Lab 9: Checkpoint 2 study guide

Sorting

x22—

0368

5

Information

®* Checkpoint 2 is Mon, Nov 3 in class.

®* You can bring one hand-written (ok hand-written on tablets and then printed)
back and front sheet of paper (i.e. two pages). NO slides shrunk and copy

pasted.

* Review lecture slides along with bonus slides on practice problems and links to

code. Go over quizzes, labs, and assignments. Use the practice problems in
this presentation. If you want to read in more depth, use the recommended

textbook (extra copies for in-lab use in the dept library)

* Practice writing code on paper.

Checkpoint |l Review

 Sorting

» Heaps/Priority Queues
* Dictionaries

» Misc

* Practice Problems

e ANswers

Sorting

+ Selection sort
* Insertion sort
* Merge sort

e Quick sort

* Heap sort

Sorting

* Given an array of n items, sort them in non-descending order based on a
comparable key.

» Cost model counts comparisons and exchanges (or array accesses).
* Not in place: If linear extra memory is required.
 Stable: If duplicate elements stay in the same order that they appear in the input.

* Practice: (minus quick sort).

https://visualgo.net/en/sorting

Selection sort - Algorithm

public static <E extends Comparable<E>> void selectionSort(E[] a) {

int n = a.length;
for (int 1 = 0; 1 < n; 1++) {
int min = 1;

for (int jJ = 1+1; J < n; J++) {
1f (a[j].compareTo(a[min])<0){
min = j;
}
}
E temp = a[1];
a[i]=a[min];
a[min]=temp;

Selection sort - Key characteristics

+ At the end of each iteration 1:
- al[0..1] is sorted.
* no smaller item existsin a[1+1..n-1].

* In-place.

- Not stable.

* O(n?) comparisons for best/average/worst case.
* O(n) exchanges.

» Slowest. Realistically, rarely used in practice unless small array and minimizing
cost of exchanges is important.

Selection sort - Example

- Sort: 1,493 8,2.

| iteration Result
0 1,4,9,3,8,2
1 1,2,9,3,8,4
2 1,2,3,9,8,4
3 1,2,3,4,8,9
4 1,2,3,4,8,9
5 1,2,3,4,8,9

Sorting

» Selection sort
* Insertion sort
* Merge sort

e Quick sort

* Heap sort

Insertion sort - Algorithm

public static <E extends Comparable<E>> void insertionSort(E[] a) {
int n = a.length;
for (int 1 = 0; 1 < n; 1++) {
for (int jJ = 1i; 3 > 0; J--) {
if(a[j].compareTo(a[]J-1]1)<0){

E temp = a[]j];
aljl=al]j-11;
a[j-1l]=temp;

}

else{
break;

}

Insertion sort - Key characteristics

+ At the end of each iteration 1:
+ al[@..1] is partially sorted.

* In-place.

- Stable.

* O(n?) comparisons/exchanges for average/worst case.

* O(n) comparisons and 0 exchanges for best case (already sorted array).

» Slow but in practice such little overhead that can be even faster than quick sort
for small arrays. Often used below certain thresholds for merge sort and quick

Sort.

Insertion sort - Example

- Sort: 1,493 8,2.

| iteration Result
0 1,4,9,3,8,2
1 1,4,9,3,8,2
2 1,4,9,3,8,2
3 1,3,4,9,8,2
4 1,3,4,8,9,2
5 1,2,3,4,8,9

Sorting

» Selection sort
* Insertion sort
* Merge sort

e Quick sort

* Heap sort

Merge sort - Algorithm

private static <E extends Comparable<E>> void merge(E[] a, E[] aux, int lo, int mid, int hi) {
for (int k = lo; k <= hi; k++){
aux [k] = alkl];
}

int 1 = lo, J = mid + 1;
for (int k = 1lo; k <= hi; k++) {
if (i > mid) { // ran out of elements in the left subarray
alkl] = aux[j++];
} else if (j > hi) { // ran out of elements in the right subarray
alkl = aux[i++];
} else if (aux[j].compareTo(aux[i]) < 0) {
alkl] = aux[j++];
} else {
alkl = aux[i++];
¥

1 public static <E extends Comparable<E>> void mergeSort(E[] a) {
1 E[] aux = (E[]) new Comparablela.lengthl];
mergeSort(a, aux, 0, a.length - 1);
I3

private static <E extends Comparable<E>> void mergeSort(E[] a, E[] aux, int lo, int hi) A
if (hi <= 10){
return;
s

int mid = 1o + (hi - 1lo) / 2;
mergeSort(a, aux, lo, mid);
mergeSort(a, aux, mid+1, hi);
merge(a, aux, lo, mid, hi);

Merge sort - Key characteristics

» Divide till you reach an array of a single element and conquer by merging two
already-sorted subarrays into a sorted larger one.

