
Lab 9: Checkpoint 2 study guide Sorting



Information

• Checkpoint 2 is Tuesday, April 8 in class. 

• You can bring one hand-written (ok hand-written on tablets and then printed) 
back and front sheet of paper (i.e. two pages). NO slides shrunk and copy 
pasted. 

• Review lecture slides along with slides on practice problems and links to code. 
Go over quizzes, labs, and assignments. Use the practice problems in this 
presentation. If you want to read in more depth, use the recommended 
textbook (extra copies for in-lab use in the dept library) 

• Practice writing code on paper.

 



Review



Checkpoint II Review
• Sorting 

• Heaps/Priority Queues 

• Dictionaries 

• Misc 

• Practice Problems 

• Answers



Sorting
• Selection sort 

• Insertion sort 

• Merge sort 

• Quick sort 

• Heap sort



Sorting
• Given an array of n items, sort them in non-descending order based on a 

comparable key. 

• Cost model counts comparisons and exchanges (or array accesses). 

• Not in place: If linear extra memory is required. 

• Stable: If duplicate elements stay in the same order that they appear in the input. 

• Practice: https://visualgo.net/en/sorting (minus quick sort).

https://visualgo.net/en/sorting


Selection sort - Algorithm
public static <E extends Comparable<E>> void selectionSort(E[] a) {
        int n = a.length;
        for (int i = 0; i < n; i++) {
            int min = i;
            for (int j = i+1; j < n; j++) {
                if (a[j].compareTo(a[min])<0){
                    min = j;
                }
            }
            E temp = a[i];  
            a[i]=a[min];  
            a[min]=temp;
       }
   }



Selection sort - Key characteristics
• At the end of each iteration i: 

• a[0…i] is sorted. 

• no smaller item exists in a[i+1…n-1]. 

• In-place. 

• Not stable. 

•  comparisons for best/average/worst case. 

•  exchanges. 

• Slowest. Realistically, rarely used in practice unless small array and minimizing 
cost of exchanges is important.

O(n2)

O(n)



Selection sort - Example
• Sort: 1,4,9,3,8,2.

i iteration Result
0 1,4,9,3,8,2
1 1,2,9,3,8,4
2 1,2,3,9,8,4
3 1,2,3,4,8,9
4 1,2,3,4,8,9
5 1,2,3,4,8,9



Sorting
• Selection sort 

• Insertion sort 

• Merge sort 

• Quick sort 

• Heap sort



Insertion sort - Algorithm
public static <E extends Comparable<E>> void insertionSort(E[] a) {
        int n = a.length;
        for (int i = 0; i < n; i++) {
           for (int j = i; j > 0; j--) {
               if(a[j].compareTo(a[j-1])<0){ 
                   E temp = a[j];  
                    a[j]=a[j-1];  
                    a[j-1]=temp;               
               }
               else{
                  break;
               }
           }
       }
 }



Insertion sort - Key characteristics
• At the end of each iteration i: 

• a[0…i] is partially sorted. 

• In-place. 

• Stable. 

•  comparisons/exchanges for average/worst case. 

•  comparisons and 0 exchanges for best case (already sorted array). 

• Slow but in practice such little overhead that can be even faster than quick sort 
for small arrays. Often used below certain thresholds for merge sort and quick 
sort.

O(n2)

O(n)



Insertion sort - Example
• Sort: 1,4,9,3,8,2.

i iteration Result
0 1,4,9,3,8,2
1 1,4,9,3,8,2
2 1,4,9,3,8,2
3 1,3,4,9,8,2
4 1,3,4,8,9,2
5 1,2,3,4,8,9



