 7
A 0 8
M 4 9

0 A, 8 E, 6

1

2 X, 7 S, 0

3

4 M, 9 H, 5 C, 4 R, 3

Next step: Insert (P, 10)

SEPARATE CHAINING

Separate Chaining Example

28

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4
H 4 5
E 0 6
X 2 7
A 0 8
M 4 9
P 3 10

0 A, 8 E, 6

1

2 X, 7 S, 0

3 P, 10

4 M, 9 H, 5 C, 4 R, 3

Next step: Insert (L, 11)

SEPARATE CHAINING

Separate Chaining Example

29

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4
H 4 5
E 0 6
X 2 7
A 0 8
M 4 9
P 3 10
L 3 11

0 A, 8 E, 6

1

2 X, 7 S, 0

3 L, 11 P, 10

4 M, 9 H, 5 C, 4 R, 3

Next step: Insert (E, 12)

SEPARATE CHAINING

Separate Chaining Example

30

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4
H 4 5
E 0 6
X 2 7
A 0 8
M 4 9
P 3 10
L 3 11
E 0 12

0 A, 8 E, 12

1

2 X, 7 S, 0

3 L, 11 P, 10

4 M, 9 H, 5 C, 4 R, 3

SEPARATE CHAINING

Practice Time

31

▸ Assume a dictionary implemented using hashing and separate
chaining for handling collisions.

▸ Let be the hash table size.

▸ For simplicity, we will assume that keys are integers and that
the hash value for each key is calculated as .

▸ Insert the key-value pairs (47, 0), (3, 1), (28, 2), (14, 3), (9,4),
(47,5) and show the resulting dictionary.

m = 7

k h(k) = k % m

0 14, 3 28, 2

1

2 9, 4

3 3, 1

4

5 47, 5

6

SEPARATE CHAINING

Answer

32

Key Hash Value

47 5 0

3 3 1

28 0 2

14 0 3

9 2 4

47 5 5

SEPARATE CHAINING

Dictionary with separate chaining implementation

public class SeparateChainingLiteHashST<Key, Value> {

 private int m = 128; // hash table size
 private Node[] st = new Node[m];  
 // array of linked-list dictionaries.
 //Node is inner class that holds keys and values of type Object 
 
 public Value get(Key key) {
 int i = hash(key);
 for (Node x = st[i]; x != null; x = x.next;)  
 if (key.equals(x.key)) return (Value) x.val;  
 return null;
 }  
 
 public void put(Key key, Value val) {
 int i = hash(key);
 for (Node x = st[i]; x != null; x = x.next;)  
 if (key.equals(x.key)) {  
 x.val = val;  
 return;  
 }  
 st[i] = new Node(key, val, st[i];
 }

33

SEPARATE CHAINING

Analysis of Separate Chaining

▸ Under uniform hashing assumption, if keys to hash in a table
with size , the length of each chain is ~ .

▸ Consequence: Number of probes (calls to either equals() or
hashCode()) for search/insert is proportional to (times
faster than sequential search in a single chain).

▸ too large -> too many empty chains.

▸ too small -> chains too long.

▸ Typical choice: ~ -> constant time per operation.

n
m n/m

n/m m

m

m

m 1/4n

34

SEPARATE CHAINING

Resizing in a separate-chaining hash table

▸ Goal: Average length of chain = constant lookup.

▸ Double hash table size when .

▸ Halve hash table size when .

▸ Need to rehash all keys when resizing (hashCode value for
key does not change, but hash value changes as it depends
on table size).

n/m

n/m ≥ 8

n/m ≤ 2

35

SEPARATE CHAINING

Parting thoughts about separate-chaining

▸ Deletion: Easy! Hash key, find its chain, search for a node that
contains it and remove it.

▸ Ordered operations: not supported. Instead, look into
(balanced) BSTs.

▸ Fastest and most widely used dictionary implementation for
applications where key order is not important.

36

TODAY’S LECTURE IN A NUTSHELL

Lecture 20-21: Hash tables

▸ Hash functions

▸ Separate chaining

▸ Open addressing

37

OPEN ADDRESSING

Linear Probing

▸ Belongs in the open addressing family.

▸ Alternate approach to handle collisions when .

▸ Maintain keys and values in two parallel arrays.

▸ When a new key collides, find next empty slot and put it there.

▸ If the array is full, the search would not terminate.

m > n

38

OPEN ADDRESSING

Linear Probing

▸ Hash: Map key to integer between and .

▸ Insert: Put at index if free. If not, try , , etc.

▸ Search: Search table index . If occupied but no match, try , , etc

▸ If you find a gap then you know that it does not exist.

▸ Table size must be greater than the number of key-value pairs .

i 0 m − 1

i i + 1 i + 2

i i + 1 i + 2

m n

39

TEXT 40

OPEN ADDRESSING

Linear Probing Example

41

OPEN ADDRESSING

Practice time

42

▸ Assume a dictionary implemented using hashing and linear
probing for handling collisions.

▸ Let be the hash table size.

▸ For simplicity, we will assume that keys are integers and that
the hash value for each key is calculated as .

