
Lab 5: Checkpoint 1 study guide
Basic Data Structures

HW5: Compression
• 2 week assignment, pair programming optional

• (I’ve been told) the second hardest assignment after Darwin

• Advice from TAs:

• “Treat it as if it’s as bad as Darwin”

• “I started on it early and it ended up being not as bad, because I anticipated it
being bad”

• “Conceptually difficult, but implementing it isn’t horrible if you consider all
the edge cases. (That’s what most people asked about in mentor sessions.)”

• Part I due Thurs 11:59pm (not Tues) to give you a slight break after our
checkpoint

HW5: Compression
• Image compression: store contiguous blocks of pixels that are the same color

in a doubly linked list

HW5: Compression - running JUnit tests
• Click on the beaker on the VSCode sidebar and press play on

“TestCurDoublyLinkedList” to run our provided tests for Part I

Here’s what it looks like on the starter code.

More about writing your own tests (not
required for part 1, but yes for part 2) next
week’s lab!

This is just a subset of our autograder
tests - might be smart to write your own
for part 1 anyway

Checkpoint 1

Information

• Checkpoint 1 is Monday, March 4 in class.

• You can bring one hand-written (ok hand-written on tablets and then printed)
back and front sheet of paper (i.e. two pages). NO slides shrunk and copy
pasted.

• Review lecture slides along with slides on practice problems and links to code.
Go over quizzes, labs, and assignments. Use the five practice problems in this
presentation. If you want to read in more depth, use the recommended
textbook (extra copies for in-lab use in the dept library)

• Practice writing code on paper.

Java Basics LECTURES 1-5

• Chapter 1.1 (Pages 8–35).

• Chapter 1.2 (Pages 64–77, 84—88, 96—99, 107).

• Quick overview of Java tutorials.

• https://docs.oracle.com/javase/tutorial/java/

• In general, review the basics of OOP and of Java so that you
are comfortable reading and writing code.

https://docs.oracle.com/javase/tutorial/java/

ArrayLists
• Chapter 1.3 (Pages 136-137).

• Java Oracle API https://docs.oracle.com/javase/8/docs/api/java/util/
ArrayList.html

• Amortized and worst-case time analysis.

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Analysis of Algorithms
• Chapter 1.4 (Pages 172-205).

• Experimental analysis including doubling hypothesis which we saw in lab. Pick
two pairs of the largest input sizes and check that the T(n)/T(n/2) is consistently
expressed as some power of 2.

• Mathematical analysis including reviewing useful approximations of sums (and
definitions for logarithms)

• Order of growth classifications.

• Review of running time of operations on array lists, linked lists, stacks, and
queues.

Logarithms - refresher
•

•

•

•

•

•

•

•

•

ab = c → b = loga c

loga a = 1, loga 1 = 0

loga
x
y

= loga x − loga y

loga x × y = loga x + loga y

loga xy = y × loga x

loga x =
logb x
logb a

xloga y = yloga x

aloga x = x

lg n! ≈ nlgn

Summations - refresher
•

• , assuming c does not depend on i

•

•

•

•

•

•

•

n

∑
i=1

i = 1 + 2 + . . . + n

n

∑
i=1

c = c + c + . . . + c = n × c

n

∑
i=1

c × fi = c ×
n

∑
i=1

fi
n

∑
i=1

(fi + gi) =
n

∑
i=1

fi +
n

∑
i=1

gi

n

∑
i=1

i =
n(n + 1)

2
∼ n2

n

∑
i=1

i2 =
n(n + 1)(2n + 1)

6
∼ n3

n

∑
i=0

2i = 2(n+1) − 1

n

∑
i=0

(
1
2

)i = 1 +
1
2

+
1
4

+ . . . +
1
2n

∼ 2

n

∑
i=1

1
i

∼ ln n

Linked Lists
• Chapter 1.3 (Pages 126-157).

• Java Oracle API https://docs.oracle.com/javase/7/docs/api/java/util/
LinkedList.html

• Worst-case time analysis for standard operations (singly & doubly)

https://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html
https://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html
https://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html
https://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html

Stacks and Queues
• Chapter 1.3 (Pages 142-146)

• Worst-case time analysis for standard operations based on the underlying
implementation (ArrayList vs Linked List)

Practice problems

Practice Problem 1
You are given the following Java code that implements a simplified version of a stack of Strings.

1. public class StringStack {
2. private String[] a;
3. private int n = 0;
4. public StringStack(int size)
5. {a = new String[size];}
6. public void push(String item)
7. {a[n++] = item;}
8. public String pop()
9. {return a[--n];}
10. public static void main(String args[]) {
11. StringStack ss = new StringStack(10);
12. ss.push("47");
13. String s = ss.pop();
14. System.out.println(s);
15. }
16. }

In the next page, mark with an X in each of the rows what line numbers correspond to the description.