Sorting
• Selection sort 

• Insertion sort 

• Merge sort 

• Quick sort 

• Heap sort



Merge sort - Algorithm
    private static <E extends Comparable<E>> void merge(E[] a, E[] aux, int lo, int mid, int hi) { 
        for (int k = lo; k <= hi; k++){ 
            aux[k] = a[k]; 
        } 
        int i = lo, j = mid + 1; 
        for (int k = lo; k <= hi; k++) { 
            if (i > mid) { // ran out of elements in the left subarray 
                a[k] = aux[j++]; 
            } else if (j > hi) { // ran out of elements in the right subarray 
                a[k] = aux[i++]; 
            } else if (aux[j].compareTo(aux[i]) < 0) { 
                a[k] = aux[j++]; 
            } else { 
                a[k] = aux[i++]; 
            } 
        } 
    } 

public static <E extends Comparable<E>> void mergeSort(E[] a) { 
    E[] aux = (E[]) new Comparable[a.length]; 
    mergeSort(a, aux, 0, a.length - 1); 
} 

private static <E extends Comparable<E>> void mergeSort(E[] a, E[] aux, int lo, int hi) { 
    if (hi <= lo){ 
        return; 
    } 
    int mid = lo + (hi - lo) / 2; 
    mergeSort(a, aux, lo, mid); 
    mergeSort(a, aux, mid+1, hi); 
    merge(a, aux, lo, mid, hi); 
} 



Merge sort - Key characteristics
• Divide till you reach an array of a single element and conquer by merging two 

already-sorted subarrays into a sorted larger one. 

• Not in-place, requires linear extra memory. On-disk sort assignment showed how 
to use the disk if memory is not enough. 

• Stable. 

•  comparisons/array accesses for best/average/worst case. 

• Stable performance, preferred for arrays of objects due to stability. Slower than 
quick sort on average. Not in-place so not good when memory is in short supply 
(e.g., embedded systems).

O(n log n)



Merge sort - Example
• Sort: 1,4,9,3,8,2.

1 4 9

1 4 9

1 4

1 4

1 4 9 3 8 2

1 4 9

3 8 2

3 8

3 8

3 8

2

2 3 8

1 2 3 4 8 9



Sorting
• Selection sort 

• Insertion sort 

• Merge sort 

• Quick sort 

• Heap sort



Quick sort - Algorithm
 private static <E extends Comparable<E>> int partition(E[] a, int lo, int hi) { 
        E pivot = a[lo]; // Choose leftmost element as pivot 
        int i = lo + 1; // Start from the next element 
        int j = hi; 

        while (true) { 
            // Move right until we find an element >= pivot 
            while (i <= j && a[i].compareTo(pivot) <= 0) { 
                i++; 
            } 
            // Move left until we find an element < pivot 
            while (j >= i && a[j].compareTo(pivot) > 0) { 
                j--; 
            } 
            // If pointers cross, break 
            if (i > j) { 
                break; 
            } 

            // Swap elements to ensure correct partitioning 
            E temp = a[i]; 
            a[i] = a[j]; 
            a[j] = temp; 

        } 

        // Swap pivot into its correct position 
        E temp = a[lo]; 
        a[lo] = a[j]; 
        a[j] = temp; 

        return j; // Return final pivot position 
    } 

public static <E extends Comparable<E>> void quickSort(E[] a) { 
        quickSort(a, 0, a.length - 1); 
    } 

private static <E extends Comparable<E>> void quickSort(E[] a, int 
lo, int hi) { 
        if (lo < hi){ 
            int pivot = partition(a, lo, hi); 
            quickSort(a, lo, pivot - 1); 
            quickSort(a, pivot + 1, hi); 
        } 

    } 



Quick sort - Key characteristics
• Swap smaller elements than pivot to go to left, and larger elements to go to right 

subarray. 

• In-place. 

• Not stable. 

•  comparisons/exchanges for best/average case. 

•  comparisons/exchanges for worst case (already (reversely) sorted array, 
where pivot is always the smallest/largest element). 

• Preferred for arrays of primitives since stability does not matter. Fastest on 
average but if unlucky quadratic (can avoid with high likelihood if shuffle first). In-
place so good choice for memory efficient applications with tolerance for 
occasional slowdowns.