▸ Insert the key-value pairs (47, 0), (3, 1), (28, 2), (14, 3), (9,4),
(47,5) and show the resulting dictionary.

m = 7

k h(k) = k % m

Keys 28 14 9 3 47

Values 2 3 4 1 5

Indices 0 1 2 3 4 5 6

OPEN ADDRESSING

Answer

43

Key Hash Value
47 5 0
3 3 1

28 0 2
14 0 3
9 2 4

47 5 5

OPEN ADDRESSING

Dictionary with linear probing implementation

public class LinearProbingHashST<Key, Value> {

 private int m = 32768; // hash table size
 private Value[] Vals = (Value[]) new Object[m];  
 private Key[] Vals = (Key[]) new Object[m];
  
 public Value get(Key key) {
 for (int i = hash(key); keys[i] != null; i = (i+1) % m;)  
 if (key.equals(keys[i])) return vals[i];  
 return null;
 }  
 
 public void put(Key key, Value val) {
 int i;
 for (int i = hash(key); keys[i] != null; i = (i+1) % m;)  
 if (key.equals(keys[i])){  
 break;  
 }  
 keys[i] = key;  
 vals[i] = val;
 }

44

OPEN ADDRESSING

Primary clustering

▸ Cluster: a contiguous block of keys.

▸ Observation: new keys likely to hash in middle of big clusters.

45

OPEN ADDRESSING

Analysis of Linear Probing

▸ Proposition: Under uniform hashing assumption, the average number of probes in a linear-
probing hash table of size that contains keys is at most

▸ for search hits and

▸ for search misses and insertions.

▸ [Knuth 1963]

▸ Parameters:

▸ too large -> too many empty array entries.

▸ too small -> search time becomes too long.

▸ Typical choice for load factor: ~ -> constant time per operation.

m n = αm

1/2(1 +
1

1 − a
)

1/2(1 +
1

(1 − a)2
)

m

m

α = n /m 1/2

46

OPEN ADDRESSING

Resizing in a linear probing hash table

▸ Goal: Fullness of array (load factor) .

▸ Double hash table size when .

▸ Halve hash table size when .

▸ Need to rehash all keys when resizing (hash code does not
change, but hash value changes as it depends on table
size).

▸ Deletion not straightforward.

n/m ≤ 1/2

n/m ≥ 1/2

n/m ≤ 1/8

47

OPEN ADDRESSING

Quadratic Probing

▸ Another open addressing technique that aims to reduce
primary clustering by taking the original hash index and
adding successive values of an arbitrary quadratic polynomial
until an open slot is found.

▸ Modify the probe sequence so that
, where is the -th time

we have had a collision for the given index.

▸ When , then quadratic probing degrades to linear
probing.

h(k, i) = (h(k) + c1i + c2i2) % m, c2 ≠ 0 i i

c2 = 0

48

OPEN ADDRESSING

Quadratic probing - Example

▸ and .

▸ Assume , and key-value pairs to insert: (17,0), (33,1),
(18,2), (20,3), (44,4), (11,5), (19,6), (7,7).

h(k) = k % m h(k, i) = (h(k) + i2) % m

m = 13

49

0 1 2 3 4 5 6 7 8 9 10 11 12

17

17 33

17 18 33

17 18 33 20 Collision!

17 18 44 33 20 Collision!

17 18 44 33 20 11

17 18 44 33 20 19 11 Collision!

7 17 18 44 33 20 19 11

(17,0)

(33,1)

(18,2)

(20,3)

(44,4)

(11,5)

(19,6)

(7,7) Collision!

OPEN ADDRESSING

PRACTICE TIME

▸ and .

▸ Assume , and key-value pairs to insert: (3,0), (9,1), (18,2),
(0,3), (4,4), (36,5).

h(k) = k % m h(k, i) = (h(k) + i2) % m

m = 9

50

OPEN ADDRESSING

ANSWER

▸ and .

▸ Assume , and key-value pairs to insert: (3,0), (9,1), (18,2),
(0,3), (4,4), (36,5).

h(k) = k % m h(k, i) = (h(k) + i2) % m

m = 9

51

OPEN ADDRESSING

Summary for dictionary operations

52

Worst case Average case

Search Insert Delete Search Insert Delete

BST

balanced BST

Separate
chaining

Open
addressing

n n n log n

n n n 1

log n n

11

n n n 111

log n log n log nlog n log n log n

OPEN ADDRESSING

Hash tables vs balanced search trees

▸ Hash tables:

▸ Simpler to code.

▸ No effective alternative of unordered keys.

▸ Faster for simple keys (a few arithmetic operations versus compares).

▸ Balanced search trees:

▸ Stronger performance guarantee.

▸ Support for ordered dictionary operations.

▸ Easier to implement compareTo() than hashCode().

▸ Java includes both:

▸ Balanced search trees: java.util.TreeMap, java.util.TreeSet.

▸ Hash tables: java.util.HashMap, java.util.IdentityHashMap.

log n

53

TODAY’S LECTURE IN A NUTSHELL

Lecture 20-21: Hash tables

▸ Hash functions

▸ Separate chaining

▸ Open addressing

54

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Recommended Textbook: Chapter 3.4 (Pages 458-477)

▸ Website:

▸ https://algs4.cs.princeton.edu/34hash/

▸ Visualization:

▸ https://visualgo.net/en/hashtable

55

https://algs4.cs.princeton.edu/34hash/
https://visualgo.net/en/hashtable?slide=1

ASSIGNED READINGS AND PRACTICE PROBLEMS

Problem 1

▸ Insert the keys E, A, S, Y, Q, U, T, I, O, N in that order into an initially empty table of
m=5 lists, using separate chaining. Use the hash function 11*k%m to transform the
k-th letter of the English alphabet into a table index.

56

ASSIGNED READINGS AND PRACTICE PROBLEMS

ANSWER 1

▸ Insert the keys E, A, S, Y, Q, U, T, I, O, N in that order into an initially empty table of
m=5 lists, using separate chaining. Use the hash function 11*k%m to transform the
k-th letter of the English alphabet into a table index.

▸ 0 -> E -> Y -> T -> O

▸ 1 -> A -> U

▸ 2 -> Q

▸ 3 -> null

▸ 4 -> S -> I -> N

57

