CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

18: Binary Search Trees

Alexandra Papoutsaki
she/her/hers

Tom Yeh
he/him/his
Lecture 18: Binary Search Trees

- Heapsort
- Dictionaries
- Binary Search Trees

Some slides adopted from Algorithms 4th Edition or COS226
Option 3: Binary heap

- Will allow us to both insert and delete max in $O(\log n)$ running time.
- There is no way to implement a priority queue in such a way that insert and delete max can be achieved in $O(1)$ running time.
- Priority queues are synonyms to binary heaps.
Practice Time

- Given an empty binary heap that represents a priority queue, perform the following operations:

1. Insert P
2. Insert Q
3. Insert E
4. Delete max
5. Insert X
6. Insert A
7. Insert M
8. Delete max
9. Insert P
10. Insert L
11. Insert E
12. Delete max
Answer
Lecture 18: Heapsort, Dictionary, BST

- Heapsort
Basic plan for heap sort

- Use a priority queue to develop a sorting method that works in two steps:

 1) **Heap construction**: build a binary heap with all n keys that need to be sorted.

 2) **Sortdown**: repeatedly remove and return the maximum key.
O(n) Heap construction

- Construct complete binary tree with elements
- Ignore all leaves (indices n/2+1,...,n).

```c
for(int k = n/2; k >= 1; k--)
    sink(a, k, n);
```

- **Key insight**: After sink(a,k,n) completes, the subtree rooted at k is a heap.
Practice Time

- Run the first step of heapsort, heap construction, on the array [2, 9, 7, 6, 5, 8].
HEAPSORT

Answer: Heap construction

Starting point (arbitrary order)

\[k = \frac{n}{2} = \frac{6}{2} = 3 \]

\[\text{sink}(3, 6) \]

\[k = 2 \]

\[\text{sink}(2, 6) \]

Result (heap-ordered)
Sortdown

- Remove the maximum, one at a time, but leave in array instead of nulling out.

- \textbf{while}(n>1){
 \hspace{1em} \texttt{exch}(a, 1, n--);
 \hspace{1em} \texttt{sink}(a, 1, n);
}

- \textbf{Key insight}: After each iteration the array consists of a heap-ordered subarray followed by a sub-array in final order.
HEAPSORT

Sortdown

- **while**(*n>1*){
 - `exch(a, 1, n--);`
 - `sink(a, 1, n);`
}
Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

sink 1
Practice Time

- Given the heap you constructed before, run the second step of heapsort, sortdown, to sort the array [2,9,7,6,5,8].
Answer: Sortdown
Heapsort analysis

- Heap construction makes $O(n)$ exchanges and $O(n)$ compares.
- Sortdown and therefore the entire heap sort $O(n \log n)$ exchanges and compares.
- In-place sorting algorithm with $O(n \log n)$ worst-case!
- Remember:
 - mergesort: not in place, requires linear extra space.
 - quicksort: quadratic time in worst case.
- Heapsort is optimal both for time and space in terms of Big-O, but:
 - Inner loop longer than quick sort.
 - Poor use of cache. Why?
 - Not stable.
Sorting: Everything you need to remember about it!

<table>
<thead>
<tr>
<th>Which Sort</th>
<th>In place</th>
<th>Stable</th>
<th>Best</th>
<th>Average</th>
<th>Worst</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>X</td>
<td></td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>n exchanges</td>
</tr>
<tr>
<td>Insertion</td>
<td>X</td>
<td>X</td>
<td>$O(n)$</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>Use for small arrays or partially ordered</td>
</tr>
<tr>
<td>Merge</td>
<td></td>
<td>X</td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
<td>Guaranteed performance; stable</td>
</tr>
<tr>
<td>Quick</td>
<td>X</td>
<td></td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
<td>$O(n^2)$</td>
<td>$n \log n$ probabilistic guarantee; fastest!</td>
</tr>
<tr>
<td>Heap</td>
<td>X</td>
<td></td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
<td>Guaranteed performance; in place</td>
</tr>
</tbody>
</table>
Lecture 22: Priority Queues and Heapsort

- Priority Queue
- Heapsort
Readings:

- Textbook:
 - Chapter 2.4 (Pages 308-327), 2.5 (336-344)

- Website:
 - Priority Queues: https://algs4.cs.princeton.edu/24pq/

- Visualization:
 - Create (nlogn) and heapsort: https://visualgo.net/en/heap

Practice Problems:

- 2.4.1-2.4.11. Also try some creative problems.
ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

- Textbook:
 - Chapter 2.4 (Pages 308-327)
- Website:
 - Priority Queues: https://algs4.cs.princeton.edu/24pq/
- Visualization:
 - Insert and ExtractMax: https://visualgo.net/en/heap

Practice Problems:

- Practice with traversals of trees and insertions and deletions in binary heaps
Lecture 18: Binary Search Trees

- Dictionaries
- Binary Search Trees
Dictionaries

- Also known as: symbol tables, maps, indices, associative arrays.
- Key-value pair abstractions that support two operations:
 - **Insert** a key-value pair.
 - Given a key, **search** for the corresponding value.
- Supported either with built-in or external libraries by the majority of programming languages.
Basic symbol table API

- **public class** `ST <Key extends Comparable<Key>, Value>`

- `ST()`: create an empty symbol table. By convention, values are not `null`.

