
CS62 Lab3: Timing ArrayLists
Basic Data Structures



Lab 2 agenda
• Quiz 

• Lab



Standard Operations of ArrayList<E> class

  

• ArrayList(): Constructs an empty ArrayList with an initial capacity of 2 (can vary across 
implementations, another common initial capacity is 10). 

• ArrayList(int capacity): Constructs an empty ArrayList with the specified initial capacity. 

• isEmpty(): Returns true if the ArrayList contains no elements. 

• size(): Returns the number of elements in the ArrayList. 

• get(int index): Returns the element at the specified index.  

• add(E element): Appends the element to the end of the ArrayList. 

• add(int index, E element): Inserts the element at the specified index and shifts the element 
currently at that position (if any) and any subsequent elements to the right (adds one to their indices). 

• E remove(): Removes and returns the element at the end of the ArrayList. 

• E remove(int index): Removes and returns the element at the specified index. Shifts any 
subsequent elements to the left (subtracts one from their indices). 

• E set(int index, E element): Replaces the element at the specified index with the specified 
element and returns the olde element. 

• clear(): Removes all elements.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


Lab structure
• We’ll answer the question, why do we double the size of the ArrayList? Why not 

just increase it by like 10 each time? Why is doubling better? 

• You’ll need to create your own .java file for this one 

• What we’re grading on Gradescope is answers.txt



Doubling analysis (we saw this in lecture)

 

• As the ArrayList increases, doubling happens half as often but costs twice as much. 

•  total cost)= (“cost of insertions”) + (“cost of copying”) 

• (“cost of insertions”) . 

• (“cost of copying”) = . 

•  total cost) , therefore amortized cost is , but “lumpy”.
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Amortized analysis for  add() operations when 
increasing ArrayList by 1.

n

 

• (“cost of insertions”) . 

• (“cost of copying”) = . 

• total cost) , therefore amortized cost is  or . 
•Same idea when increasing ArrayList size by a constant (like 10). 

•This is why increasing the capacity by 1 is the slowest, and 10 the second slowest, and 
doubling the fastest in this lab. 
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