O(n log n)

O(n2)



Quick sort - Example
• Sort: 4,1,9,3,8,2 Iteration 1 

[4, 1, 9, 3, 8, 2]        i = 1, j = 5 

swap 2 and 9 ->  [4, 1, 2, 3, 8, 9]    i = 2, j = 5 

swap 4 (pivot) and 3 -> [3, 1, 2, 4, 8, 9]  i = 4,  j = 3 

new pivot is 3 for [3, 1, 2] and 8 for [8, 9]
Iteration 2 

[3, 1, 2, X, X, X]        i = 1, j = 2 

swap 3 (pivot) and 2 ->  [2, 1, 3, X, X, X]    i = 3, j = 2 

Iteration 3 

[2, 1, X, X, X, X]        i = 1, j = 1 

swap 2 (pivot) and 1 -> [1, 2, X, X, X, X]        i = 2, j = 1 

Iteration 4 

Next pivot is 1, nothing happens - single item already 
sorted 

Iteration 5 

[X, X, X, X, 8, 9]        i = 5, j = 5 

Swap 8 (pivot) with itself -> [X, X, X, X, 8, 9]   i = 5, j = 4 

Iteration 6 

Next pivot is 9, nothing happens - single item already 
sorted 

[1, 2, 3, 4, 8, 9]



Sorting
• Selection sort 

• Insertion sort 

• Merge sort 

• Quick sort 

• Heap sort



Heap sort - Key characteristics
• Heap construction in : heapify subtrees rooted in internal nodes in reverse 

order.  

• There is also a slower  version with  insertions. Avoid it. 

• Sortdown in : Repeat: exchange root with last element and sink. 

• In-place. 

• Not stable. 

•  comparisons/exchanges for best/average/worst case. 

• Slower than merge sort (and quick sort) but does not require extra memory. 
Good choice for memory efficient applications that need stable performance.

O(n)

O(n log n) n

O(n log n)

O(n log n)



Heap sort - Example
• Sort: 1,4,9,3,8,2



Heap sort - Example
• Sort: 1,4,9,3,8,2,



Sorting: Everything you need to remember about it!



Heaps/Priority Queues
• Insertion  

• Deletion



Heaps
• Array representation of binary trees (at most 2 children for each node) which are 

complete (  minimal height and nodes in last level as left as possible) and 
heap-ordered (every node is larger/equal to both of its children - if any).  

• For node k, left child can be found at 2k, right child at 2k+1, and parent at k/2. 
Elements start at index 1. 

• Heaps and priority queues are often considered synonyms. 

• Practice: https://visualgo.net/en/heap (including heap sort).

O(logn)

https://visualgo.net/en/heap


Heaps
• Insertion  

• Deletion



Heaps - Insertion

Insert node at last level, as left as 
possible (or create a new level if 
last level is full). Swim newly-
added node to its proper place so 
that heap-ordered property is 
satisfied. 
At most  comparisons.O(log n)



Heaps
• Insertion  

• Deletion



Heaps - delete max

Exchange root with last element. 
Sink down the new root to its 
proper place so that heap-ordered 
property is satisfied. Nullify index of 
deleted element and return it.  
At most  comparisons. O(log n)



Dictionaries
• Binary search trees 

• B-trees



Dictionaries
• (Possibly ordered by key) collections of key-value pairs. Keys are comparable and 

unique. Values cannot be null. 

• Ultimate goal is to achieve fast search based on key. 

• Support insertion, deletion, and possibly ordered operations.



Binary search trees
• Binary trees with symmetric order (every node contains key larger than all keys in left subtree and smaller than 

all keys in right subtree). 

• Height can vary from  (compact like complete trees) all the way to  (sticks/twigs). 

• Practice: https://visualgo.net/en/bst  

public class BST<Key extends Comparable<Key>, Value> {
   private Node root;              // root of BST
 
   private class Node {
        private Key key;           // sorted by key
        private Value val;         // associated value
        private Node left, right;  // roots of left and right subtrees
        private int size;          // #nodes in subtree rooted at this

        public Node(Key key, Value val, int size) {
            this.key = key;
            this.val = val;
            this.size = size;
        }
    }

O(log n) O(n)

https://visualgo.net/en/bst


Binary search trees - search
• Compare key with root node. Smaller? Go left. Larger? Go right. 