- `void put(Key key, Value val)`: insert key-value pair.
 - Overwrites old value with new value if key already exists.

- `Value get(Key key)`: return value associated with key.
 - Returns `null` if key not present.

- `boolean contains(Key key)`: is there a value associated with key?

- `Iterable keys()`: all the keys in the symbol table.

- `void delete(Key key)`: delete key and associated value.

- `boolean isEmpty()`: is the symbol table empty?

- `int size()`: number of key-value pairs.
Ordered symbol tables

- **min()**: 09:00:00 Chicago, 09:00:03 Phoenix, 09:00:13 Houston
- **get(09:00:13)**: 09:00:59 Chicago, 09:01:10 Houston
- **floor(09:05:00)**: 09:03:13 Chicago, 09:10:11 Seattle
- **select(7)**: 09:10:25 Seattle, 09:14:25 Phoenix, 09:19:32 Chicago, 09:19:46 Chicago
- **keys(09:15:00, 09:25:00)**: 09:21:05 Chicago, 09:22:43 Seattle, 09:22:54 Seattle, 09:25:52 Chicago
- **ceiling(09:30:00)**: 09:35:21 Chicago, 09:36:14 Seattle
- **max()**: 09:37:44 Phoenix

- size(09:15:00, 09:25:00) is 5
- rank(09:10:25) is 7
Ordered symbol table API

- **Key min():** smallest key.
- **Key max():** largest key.
- **Key floor(Key key):** largest key less than or equal to given key.
- **Key ceiling(Key key):** smallest key greater than or equal to given key.
- **int rank(Key key):** number of keys less that given key.
- **Key select(int k):** key with rank k.
- **Iterable keys():** all keys in symbol table in sorted order.
- **Iterable keys(int lo, int hi):** keys in [lo, ..., hi] in sorted order.
Printed symbol tables are all around us

- **Dictionary**: key = word, value = definition.
- **Encyclopedia**: key = term, value = article.
- **Phonebook**: key = name, value = phone number.
- **Math table**: key = math functions and input, value = function output.

Unsupported operations:
- Add a new key and associated value.
- Remove a given key and associated value.
- Change value associated with a given key.
Lecture 23: Binary Search Trees

- Dictionaries
- Binary search Trees
Definitions

- **Binary Search Tree**: A binary tree in symmetric order.

- **Symmetric order**: Each node has a key, and every node’s key is:
 - Larger than all keys in its left subtree.
 - Smaller than all keys in its right subtree.

- Our textbook uses BSTs to implement dictionaries, therefore each node holds a key-value pair. Other implementations hold only a key.
Differences between heaps and BSTs

<table>
<thead>
<tr>
<th></th>
<th>Heap</th>
<th>BST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used to implement</td>
<td>Priority queues</td>
<td>Dictionaries</td>
</tr>
<tr>
<td>Supported operations</td>
<td>Insert, delete max</td>
<td>insert, search, delete, ordered operations</td>
</tr>
<tr>
<td>What is inserted</td>
<td>Keys</td>
<td>Key-value pairs</td>
</tr>
<tr>
<td>Underlying data structure</td>
<td>(Resizing) array</td>
<td>Linked nodes</td>
</tr>
<tr>
<td>Tree shape</td>
<td>Complete binary tree</td>
<td>Depends on data</td>
</tr>
<tr>
<td>Ordering of keys</td>
<td>Heap-ordered</td>
<td>Symmetrically-ordered</td>
</tr>
<tr>
<td>Duplicate keys allowed?</td>
<td>Yes</td>
<td>No*</td>
</tr>
</tbody>
</table>

*: when BSTs used to implement dictionaries.
BST representation of dictionaries

- We will use an inner class Node that is composed by:
 - A Key that is comparable and a Value
 - A reference to the root nodes of the left (smaller keys) and right (larger keys) subtrees.
 - Potentially, the total number of nodes in the subtree that has root at this node.
- A BST has a reference to a Node root.
BST and Node implementation

```java
public class BST<Key extends Comparable<Key>, Value> {
    private Node root;                     // root of BST

    private class Node {
        private Key key;                  // sorted by key
        private Value val;                // associated value
        private Node left, right;        // roots of left and right subtrees
        private int size;                 // #nodes in subtree rooted at this

        public Node(Key key, Value val, int size) {
            this.key = key;
            this.val = val;
            this.size = size;
        }
    }
}
```
Search for a key

- If less than key in node go to left subtree.
- If greater than key in node go to right subtree.
- If given key and key at examined node are equal, search hit.
- Return value corresponding to given key, or \texttt{null} if no such key.
 - In other implementations, you return the last node you reached.
- Number of compares is equal to the depth of the node + 1.
Search example

Successful (left) and unsuccessful (right) search in a BST

- **Successful search for R**: Black nodes could match the search key. R is less than S so look to the left. Found R (search hit) so return value.

