CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

17: Heaps, Priority Queue, Heap Sort

Tom Yeh
he/him/his
Recap

- Binary Tree
- Tree Traversal: pre-order, in-order, post-order, and level order:
Tree Traversals

- Pre-order: 8, 5, 9, 7, 1, 12, 2, 4, 11, 3
- In-order: 9, 5, 1, 7, 2, 12, 8, 4, 3, 11
- Post-order: 9, 1, 2, 12, 7, 5, 3, 11, 4, 8
- Level-order: 8, 5, 4, 9, 7, 11, 1, 12, 3, 2
Lecture 17: Heaps, Priority Queues and Heapsort

- Binary Heaps
- Priority Queue
- Heapsort
Heap-ordered binary trees

- A binary tree is **heap-ordered** if the key in each node is larger than or equal to the keys in that node’s two children (if any).

- Equivalently, the key in each node of a heap-ordered binary tree is smaller than or equal to the key in that node’s parent (if any).

- No assumption of which child is smaller.

- Moving up from any node, we get a non-decreasing sequence of keys.

- Moving down from any node we get a non-increasing sequence of keys.
Heap-ordered binary trees

- The largest key in a heap-ordered binary tree is found at the root!
Binary heap representation

- We could use a linked representation but we would need three links for every node (one for parent, one for left subtree, one for right subtree).

- If we use **complete binary trees**, we can use an array instead.

- Compact arrays vs explicit links means memory savings and faster execution!

- Array access is much faster than chasing down pointers
Binary heaps

- **Binary heap**: the array representation of a complete heap-ordered binary tree.
 - Parent’s key is not smaller than children’s keys.
 - Children’s keys are not bigger than parent’s key.
- Max-heap but there are min-heaps, too.
Array representation of heaps

- Nothing is placed at index 0.
- Root is placed at index 1.
 - Easy indexing between parent/child
- Rest of nodes are placed in level order.
- No unnecessary indices and no wasted space because it’s complete.
- What's the relationship between node index and 2 children?
Reuniting immediate family members.

- For every node at index k, its parent is at index $\lfloor k/2 \rfloor$.
- Its two children are at indices $2k$ and $2k + 1$.
- We can travel up and down the heap by using this simple arithmetic on array indices.
- Accesses using indices are much faster than using pointers/references.
Swim/promote/percolate up/bottom up reheapify

- Scenario: a key becomes larger than its parent therefore it violates the heap-ordered property.

- To eliminate the violation:
 - Exchange key in child with key in parent.
 - Repeat until heap order restored.
Swim/promote/percolate up

private void swim(int k) {
 while (k > 1 && less(k/2, k)) {
 exch(k, k/2);
 k = k/2;
 }
}
Binary heap: insertion

- **Insert**: Add node at **end in bottom level**, then **swim it up**.

- **Cost**: At most \(\log n + 1 \) compares.

```java
public void insert(Key x) {
pq[++n] = x;
swim(n);
}
```
Practice Time

- Insert 47 in this binary heap.
Answer
Sink/demote/top down heapify

- Scenario: a key becomes smaller than one (or both) of its children’s keys.

- To eliminate the violation:
 - Exchange key in parent with key in larger child.
 - Repeat until heap order is restored.
private void sink(int k) {
 while (2*k <= n) {
 int j = 2*k;
 if (j < n && less(j, j+1))
 j++;
 if (!less(k, j))
 break;
 exch(k, j);
 k = j;
 }
}
Practice Time

- Sink 7 to its appropriate place in this binary heap.
Answer
Binary heap: return (and delete) the maximum

- **Delete max**: Exchange root with node at end. Return it and delete it. Sink the new root down.

- **Cost**: At most $2 \log n$ compares. Why?

```java
public Key delMax() {
    Key max = pq[1];
    exch(1, n--);
    sink(1);
    pq[n+1] = null;
    return max;
}
```
Binary heap: return (and delete) the maximum

- **Delete max**: Exchange root with node at end. Return it and delete it. Sink the new root down.