• Search hit: If found node with key you’re looking for, return associated value. 

• Search miss: reached a null node, return null. 

    private Value get(Node x, Key key) { 
        if (x == null) return null; 
        int cmp = key.compareTo(x.key); 
        if (cmp < 0) return get(x.left, key); 
        else if (cmp > 0) return get(x.right, key); 
        else return x.val; 
    }



Binary search trees - search



Binary search trees - insertion
• Compare key with root node. Smaller? Go left. Larger? Go right. 

• If found node with same key, update value. 

• If reached a null node, insert (key,value) pair. 

public void insert(Key key, Value val) { //recursive implementation 
        root = insert(root, key, val); 
    } 

    // helper (@returns root of subtree at x) 
    private Node insert(Node x, Key key, Value val) { 
        if (x == null) return new Node(key, val, 1); //empty subtree, insert new node 
        int cmp = key.compareTo(x.key); 
        if (cmp < 0) x.left = insert(x.left, key, val); 
        else if (cmp > 0) x.right = insert(x.right, key, val); 
        else x.val = val; //update existing node 
        x.size = size(x.left) + size(x.right) + 1; //update size 
        return x; 
    }



Binary search trees - insertion



Binary search trees - Hibbard’s deletion
• Search for node: 

• Leaf? Just delete it. 

• Node with one child? Delete it and replace with child. 

• Node with two children? Delete and replace with successor (smallest of the 
larger keys) or predecessor. If successor/predecessor has a child, pass it to 
parent.



Binary search trees - delete node with key 21



2-3-4 tree
• Definition: A 2-3-4 search tree is either empty or consists of three types of nodes: 2-node, a 3-node, 

or a 4-node. 

• 2-node: one key, two children 

• 3-node: two keys, three children 

• 4-node: three keys, four children 

• Balanced 2-3-4 tree: A 2-3-4 search tree with with all paths from root to a null link has the same 
length, that is all leaves have the same depth.  

• From now on, 2-3-4 trees are assumed to be balanced.



L

2-3-4 Search Trees - Search
• Compare search key against (every) key in node. 

• Find interval containing search key (left, potentially middle, or right). 

• Follow associated link, recursively.



2-3-4 Search Trees - Insertion
• Search for key to bottom. Turn 2-nodes to 3-nodes and 3-nodes to 4-nodes. 

• 4-nodes are split by moving left middle key to parent.

C

A  B D  E  F A  B D

C  E

F  G

G



2-3-4 Search Trees - Performance
• O(log n) search/insertion/deletion but harder to implement because of different types of nodes. 

• For practice: https://yongdanielliang.github.io/animation/web/24Tree.html 

https://yongdanielliang.github.io/animation/web/24Tree.html


Summary for dictionary operations
• Worst case search and insert are  for BSTs. Not great! O(n)

Worst case Average case

Search Insert Delete Search Insert Delete

BST

B-trees log n

n n n log n log n n

log n log n log n log n log n



Misc
• Comparable/Comparator Interfaces 

• Iterable/Iterator Interfaces 

• BT Traversals



Comparable Interface
• Interface with a single method that we need to implement: public int 
compareTo(T that) 

• Implement it so that v.compareTo(w):
• Returns >0 if v is greater than w. 

• Returns <0 if v is smaller than w. 

• Returns 0 if v is equal to w. 

• Corresponds to natural ordering. 



Comparator Interface
• Sometimes the natural ordering is not the type of ordering we want. 

• Comparator is an interface which allows us to dictate what kind of ordering we want by 
implementing the method:  
public int compare(T this, T that) 

• Implement it so that compare(v, w):

• Returns >0 if v is greater than w. 

• Returns <0 if v is smaller than w. 