Practice Problem 1 (cont'd)

1 2 3 4-5 6-7 8-9 10-15 11 12 13 14

Defines a constructor

Names a class

Invokes a method
(excluding constructor)

Initializes a local variable

Declares an instance
variable

Creates an object

Implements an instance
method (excl.
constructor)
Implements a static
method

Applies a unary operator

Practice Problem 2
a. For each function in the table
below, please write down in the
simplest possible form. For example, if

 was , then would be
written as .

b. Order the answers from part a so
that they are in increasing order of rate
of growth, i.e., write the slowest
growing function on the left (i.e. the
fastest overall) and the fastest growing
on the right (i.e. the slowest overall)
with the others between in order of
growth for large values of .

f(n)
O(f(n))

f(n) 2n O(f(n))
O(n)

n

Function Big-O

100n log n + 100n

n3 + 50n2 + 10000

10n2 + 20n log n

212

2n

30n

50n log n + n!

20 log n + 1000

Practice Problem 3
• We will be adding a new method to the class SinglyLinkedList we built together

with the following signature: public void keep(int howMany)

• The method should modify the list so it only keeps the first howMany elements,
dropping the rest of the elements from the list. E.g., if a SinglyLinkedList myList
contains 10 elements, then executing myList.keep(6) should result in myList
having only the first 6 elements of the list.

• a. Write the pre- and post-conditions (what assumptions need to be met for the
method to execute correctly and what will be true after the execution of the method,
respectively) in plain English.

• b. List at least one special case that either violates your preconditions or requires
special handling.

• c. Write the code for keep. If the preconditions are violated, you should throw an
IllegalArgumentException.

Practice Problem 4
• Fill in the following class to implement a queue

using two stacks. When elements are enqueued,
they are added to the inbox stack. During
dequeue or peek operations, elements are
transferred from the inbox stack to the outbox
stack as needed.

• Here is an example of how it works:

public class TwoStackQueue<E> {

 ArrayListStack<E> inbox;
 ArrayListStack<E> outbox;

 public TwoStackQueue() implements Queue<E>{
 inbox = new ArrayListStack<E>();
 outbox = new ArrayListStack<E>();
 }

 public int size() {
 // FIX ME
 }

 public void enqueue(E element) {
 // FIX ME
 }

 private void transferElements() {
 // FIX ME
 }

 public E peek() {
 // FIX ME
 }

 public E dequeue() {
 // FIX ME
 }

 public boolean isEmpty(){
 // FIX ME
 }

 public static void main(String args[]) {
 TwoStackQueue<Integer> mq = new TwoStackQueue<Integer>();
 System.out.println(mq.isEmpty()); //true
 for (int i = 0; i < 8; i++){
 mq.enqueue(i);
 }
 System.out.println("Size: " + mq.size());
 System.out.println("Peek: " + mq.peek());
 for (int i = 0; i < 8; i++) {
 System.out.println(mq.dequeue()); // 0 1 2 3 4 5 6 7
 }

 }

}
https://stackoverflow.com/questions/69192/
how-to-implement-a-queue-using-two-stacks

inbox outbox inbox outbox

inbox outbox inbox outbox

Practice Problem 5
• For each of the following pieces of code, find the

number of times operation() is called as a function
of the input size n. Express your answer in terms of
the order of growth of the running time.

a. for (int i = 10; i < n + 5; i += 2){
 operation();
 }

b. for (int i = 1; i < n; i *= 2){
 operation();
 }

c. for (int i = 10; i < n; i++){
 for (int j = 0; j < n; j += 2){
 operation();
 }
 }

d. for (int i = 1; i <= n; i++){
 for (int j = 1; j <= i; j ++)
 operation();
 }
 }

e. for (int i = 1; i <= n; i++) {
 for (int j = 1; j <= n; j += i){
 operation();
 }
 for (int j = 1; j <= i; j++){
 operation();
 }
 }

Solutions

Practice Problem 1 - ANSWER

1 2 3 4-5 6-7 8-9 10-15 11 12 13 14

Defines a
constructor

X

Names a class X

Invokes a method
(excluding
constructor)

X X X

Initializes a local
variable

X X

Declares an
instance variable

X X

Invokes a
constructor

X X

Implements an
instance method
(excl. constructor)

X X

Implements a static
method

X

Applies a unary
operator

X X

Practice Problem 2 - ANSWER
a. For each function in the table below,
please write down in the simplest
possible form. For example, if was , then

 would be written as . (See table)

b. Order the answers from part a so that they
are in increasing order of rate of growth, i.e.,
write the slowest growing function on the left (i.e.
the fastest overall) and the fastest growing on
the right (i.e. the slowest overall) with the others
between in order of growth for large values of .

f(n)
O(f(n))

f(n) 2n
O(f(n)) O(n)

n

1, log n, n, n log n, n2, n3,2n, n!