» Not in-place, requires linear extra memory. On-disk sort assignment showed how
to use the disk if memory is not enough.

« Stable.

* O(nlogn) comparisons/array accesses for best/average/worst case.

+ Stable performance, preferred for arrays of objects due to stability. Slower than

quick sort on average. Not in-place so not good when memory is in short supply
(e.g., embedded systems).

Merge sort - Example

- Sort: 1,4,93,8,2.

33

.Z. :/:

Sorting

» Selection sort
* Insertion sort
* Merge sort

* Quick sort

* Heap sort

Quick sort - Algorithm

private static <E extends Comparable<E>> int partition(E[] a, int lo, int hi) {

E pivot = allol; // Choose leftmost element as pivot
int 1 lo + 1; // Start from the next element
int j hi;

while (true) {
// Move right until we find an element >= pivot
while (i <= j && alil.compareTo(pivot) <= 0) {
i++;
}

// Move left until we find an element < pivot
while (j >= i && alj].compareTo(pivot) > 0) {

i
}

// If pointers cross, break
if (i > 3j) {

break;
I3

// Swap elements to ensure correct partitioning
E temp = alil;

alil = aljl;

aljl = temp;

}

// Swap pivot into its correct position
E temp = allo];

allo] = aljl;

aljl = temp;

return j; // Return final pivot position

public static <E extends Comparable<E>> void quickSort(E[] a) {

private static <E extends Comparable<E>> void quickSort(E[] a, int

lo,

quickSort(a, @, a.length - 1);
}

int hi) {
if (lo < hi){
int pivot = partition(a, lo, hi);
quickSort(a, lo, pivot - 1);
quickSort(a, pivot + 1, hi);

Quick sort - Key characteristics

Two pointers, i and j. | look for bigger elements to swap to the right and j looks for
smaller elements to swap to the left. After i & j cross, swap j and the pivot.
Recursively sort each half not including the pivot.

In-place.
Not stable.
O(nlogn) comparisons/exchanges for best/average case.

O(n?) comparisons/exchanges for worst case (already (reversely) sorted array,
where pivot is always the smallest/largest element).

Preferred for arrays of primitives since stability does not matter. Fastest on average
but it unlucky quadratic (can avoid with high likelihood if shuffle first). In-place so
good choice for memory efficient applications with tolerance for occasional
slowdowns.

Quick sort - Example

Iteration 1

[4,1,9, 3,8, 2] 1=1,j=5
swap2and9->1[4,1,2,3,8,9] i=2,j=5
swap 4 (pivot)and 3->1[3,1,2,4,8,9] i=4, |=3

new pivot is 3 for [3, 1, 2] and 8 for [8, 9]
Iteration 5

X, X, X, X, 8, 9] i=5,]=5
Swap 8 (pivot) with itself -> [X, X, X, X, 8,9] i=5,j=4

» Sort: 4,1,9,3,8,2

Iteration 2
[3, 1, 2, X, X, X] i=1,j=2
swap 3 (pivot)and2-> [2,1,3, X, X, X] i=3,]j=2

Iteration 3

Iteration 6
2,1, X, X, X, X 1=1,]=1 L . . .
|] | : Next pivot is 9, nothing happens - single item already
swap 2 (pivot) and 1 ->[1, 2, X, X, X, X] 1=2,]=1 sorted
Iteration 4 [1, 2, 3, 4, 8, 9]

Next pivot is 1, nothing happens - single item already
sorted

Sorting

» Selection sort
* Insertion sort
* Merge sort

e Quick sort

* Heap sort

Heap sort - Key characteristics

» Heap construction in O(n): heapity subtrees rooted in internal nodes in reverse
order.

* There is also a slower O(nlogn) version with »n insertions. Avoid it.

» Sortdown in O(nlogn). Repeat: exchange root with last element and sink.
* In-place.
» Not stable.
* O(nlogn) comparisons/exchanges for best/average/worst case.

+ Slower than merge sort (and quick sort) but does not require extra memory.
Good choice for memory efficient applications that need stable performance.

