CS62 Lab3: Timing ArraylLists

Basic Data Structures

ONIOFF

SPLIT - START
reser FOOTU sTOP size | increase by 1 | increase by 10 | double

STOANTC i ————— —————————————————— ————————————(———————————(—— ——————(——(——

'-"""'“-'nn 1000 | 0.000002 | 0.000000 | 0.000000
L“ 'L" ‘Lll.l 2000 | 0.000002 | 0.000001 | 0.000000
et 4000 | .000004 | .000000 | 0.000000
STOPWATCH 8000 | .000007 | .000001 | 0.000000
YS-802C 16000 | . 000013 | . 000001 | 9.000000
4 32000 | . 000024 | .000002 | 0.000000

64000 | .000047 | .000005 | 0.000000

128000 | 0.000094 | 0.000010 | 0.000000

e

Lab 2 agenda

* Quiz

« Lab

Standard Operations of ArraylLi1st<E> class

* ArrayList () : Constructs an empty ArrayList with an initial capacity of 2 (can vary across
implementations, another common initial capacity is 10).

» ArraylList(int capacity): Constructs an empty ArrayList with the specified initial capacity.

» isEmpty () : Returns true if the ArrayList contains no elements.

* size(): Returnsthe number of elements in the ArrayList.

» get(int index) : Returns the element at the specified index.

» add(E element) : Appends the element to the end of the ArrayList.

 add(int 1ndex, E e]

currently at that positio

L.ement) : Inserts the element at the specified index and shifts the e

N (if any) and any subsequent elements to the right (adds one to thei

* E remove () : Removes and returns the element at the end of the ArrayList.

ement
r indices).

- E remove(int index): Removes and returns the element at the specified index. Shifts any
subsequent elements to the left (subtracts one from their indices).

- E set(int index, E element): Replaces the element at the specified index with the specified
element and returns the olde element.

« clear (): Removes all elements.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Lab structure

» We'll answer the question, why do we double the size of the ArrayList? Why not

just increase it by like 10 each time? Why is doubling better?
* You'll need to create your own .java file for this one

» What we're grading on Gradescope is answers.txt

Doubling analysis (we saw this in lecture)

0 1 2 3 4 5 6 7/ 8 9 10 11 12 13 14 15 16
I ti
Cost
Copying
Total
Cost 1 5 1 1 1 9 1 1 1 1 1 1 1 17

As the ArraylList increases, doubling happens half as often but costs twice as much.

O(total cost)=) (“cost of insertions”) +)’ (“cost of copying”)
Z("cost of insertions”) = n.

Z(”cost of copying”) =142+ 2%+ ... +2ar-1 <oy,

M M 3n i1 1]
O(total cost) < 3n, therefore amortized costis <— =3 =07%(1), but “lumpy”.
n

Amortized analysis for n add() operations when
increasing ArraylList by 1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Insertion
ost
Copyin
ost
Total
Cost 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17

' Z("cost of insertions”) = n.

+ (“cost of copying”) =0+ 1 +2+3+...+n—1 = n(n—1)/2.

* O(total cost) =n+n(n—-1)/2 =nn+ 1)/2, therefore amortized costis (n + 1)/2 or O™ (n).
*Same idea when increasing ArrayList size by a constant (like 10).

*This is why increasing the capacity by 1 is the slowest, and 10 the second slowest, and
doubling the fastest in this lab.