- **Cost**: At most $2 \log n$ compares. Why?

```java
public Key delMax() {
    Key max = pq[1];
exch(1, n--);
sink(1);
pq[n+1] = null;
return max;
}
```

```java
private void sink(int k) {
    while (2*k <= n) {
        int j = 2*k;
        if (j < n && less(j, j+1))
            j++;
        if (!less(k, j))
            break;
exch(k, j);
k = j;
    }
}
```
Binary heap: delete and return maximum
Practice Time

- Delete max (and return it!)
Answer
Things to remember about runtime complexity of heaps

- Insertion is $O(\log n)$.
- Delete max is $O(\log n)$.
- Space efficiency is $O(n)$.
Things to remember about runtime complexity of heaps

- Insertion is $O(\log n)$.
- Delete max is $O(\log n)$.
- Space efficiency is $O(n)$.
- Array with complete tree
2.4 Binary Heap Demo
Lecture 17: Heaps, Priority Queues and Heapsort

- Binary Heaps
- Priority Queue
- Heapsort
Priority Queue ADT

- Service best element first
 - Compared to FIFO or LIFO
- Two operations:
 - Delete (return) the maximum
 - Insert
- Applications: load balancing and interruption handling in OS, Huffman codes for compression, A* search for AI, Dijkstra’s and Prim's algorithm for graph search, etc.
- How can we implement a priority queue efficiently?
 - Unordered array, Ordered array, Binary Heap
Option 1: Unordered array

- The lazy approach where we defer doing work (deleting the maximum) until necessary.
- Insert is $O(1)$ (will be implemented as push in stacks).
- Delete maximum is $O(n)$ (have to traverse the entire array to find the maximum element).
public class UnorderedArrayMaxPQ<Key extends Comparable<Key>> {
 private Key[] pq; // elements
 private int n; // number of elements

 // set initial size of heap to hold size elements
 public UnorderedArrayMaxPQ(int capacity) {
 pq = (Key[]) new Comparable[capacity];
 n = 0;
 }

 public boolean isEmpty() { return n == 0; }
 public int size() { return n; }
 public void insert(Key x) { pq[n++] = x; } // Insert into index n

 public Key delMax() {
 int max = 0;
 for (int i = 1; i < n; i++)
 if (less(max, i)) max = i; // Find max element
 exch(max, n-1); // Exchange max with last element

 return pq[--n]; // Return last element
 }
 private boolean less(int i, int j) {
 return pq[i].compareTo(pq[j]) < 0;
 }

 private void exch(int i, int j) {
 Key swap = pq[i];
 pq[i] = pq[j];
 pq[j] = swap;
 }
}
Practice Time

- Given an empty array of capacity 10, perform the following operations in a priority queue based on an unordered array (lazy approach):

1. Insert P
2. Insert Q
3. Insert E
4. Delete max
5. Insert X
6. Insert A
7. Insert M
8. Delete max
9. Insert P
10. Insert L
11. Insert E
12. Delete max
PRIORITY QUEUE

Answer

```
<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>E</th>
<th>X</th>
<th>A</th>
<th>M</th>
<th>P</th>
<th>E</th>
<th>M</th>
<th>A</th>
<th>L</th>
<th>E</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

- insert P
- insert Q
- insert E
- delete-max \(\rightarrow Q\)
- insert X
- insert A
- insert M
- delete-max \(\rightarrow X\)
- insert P
- insert L
- insert E
- delete-max \(\rightarrow P\)
Option 2: Ordered array

- The *eager* approach where we do the work (keeping the list sorted) up front to make later operations efficient.

- Insert is $O(n)$ (we have to find the index to insert and shift elements to perform insertion).

- Delete maximum is $O(1)$ (just take the last element which will be the maximum).
public class OrderedArrayMaxPQ<Key extends Comparable<Key>> {
 private Key[] pq; // elements
 private int n; // number of elements

 // set initial size of heap to hold size elements
 public OrderedArrayMaxPQ(int capacity) {
 pq = (Key[]) (new Comparable[capacity]);
 n = 0;
 }

 public boolean isEmpty() { return n == 0; }
 public int size() { return n; }
 public Key delMax() { return pq[--n]; }

 public void insert(Key key) {
 int i = n-1;
 while (i >= 0 && less(key, pq[i])) {
 pq[i+1] = pq[i]; // Empty element is at index i
 i--;
 }
 pq[i+1] = key; // I+1 to get to the empty element
 n++;
 }

 private boolean less(Key v, Key w) {
 return v.compareTo(w) < 0;
 }
}
Practice Time

- Given an empty array of capacity 10, perform the following operations in a priority queue based on an ordered array (eager approach):

1. Insert P
2. Insert Q
3. Insert E
4. Delete max
5. Insert X
6. Insert A
7. Insert M
8. Delete max
9. Insert P
10. Insert L
11. Insert E
12. Delete max
Priorit Queue

Answer
Option 3: **Binary heap**

- Will allow us to both insert and delete max in $O(\log n)$ running time.
- There is no way to implement a priority queue in such a way that insert and delete max can be achieved in $O(1)$ running time.
- Priority queues are synonyms to binary heaps.
Stopped here
Practice Time

- Given an empty binary heap that represents a priority queue, perform the following operations:

1. Insert P
2. Insert Q
3. Insert E
4. Delete max
5. Insert X
6. Insert A
7. Insert M
8. Delete max
9. Insert P
10. Insert L
11. Insert E
12. Delete max
Answer
Lecture 22: Priority Queues and Heapsort

- Priority Queue
- Heapsort
Basic plan for heap sort

- Use a priority queue to develop a sorting method that works in two steps:
 - 1) Heap construction: build a binary heap with all n keys that need to be sorted.
 - 2) Sortdown: repeatedly remove and return the maximum key.
O(n) Heap construction

- Construct complete binary tree with elements
- Ignore all leaves (indices n/2+1,...,n).
- \(\text{for(int } k = n/2; k >= 1; k--) \)
 \[\text{sink}(a, k, n); \]
- **Key insight:** After \(\text{sink}(a,k,n) \) completes, the subtree rooted at \(k \) is a heap.
Practice Time

- Run the first step of heapsort, heap construction, on the array [2, 9, 7, 6, 5, 8].
Answer: Heap construction

1. Starting point (arbitrary order)

2. $k = n/2 = 6/2 = 3$
 $\text{sink}(3, 6)$

3. $k = 2$
 $\text{sink}(2, 6)$

4. $k = 1$
 $\text{sink}(1, 6)$
 Result (heap-ordered)
Sortdown

- Remove the maximum, one at a time, but leave in array instead of nulling out.