Heap sort - Example &t o
@ °®
+ Sort: 1,4,9,3,8,2 & ® 6

LLcaP consbrycon: Start ok first m{crﬂal mdﬂ F=6 {2
SR ELED) ke ~— L0 8(“ Vtﬂﬂkmof

'\@\

9_ v

@ rDo nok S\Y\E does noL
@/. z Violote W—ordejr

Sov-tdeown : Given oinar V‘Q.DLP vtPeDL‘\ﬁdLu GXCVLO(Y\O\Q last-vede
U\ rood and S\Y\t. MUV oot o R Ouf?vol)mq}g P QCQ,

Heap sort - Example o o, ®
_gég @—% @ @
. Sort: 149382 @ ® @/ ®/
e,xchqwge ('\ - Y\u

S /O\ /@\

® ‘@ ‘@ °0
4®/ch3"®/8 34@83 48C‘7

e,xdmwge (I m--) sink(l) e,><c.uqvx8e (lm—J sink(()

«® A] 1@ 1@
2®/ 93 2®/®33 i 33 22- 33
A9 481 489 4%q
exc(mvxge (n--) sink(3 G,XCMQV\BQ ((n- _2) sink(0
4’1 To%tkl (/(}5%()[7/[(/@ﬂ)

2

23 |lapsort: Oln)+Olalogn)s

b

4 8 i O(n\og’n)

Lk

Sorting: Everything you need to remember about it!

Which In
Sort place Stable Best Average Worst Memory Remarks
Selection X Q(nz) @(nz) O(I’lQ) @(1) n exchanges
: 0 2 2 1 Fastest if almost
Insertion X (n) On°) O(n-) O(1) S
Guaranteed
Merge Q(rnlogn)| O(nlogn)| Omlogn), O(n) verformance; stable
, n log n probabilistic
Quick X Q(nlogn)| B(nlogn) O(n”) BO(logn) guarantee; fastest in
practice
Heap X Q(nlogn)| O(nlogn)| Omlogn), G(1) Guaranteed

performance; in place

Heaps/Priority Queues

Heaps

 Array representation of binary trees (at most 2 children for each node) which are
complete (O(logn) minimal height and nodes in last level as left as possible) and
heap-ordered (every node is larger/equal to both of its children - if any).

» For node k, left child can be found at 2k, right child at 2k+1, and parent at k/2.
Elements start at index 1.

* Heaps and priority queues are often considered synonymes.

. Practice: (including heap sort).

https://visualgo.net/en/heap

Heaps

* |nsertion

Heaps - Insertion

Insert node at last level, as left as
possible (or create a new level if
last level is full). Swim newly-
added node to its proper place so
that heap-ordered property is
satisfied.

At most O(logn) comparisons.

insert

Heaps

« Deletion

Heaps - delete max

Exchange root with last element.

Sink down the new root to its momthemuimm N
proper place so that heap-ordered o R
property is satisfied. Nullify index of 2&/ \."Q az
deleted element and return it. ® © © () —"vithror
' (H), = iojates
At most O(log n) comparisons. R e
N~ L5
| N | | P,/' o ‘\.A_/'
=\ A.&_\, ./",Z remove node
B @ W T m heap
)
INO@R olNCS
./_j, S—\, N
LYY,

Dictionaries

 Binary search trees

¢ B-trees

Dictionaries

» (Possibly ordered by key) collections of key-value pairs. Keys are comparable and
unique. Values cannot be null.

+ Ultimate goal is to achieve fast search based on key.

» Support insertion, deletion, and possibly ordered operations.

Binary search trees

» Binary trees with symmetric order (every node contains key larger than all keys in left subtree and smaller than
all keys in right subtree).

» Height can vary from O(log n) (compact like complete trees) all the way to O(n) (sticks/twigs).

» Practice: https://visualgo.net/en/bst

public class BST<Key extends Comparable<Key>, Value> {

private Node root; // root of BST
private class Node {
private Key key; // sorted by key
private Value val; // associated value
private Node left, right; // roots of left and right subtrees
private int size; // #nodes 1n subtree rooted at this

public Node(Key key, Value val, int size) {
this.key = key;

this.val = val;

this.s1ze = size;

https://visualgo.net/en/bst

Binary search trees - search

» Compare key with root node. Smaller? Go left. Larger? Go right.

 Search hit: If found node with key you're looking for, return associated value.

« Search miss: reached a null node, return null.

private Value get(Node x, Key key) {

if (x == null) return null;

int cmp = key.compareTo(x.key);

if (cmp < 0) return get(x.left, key);
else if (cmp > 0) return get(x.right, key);
else return x.val;

Binary search trees

successful search for R

R 15 less than S
so look to the left

black nodes could
match the search key

gray nodes cannot

R 1s greater than E
so look to the right

" -
(search n

-

match the search ke

- search

unsuccessful search for T

T is greater than S
so look to the right

X

T is less than X
. 1. v
so look to the left

link 1s null
| 1S not 1n tree

(search miss)

S0

e _foumi R

it)

so return value

Successful (left) and unsucces

sful (right) search in a BST

Binary search trees - insertion

» Compare key with root node. Smaller? Go left. Larger? Go right.
» If found node with same key, update value.

