
CS62 Lab3: Timing ArrayLists
Basic Data Structures

Lab 2 agenda
• Quiz

• Lab

Standard Operations of ArrayList<E> class

• ArrayList(): Constructs an empty ArrayList with an initial capacity of 2 (can vary across
implementations, another common initial capacity is 10).

• ArrayList(int capacity): Constructs an empty ArrayList with the specified initial capacity.

• isEmpty(): Returns true if the ArrayList contains no elements.

• size(): Returns the number of elements in the ArrayList.

• get(int index): Returns the element at the specified index.

• add(E element): Appends the element to the end of the ArrayList.

• add(int index, E element): Inserts the element at the specified index and shifts the element
currently at that position (if any) and any subsequent elements to the right (adds one to their indices).

• E remove(): Removes and returns the element at the end of the ArrayList.

• E remove(int index): Removes and returns the element at the specified index. Shifts any
subsequent elements to the left (subtracts one from their indices).

• E set(int index, E element): Replaces the element at the specified index with the specified
element and returns the olde element.

• clear(): Removes all elements.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Lab structure
• We’ll answer the question, why do we double the size of the ArrayList? Why not

just increase it by like 10 each time? Why is doubling better?

• You’ll need to create your own .java file for this one

• What we’re grading on Gradescope is answers.txt

Doubling analysis (we saw this in lecture)

• As the ArrayList increases, doubling happens half as often but costs twice as much.

• total cost)= (“cost of insertions”) + (“cost of copying”)

• (“cost of insertions”) .

• (“cost of copying”) = .

• total cost) , therefore amortized cost is , but “lumpy”.

0 1 2 3 75 64 8 9 10 131211 14 15 16

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Insertion
Cost 1

0 1 2 0 4 0 0 0 8 0 0 0 0 0 0 0
Copying
Cost 16

1 2 3 1 5 1 1 1 9 1 1 1 1 1 1 1
Total
Cost 17

O(∑ ∑
∑ = n

∑ 1 + 2 + 22 + . . . + 2log2 n−1 ≤ 2n

O(≤ 3n ≤
3n
n

= 3 = O+(1)

Amortized analysis for add() operations when
increasing ArrayList by 1.

n

• (“cost of insertions”) .

• (“cost of copying”) = .

• total cost) , therefore amortized cost is or .
•Same idea when increasing ArrayList size by a constant (like 10).

•This is why increasing the capacity by 1 is the slowest, and 10 the second slowest, and
doubling the fastest in this lab.

0 1 2 3 75 64 8 9 10 131211 14 15 16

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Insertion
Cost 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Copying
Cost 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Total
Cost 17

∑ = n

∑ 0 + 1 + 2 + 3 + . . . + n − 1 = n(n − 1)/2

O(= n + n(n − 1)/2 = n(n + 1)/2 (n + 1)/2 O+(n)

