CS62 Lab 11: BSTs / Final Project

CS62

Overview
Schedule
Course Staff
Grading
Course Policies
Calendar

History

(Q Search CS62 Canvas Gradescope

CS62: Final Project

The final project will be an open-ended software development project done in groups of 2-3 over
the course of 3 weeks. Your group will apply methods in human-centered design to identify a
problem that software may be able to solve in the real world. Your software project will likely fall into
either one of two camps: interactive or data analysis. You will decide on the best data
representations and custom data structures to solve your problem. You will make a public Github
repo with a detailed README with usage examples for your software project. Lastly, you will create a
PDF report that includes run time and affordance analysis for your software project.

The project is purposefully open-ended, which may be daunting, especially if you do not have prior
experience in large unstructured software applications before. The instructors are here to help and
give constraints and direction! The project is contract graded, which means you decide what grade
you get as long as your group completes the promised work correctly by the deadline.

Learning goals

Apply the human-centered design process to software engineering

Apply what you have learned to select (and customize and create) the most appropriate data
structure for a problem

Judge the appropriate scope of problems that can and can't be solved with computer science

Analyze user-created algorithms for efficiency (time/space complexity), edge cases, and
affordances

Develop and format an open-source Github repo to be readable and usable for the public

Basic SWE skills




Agenda
* Final project
» Quiz

« Actual BST lab



Final project
» Open-ended software development: interactive or data analysis
» 3 week period; contract graded
» C-one “feature”, B - two+ features, A - four+ features
+ Week 1: conduct needfinding interviews & think about how you'll get data

+ Week 2: get the data, spec the data structure, grading contract (part 1, due 5/7)

+ Week 3: all code & writeup due; peer evaluation form (part 2, due 5/14)



Final project: interactive example

Interactive software project example: Synced playlists . .

Bella makes playlists they want to share with their friends, but they use Spotify while friend A uses ° C reatl ng a Syn Ce d p | ayl I St b etwe e n
Apple Music and friend B uses YouTube Music. While interviewing their friends and asking for stories

about their music sharing experiences, they learned about turntable.fm, a (now-defunct) website that . .
let users take turns live [?Jing and queuingysongs for each other. Inspired by this anecdote, but still S p Otlfy, YO UTU b e, a n d Ap p | e M U S I C
wanting asynchronous, any time music sharing in the form of playlists, Bella decides to build a Java

app that will take as input a text file of Spotify or Apple Music or YouTube Music links, allow users to

re-order songs in their app, and generates text files of the playlist in all 3 music sharing formats. SO ngs

(Bella originally wanted to take as input just a single link to a playlist to read the songs from, but
realized the music sharing services’ APls were difficult to hook up with Java. However, if your group

wanted to take on a challenge like that, it would be grounds for an A+ on the project.) ¢ C u StO m d ata St ru Ctu re tO Sto re th e

First, Bella's group writes code to automatically extract song information (like Title, Artist, Album)

from a given link using the Jsoup library. They use this library to also find the URLs on other music d m d f

providers through parsing their search query (e.g., once given a Spotify link like https:// U R LS a n eta ata O a SO ng
open.spotify.comftrack/6LgJvliOXdtc73RJImmpotq, they scrape the title and artist to be Paranoid

Android by Radiohead. They then can format a YouTube search URL like https:/fwww.youtube.com/

results?search_guery=paranoid+android+radiohead and scrape the first result to get the URL to the ® D O u b |y I_I n ke d I_I St fo r p | ayl ISt

YouTube video corresponding to the song).

Bella's group creates a custom Song data structure to contain all 3 links, as well as song metadata. .

They create a custom equals() and hash function which only looks at song metadata instead of the re O rd e rl ng
URLs. However, they realize the best data structure to store their songs in is not a hashtable but a

doubly linked list, since the songs need to be ordered as a playlist. Their DLL supports moving songs

around, and they also use a queue to implement the “add to queue” feature that asks the user for a

new song URL which will output the song before the rest of the playlist. : Q u e u e fo r “a d d to q u e u e" featu re

The interactive main() of their Java app prompts users to input the name of a .txt file containing song
URLs in playlist order. It then parses and prints the URLs of the other streaming services. Users can
use their keyboards to order songs, add new songs to the queue, or save output.txt files for the other
streaming services.



Final project: data analysis example

Data analysis project example: Group personal finance

Alex, David, and Marina like comparing how much money they spent at the end of the month on their
group chat. They wonder: why not just build a shared group finance Java app, that takes as input
spreadsheets each of them download from their bank, and outputs some data analysis (e.g., who
spent the most on eating out this month? How far apart was each of their spending from each other
in each category? If the group set a budget to collectively spend less than $100 on entertainment,
did they make it? What was each person’s top 3 spend categories, and did it differ between them?)