- **Unsuccessful search for T**: Gray nodes cannot match the search key. T is greater than S so look to the right. Link is null so T is not in tree (search miss).
Search - iterative implementation

```java
public Value get(Key key) {
    Node x = root;
    while (x != null) {
        int cmp = key.compareTo(x.key);
        if (cmp < 0) {
            x = x.left;
        } else if (cmp > 0) {
            x = x.right;
        } else if (cmp == 0) {
            return x.val;
        }
    }
    return null;
}
```
Search - recursive implementation

```java
• public Value get(Key key) {
    return get(root, key);
}

• private Value get(Node x, Key key) {
    if (x == null)
        return null;
    int cmp = key.compareTo(x.key);
    if (cmp < 0)
        return get(x.left, key);
    else if (cmp > 0)
        return get(x.right, key);
    else
        return x.val;
}
```
Practice Time

- Search for the keys 4 and 9 in the following BST:
Insert

- If less than key in node go left.
- If greater than key in node go right.
- If null, insert.
- If already exists, update value.
- Number of compares is equal to the depth of the node + 1.
Insert example

Insertion into a BST
BINARY SEARCH TREES

Insert

- **public** void put(Key key, Value val) {
 root = put(root, key, val);
}

private Node put(Node x, Key key, Value val) {
 if (x == null)
 return new Node(key, val, 1);
 int cmp = key.compareTo(x.key);
 if (cmp < 0)
 x.left = put(x.left, key, val);
 else if (cmp > 0)
 x.right = put(x.right, key, val);
 else
 x.val = val;
 x.size = 1 + size(x.left) + size(x.right);
 return x;
}
Practice Time

- Add the key-value pairs (4,3) and (9,2) in the following BST:
3.2 Binary Search Tree Demo
Tree shape

- The same set of keys can result to different BSTs based on their order of insertion.
- Number of compares for search/insert is equal to depth of node +1.
BSTs mathematical analysis

- If n distinct keys are inserted into a BST in random order, the expected number of compares of search/insert is $O(\log n)$.

 - If n distinct keys are inserted into a BST in random order, the expected height of tree is $O(\log n)$. [Reed, 2003].

- Worst case height is n but highly unlikely.

 - Keys would have to come (reversely) sorted!

- All ordered operations in a dictionary implemented with a BST depend on the height of the BST.
Hibbard deletion: Delete node which is a leaf

- Simply delete node.
- Example: delete 52 locates a node which is a leaf and removes it.
Hibbard deletion: Delete node with one child

- Delete node and replace it with its child.
- Example: delete 70 locates a node which has one child and replaces it with the child.
Hibbard deletion: Delete node with two children

- Delete node and replace it with successor (node with smallest of the larger keys). Move successor’s child (if any) where successor was.

- Example: delete 50 locates a node which has two children. Successor is 51.
public void delete(Key key) {
 root = delete(root, key);
}

private Node delete(Node x, Key key) {
 if (x == null) return null;

 int cmp = key.compareTo(x.key);
 if (cmp < 0)
 x.left = delete(x.left, key);
 else if (cmp > 0)
 x.right = delete(x.right, key);
 else {
 if (x.right == null)
 return x.left;
 if (x.left == null)
 return x.right;
 Node t = x; // replace with successor
 x = min(t.right);
 x.right = deleteMin(t.right);
 x.left = t.left;
 }
 x.size = size(x.left) + size(x.right) + 1;
 return x;
Practice Time

- Delete the node 21 following Hibbard’s deletion
Answer

- Delete the node 21 following Hibbard’s deletion
Hibbard’s deletion

- Unsatisfactory solution. If we were to perform many insertions and deletions the BST ends up being not symmetric and skewed to the left.
 - Extremely complicated analysis, but average cost of deletion ends up being \sqrt{n}. Let’s simplify things by saying it stays $O(\log n)$.
 - No one has proven that alternating between the predecessor and successor will fix this.

- Hibbard devised the algorithm in 1962. Still no algorithm for efficient deletion in Binary Search Trees!

- Overall, BSTs can have $O(n)$ worst-case for search, insert, and delete. We want to do better (see future lectures).
Lecture 23: Binary Search Trees

- Dictionaries
- Binary Search Trees
Readings:

- Textbook: Chapters 3.1 (Pages 362–386) and 3.2 (Pages 396–414)
- Website:
 - https://algs4.cs.princeton.edu/31elementary/
 - https://algs4.cs.princeton.edu/32bst/
- Visualization:
 - https://visualgo.net/en/bst

Practice Problems:

- 3.1.1-3.1.6, 3.2.1-3.2.13