• Returns 0 if v is equal to w. 
‣ public static Comparator<ClassName> reverseComparator(){

return (ClassName a, ClassName b)->{return -a.compareTo(b)};  
    }



Misc
• Comparable/Comparator Interfaces 

• Iterable/Iterator Interfaces 

• BT Traversals



Iterable<T> Interface
• Interface with a single method that we need to implement: Iterator<T> 
iterator() 

• Class becomes iterable, that is it can be traversed with a for-each loop. 

• for (String student: students){  
       System.out.println(student);  
}



Iterator<T> Interface
• Interface with two methods that we need to implement: boolean hasNext() 

and T next(). 

• hasNext() checks whether there is any element we have not seen yet. 

• next() returns the next available element. 

• Always check if there are any available elements before returning the next one. 

• Typically a comparable class, has an inner class that implements Iterator. Outer 
class’s iterator method returns an instance of inner class. 

• Can also be implemented in a standalone class where collection to iterate over is 
passed in the constructor.



Misc
• Comparable/Comparator Interfaces 

• Iterable/Iterator Interfaces 

• BT Traversals



BT traversals
• Pre-order: mark root visited, left subtree, right subtree. 

• In-order: left subtree, mark root visited, right subtree. 

• Post-order: left subtree, right subtree, mark root visited. 

• Level-order: start at root, mark each node as visited level by level, from left to 
right.



Practice problems



Practice Problems
• Problem 1 - Sorting 

• Problem 2 - Heaps 

• Problem 3 - Tree traversals 

• Problem 4 - Binary Trees 

• Problem 5 - Binary Search Trees 

• Problem 6 - Iterators 

• Problem 7 - Balanced Binary Search Trees



Problem 1 - Sorting
• In the next slide, you can find a table whose first row (last column 0) contains an 

array of 18 unsorted numbers between 1 and 50. The last row (last column 6) 
contains the numbers in sorted order. The other rows show the array in some 
intermediate state during one of these five sorting algorithms: 

• 1-Selection sort 

• 2-Insertion sort 

• 3-Mergesort 

• 4-Quicksort (one partition only) 

• 5-Heapsort 

• Match each algorithm with the right row by writing its number (1-5) in the last 
column. 



12 11 35 46 20 43 42 47 44 32 16 10 40 18 41 21 28 15 0
11 12 20 35 42 43 46 47 44 32 16 10 40 18 41 21 28 15
12	
11	

11 10 15 20 43 42 47 44 32 16 35 40 18 41 21 28 46
10 11 12 15 16 43 42 47 44 32 20 35 40 18 41 21 28 46
43 32 42 28 20 40 41 21 15 11 16 10 35 18 12 44 46 47
11 12 20 35 46 43 42 47 44 32 16 10 40 18 41 21 28 15
10 11 12 15 16 18 20 21 28 32 35 40 41 42 43 44 46 47 6

Problem 1 - Sorting



Problem 2 - Heaps
• Consider the following max-heap: 

 
• Draw the heap after you insert key 13. 

• Suppose you delete the maximum key from the original heap. Draw the heap 
after you delete 14.



Problem 3 - Tree Traversals
• Circle the correct binary tree(s) that would produce both of the following 

traversals: 

• Pre-order: C R B W O S T N Q 

• In-order: B R W O C S N T Q



Problem 4 - Binary Trees
• You are extending the functionality of the BinaryTree class that represents binary 

trees with the goal of counting the number of leaves. Remember that BinaryTree 
has a pointer to a root Node and the inner class Node has two pointers, left and 
right to the root nodes that correspond to its left and right subtrees.  

• You are given the following public method: 

  public int sumLeafTree()
    return sumLeafTree(root);
  }
‣ Please fill in the body of the following recursive method  

 
private int sumLeafTree(Node x){…}



Problem 5 - Binary Search Trees
• You are extending the functionality of the BST class that represents binary search trees with 

the goal of counting the number of nodes whose keys fall within a given [low, high] 
range. That is you want to count how many nodes have keys that are equal or larger than 
low and equal or smaller than high. Remember that BST has a pointer to a root Node and 
the inner class Node has two pointers, left and right to the root nodes that correspond 
to its left and right subtrees and a Comparable Key key (please ignore the value).  