```java
while (n > 1) {
    exch(a, 1, n--);
    sink(a, 1, n);
}
```

- **Key insight**: After each iteration the array consists of a heap-ordered subarray followed by a sub-array in final order.
HEAPSORT

Sortdown

- while(n>1){
 exch(a, 1, n--);
 sink(a, 1, n);
}

result (sorted)
Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
Practice Time

- Given the heap you constructed before, run the second step of heapsort, sortdown, to sort the array [2,9,7,6,5,8].
Answer: Sortdown

HEAPSORT

Starting point (heap-ordered)

exch(1,5) sink(1,4)

exch(1,6) sink(1,5)

exch(1,3) sink(1,2)

result(sorted)
Heapsort analysis

- Heap construction makes $O(n)$ exchanges and $O(n)$ compares.
- Sortdown and therefore the entire heap sort $O(n \log n)$ exchanges and compares.
- In-place sorting algorithm with $O(n \log n)$ worst-case!
- Remember:
 - mergesort: not in place, requires linear extra space.
 - quicksort: quadratic time in worst case.
- Heapsort is optimal both for time and space in terms of Big-O, but:
 - Inner loop longer than quick sort.
 - Poor use of cache. Why?
 - Not stable.
Sorting: Everything you need to remember about it!

<table>
<thead>
<tr>
<th>Which Sort</th>
<th>In place</th>
<th>Stable</th>
<th>Best</th>
<th>Average</th>
<th>Worst</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>X</td>
<td></td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>n exchanges</td>
</tr>
<tr>
<td>Insertion</td>
<td>X</td>
<td>X</td>
<td>$O(n)$</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>Use for small arrays or partially ordered</td>
</tr>
<tr>
<td>Merge</td>
<td></td>
<td>X</td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
<td>Guaranteed performance; stable</td>
</tr>
<tr>
<td>Quick</td>
<td>X</td>
<td></td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
<td>$O(n^2)$</td>
<td>$n \log n$ probabilistic guarantee; fastest!</td>
</tr>
<tr>
<td>Heap</td>
<td>X</td>
<td></td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
<td>Guaranteed performance; in place</td>
</tr>
</tbody>
</table>
Lecture 22: Priority Queues and Heapsort

- Priority Queue
- Heapsort
ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

- Textbook:
 - Chapter 2.4 (Pages 308-327), 2.5 (336-344)

- Website:
 - Priority Queues: https://algs4.cs.princeton.edu/24pq/

- Visualization:
 - Create (nlogn) and heapsort: https://visualgo.net/en/heap

Practice Problems:

- 2.4.1-2.4.11. Also try some creative problems.
Readings:

- Textbook:
 - Chapter 2.4 (Pages 308-327)

- Website:
 - Priority Queues: https://algs4.cs.princeton.edu/24pq/

- Visualization:
 - Insert and ExtractMax: https://visualgo.net/en/heap

Practice Problems:

- Practice with traversals of trees and insertions and deletions in binary heaps