Function Big-O
100n log n + 100n

n3 + 50n2 + 10000

10n2 + 20n log n

212

2n

30n

50n log n + n!

20 log n + 1000

n log n

n3

n2

1

2n

n

n!

log n

Practice Problem 3 - ANSWER
• a.

• pre-condition: howMany>=0 && howMany<=size

• post-condition: list has howMany elements

• b. howMany ==0, howMany==size, howMany<0 or howMany>=size

• c. -> public void keep(int howMany) {
 if (howMany > size || howMany < 0) {
 throw new IllegalArgumentException();
 }
 if(howMany==0){
 head = null;
 }
 else if(howMany == size){
 return;
 }
 else{
 Node finger = head;
 // Traverse the list until the (howMany - 1)th element
 for (int i = 0; i < howMany - 1; i++) {
 finger = finger.next;
 }
 // Set the next of the (howMany - 1)th element to null,
 // effectively cutting off the rest of the list.
 finger.next = null;
 }
 size = howMany;
}

Practice Problem 4
Answer

• Fill in the following class to implement a queue
using two stacks. When elements are enqueued,
they are added to the inbox stack. During
dequeue or peek operations, elements are
transferred from the inbox stack to the outbox
stack as needed.

• Here is an example of how it works:

https://stackoverflow.com/questions/69192/
how-to-implement-a-queue-using-two-stacks

inbox outbox inbox outbox

inbox outbox inbox outbox

public class TwoStackQueue<E> implements Queue<E>{

 ArrayListStack<E> inbox;
 ArrayListStack<E> outbox;

 public TwoStackQueue() {
 inbox = new ArrayListStack<E>();
 outbox = new ArrayListStack<E>();
 }

 public int size() {
 return inbox.size() + outbox.size();
 }

 public void enqueue(E element) {
 inbox.push(element);
 }

 private void transferElements() {
 while (!inbox.isEmpty()) {
 outbox.push(inbox.pop());
 }
 }

 public E peek() {
 if(outbox.isEmpty()){
 transferElements();
 }
 return outbox.peek();
 }

 public E dequeue() {
 if(outbox.isEmpty()){
 transferElements();
 }
 return outbox.pop();
 }

 public boolean isEmpty(){
 return inbox.isEmpty() && outbox.isEmpty();
 }
}

Practice Problem 5 (a) - ANSWER
a. for (int i = 10; i < n + 5; i += 2){
 operation();
 }

• operation is called times, which is in the order of .(n + 5 − 10)/2 O(n)

Practice Problem 5 (b) - ANSWER
b. for (int i = 1; i < n; i *= 2){
 operation();
 }

• The number of steps needed to get from 1 to n by doubling is . The order of growth is ---the base is
not important.

log2 n O(log n)

Practice Problem 5 (c) - ANSWER
c. for (int i = 10; i < n; i++){
 for (j = 0; j < n; j += 2){
 operation();
 }
 }

• operation is called times, therefore the order of growth is .(n − 10) ×
n
2

=
1
2

n2 − 5n O(n2)

Practice Problem 5 (d) - ANSWER
d. for (int i = 1; i <= n; i++){
 for (j = 1; j <= i; j ++)
 operation();
 }
 }

• For i = 1, the inner loop is called 1 times

• For i = 2, the inner loop is called 2 times

• ...

• For i = n, the inner loop is called n times

• Overall, 1+2+...+n = 1 + 2 + . . . + n =
n(n + 1)

2
∼ O(n2)

Practice Problem 5 (e) - ANSWER
e. for (int i = 1; i <= n; i++) {
 for (int j = 1; j <= n; j += i){
 operation();
 }
 for (int j = 1; j <= i; j++){
 operation();
 }
 }

• Note that the two inner for loops are independent .

• The first inner loop combined with outer loop run in the order of .

• When i=1, the inner loop performs n=n/1 operations

• When i=2, the inner loop performs n/2 operations

• ...

• When i=n, the inner loop performs 1 = n/n operations

• Overall,

• The second inner loop combined with outer loop run in the order of (look at problem d).

• Overall, the order of growth for the entire code fragment is

O(n log n)

n
1

+
n
2

+ . . .
n
n

=
n

∑
i=1

n
i

= n ×
n

∑
i=1

1
i

∼ n ln n ∼ O(n log n)

O(n2)

O(n log n + n2) = O(n2)