• You are given the following public method: 

  public int countRange(Key low, Key high)
    return countRange(root, Key low, Key high);
  }
‣ Please fill in the body of the following recursive method  

 
private int countRange(Node x, Key low, Key high){…}



Problem 6 - Iterators
• A programmer would like to traverse an arraylist in reverse order (from last element to first 

element). Modify the class ArrayList we wrote together to provide such an iterator. 

public class ArrayList<E> implements List<E>, Iterable<E> {
     //instance variables data and size

   public Iterator<E> iterator() {

       return new ArrayListIterator();  
     }

  private class ArrayListIterator implements Iterator<E> {
     //your implementation

     }
 }



Problem 7 - Balanced Binary Search Trees
• Insert the keys 1,2, 3, 4, 5, 6, 7, 8, 9, 10 in a 2-3-4 search tree and draw it after 

each insertion.



Solutions



Answers
• Solution to Problem 1 - Sorting 

• Solution to Problem 2 - Heaps 

• Solution to Problem 3 - Tree traversals 

• Solution to Problem 4 - Binary Trees 

• Solution to Problem 5 - Binary Search Trees 

• Solution to Problem 6 - Iterators  

• Solution to Problem 7 - Balanced Search Trees



Solution to Problem 1 - Sorting

12 11 35 46 20 43 42 47 44 32 16 10 40 18 41 21 28 15 0
11 12 20 35 42 43 46 47 44 32 16 10 40 18 41 21 28 15 2
12	
11	

11 10 15 20 43 42 47 44 32 16 35 40 18 41 21 28 46 4
10 11 12 15 16 43 42 47 44 32 20 35 40 18 41 21 28 46 1
43 32 42 28 20 40 41 21 15 11 16 10 35 18 12 44 46 47 5
11 12 20 35 46 43 42 47 44 32 16 10 40 18 41 21 28 15 3
10 11 12 15 16 18 20 21 28 32 35 40 41 42 43 44 46 47 6

0-Starting point 

1-Selection sort 

2-Insertion sort 

3-Mergesort 

4-Quicksort (one partition only) 

5-Heapsort 

6-Final sorted result 



Solution to Problem 2 - Heaps
• Insert key 13: 

 
• Delete max-key (14): 



Solution to Problem 3 - Tree traversals
• Pre-order: C R B W O S T N Q 

• In-order: B R W O C S N T Q



Solution to Problem 4 - Binary Trees
private int sumLeafTree(Node x){
if (x == null){
return 0;

}
else if (x.left == null && x.right == null){
     return 1;  
}
else{
return sumLeafTree(x.left) + sumLeafTree(x.right);

}
}



Solution to Problem 5 - Binary Search Trees
private int countRange(Node x, Key low, Key high){

if (x == null){
return 0;

}
if (x.key.compareTo(low)>=0 && x.key.compareTo(high)<=0){

return 1 + countRange(x.left, low, high)  + countRange(x.right, low, high);
}
else if (x.key.compareTo(low)<0){

return countRange(x.right, low, high);
}
else{

return countRange(x.left, low, high);
}

}



Solution to Problem 6 - Iterators
• A programmer would like to traverse an arraylist in reverse order (from last element to first element). Modify the class ArrayList we wrote together to provide such an 

iterator. 

public class ArrayList<E> implements List<E>, Iterable<E> {
     //instance variables data and size

   public Iterator<E> iterator() {

       return new ArrayListIterator();  
     }

  private class ArrayListIterator implements Iterator<E> {
        private int i = size -1;

        public boolean hasNext() {
            return i >= 0;
        }

        public E next() {
            return data[i--];
        }

        public void remove() {
        }

     }
 }



Solution to Problem 7 a - Balanced Search Trees