From their interviews where they asked their friends to share and reflect on their past month's
spending, they learn that some friends don’t track their spending at all (and wished they did, as they
found recurring subscription services they don't use), and some friends wanted to share with other
friends but were too shy to overcome the social barrier of talking about finances, while some friends
wanted bragging rights on who spent the least amount of money in their friend group. From these
interviews, they also decided to implement a leaderboard feature and hone in on the specific kinds of
data analysis their software project will do.

The group realizes each of their banks has slightly different categories for spending, so they first
write a Java file to automatically clean their data so all the categories are standardized (e.g., one
person’s spreadsheet has the heading “Restaurants” while another has the heading “Dining Out”, but
these mean the same thing).

The group implements their app by using a custom data structure to store transactions. The
Transaction Class has the spender’s name, the name of the merchant, the date of the transaction,
the transaction category, and the price. They use a custom Binary Search Tree that allows duplicate
keys to store all transactions, where the price is the key (so the BST can have multiple $19.99
transactions, for instance). They debate also storing the Transaction objects in person-specific
hashtables, so it is faster to access the Transactions for a single person as opposed to having to
filter through searching the whole tree-it is storing redundant data, but they decide the trade off is
worth it since many of their data analysis features are person-specific. They decide to use Java's
built in mergesort to sort their data.

The group writes in their README what folder to put the spreadsheets in so their Java app can
automatically read and clean them. When running the main() method, their software prompts the
user to enter a number or letter on their keyboard corresponding to what analysis they want: for
instance, pressing L shows the leaderboard of overall lowest spending per person, while pressing R
shows each person’s spending on restaurants.

Group personal finance analysis

Custom data structure to store

transactions

Custom BST (allows duplicate keys)

to store all transactions (key - price)

vsS hashtable to store transactions

of a specific person and category



Models of software engineering

Agile development model

» Traditional waterfall model

Reguirements

——— -\,
|
v
Design
)
.u
v

Implementation

VS

}
Verification L
0"
L4

Maintenance

Requirements |
\

Feedback

Deployment

o

? Gathering

h

Design the
Requirements

N 2
Construction/
iteration

lesting/Quality ¢

Assurance

Fig:- Steps in Agile SDLC Model




Human-centered design

« A methodology for building stuff that places the user at the heart of the
process

 Also called user-centered design, or design thinking

Detine Prototype

N/

Evaluate

empathize

Ideate

Design |[—>| Built |—>| Test ]




Needfinding

» Sometime soon (maybe after this lab?), spend 30 minutes with your group

brainstorming general directions and interview questions
» Everyone conducts 1 20-30 minute interview, come back together to synthesize
» What were problems uncovered that might not be best for software solutions?

» What were problems uncovered that you do think could be solved with

software? Why is software a good match?



How to conduct good interviews

» The purpose of your interview isn't to confirm an idea but to surface more

problems/assumptions

* Get participants to be specific. Ask story-based questions: “tell me about a time

1)

yOou...

* You can generate abstractions from details, but you can't generate details from

abstractions



Part |

» Hard part: How do you get an input dataset?
» Does it already exist & can you clean it up?

 For interactive software projects, can it be user created without too much

trouble?

» Can you manually annotate/create some data, and ask an LLM to generate 900

more rows within a range?



Thursday May 1 check in

* Prepare a 5 min presentation that shows

» The problem you want to solve and if your project is going to be more

interactive or data analysis

* Why you decided on that problem (eg from personal experience, from

Interviews)
» The proposed format for your data & how you plan on generating the data
» |nitial thoughts about what data structures you will use

* Any questions you have/advice you want going forward



Part |

* Due Weds May 7 11:59pm on Gradescope
* Your dataset
* Your .java Interface file proposing your data structure

- A PDF that includes your project overview & grading contract (more details on

the course website)



Part Ii

* Due Weds May 14 11:59pm on Gradescope
* A Github repo with a README on how to run your code, an API, example usage
* APDF report

* Results - show screenshots of your code running (e.g., print outs from main()

for each feature)
 Analysis: run time, space, and affordance analysis
* Reflections

» Self & peer evaluations



Last point

» Doing a totally open ended project can be daunting, and it might be hard to scope

what is an appropriately difficult feature/project
» That's why we have check-ins! Personalized learning!
* We are here to help!!!
» Slack any time with any questions

» This is the first time a final project has been offered for CS62, so be patient with

kinks. At the same time, you have lots of influence over future semesters!