» If reached a null node, insert (key,value) pair.

public void insert(Key key, Value val) { //recursive implementation
root = insert(root, key, val);

h

// helper (@returns root of subtree at x)
private Node insert(Node x, Key key, Value val) {
if (x == null) return new Node(key, val, 1); //empty subtree, insert new node
int cmp = key.compareTo(x.key);
if (cmp < 0) x.left = insert(x.left, key, val);
else if (cmp > 0) x.right = insert(x.right, key, val);
else x.val = val; //update existing node
X.5ize = size(x.left) + size(x.right) + 1; //update size

return X;

Binary search trees - insertion

inserting L -

(S

H

M
q

search for L ends .~

5 dlads 17 7., L
al nis null InK

- Y Y 2 0 Fa' J'-
creale new noae -

-0 s "‘ N\ y » !
resel nKks anda
increment counts

on the way up

Insertion into a BST

Binary search trees - Hibbard’s deletion

» Search for node:
» Leaf? Just delete it.
* Node with one child? Delete it and replace with child.

* Node with two children? Delete and replace with successor (smallest of the
larger keys) or predecessor. If successor/predecessor has a child, pass it to
parent.

Binary search trees - delete node with key 21

2-3-4 tree

. A 2-3-4 search tree is either empty or consists of three types of nodes: 2-node, a 3-node,
or a 4-node.

» 2-node: one key, two children
* 3-node: two keys, three children
* 4-node: three keys, four children

. A 2-3-4 search tree with with all paths from root to a null link has the same
length, that is all leaves have the same depth.

» From now on, 2-3-4 trees are assumed to be balanced. P
,/// \
< K// K—R > R\

2-3-4 Search Trees - Search

Compare search key against (every) key in node.
Find interval containing search key (left, potentially middle, or right).

Follow associated link, recursively.

O

-
AN /\

2-3-4 Search Trees - Insertion

Search for key to bottom. Turn 2-nodes to 3-nodes and 3-nodes to 4-nodes.

4-nodes are split by moving left middle key to parent.

2-3-4 Search Trees - Performance

O(log n) search/insertion/deletion but harder to implement because of different types of nodes.

For practice:

https://yongdanielliang.github.io/animation/web/24Tree.html

» Worst case search and insert are O(n) for BSTs, Not great!

Summary for dictionary operations

Worst case Average case
Search Insert Delete Search Insert Delete
BST n n n logn logn \/ﬁ
B-trees log n logn logn log n logn logn

Misc

» Comparable/Comparator Interfaces
* |terable/Iterator Interfaces

BT Traversals

Comparable Interface

» Interface with a single method that we need to implement: public 1int
compareTo(T that)

® Implement it so that v.compareTo(w):
» Returns >0 if v is greater than w.
» Returns <0 if v is smaller than w.
» Returns O if v is equal to w.

» Corresponds to

Comparator Interface

» Sometimes the natural ordering is not the type of ordering we want.

» Comparator is an interface which allows us to dictate what kind of ordering we want by
implementing the method:
public 1nt compare(T this, T that)

® Implement it so that compare(v, w):
» Returns >0 if v is greater than w.
» Returns <0 if vis smaller than w.

» Returns 0 if vis equal to w.
» public static Comparator<ClassName> reverseComparator(){

return (ClassName a, ClassName b)->{return -a.compareTo(b)};

¥

Misc

» Comparable/Comparator Interfaces
* |terable/Iterator Interfaces

BT Traversals

Tterable<T> Interface

* Interface with a single method that we need to implement: Iterator<T>
1terator()

» Class becomes iterable, that is it can be traversed with a for-each loop.

e for (String student: students){
System.out.println(student);
§

Iterator<Il> Interface

» Interface with two methods that we need to implement: boolean hasNext()
and T next().

+ hasNext() checks whether there is any element we have not seen yet.
« next() returns the next available element.

 Always check if there are any available elements before returning the next one.

 Typically a comparable class, has an inner class that implements Iterator. Outer
class's 1terator method returns an instance of inner class.

» Can also be implemented in a standalone class where collection to iterate over is
passed in the constructor.

Misc

» Comparable/Comparator Interfaces
* |terable/Iterator Interfaces

BT Traversals

BT traversals

* Pre-order: mark root visited, left subtree, right subtree.
* |In-order: left subtree, mark root visited, right subtree.
» Post-order: left subtree, right subtree, mark root visited.

 Level-order: start at root, mark each node as visited level by level, from left to
right.

Practice problems

Practice Problems

* Problem 1 - Sorting

* Problem 2 - Heaps

* Problem 3 - Tree traversals

* Problem 4 - Binary Trees

* Problem 5 - Binary Search Trees

* Problem 6 - Iterators

* Problem 7 - Balanced Binary Search Trees

* Problem 8 - Run times

Problem 1 - Sorting

* |In the next slide, you can find a table whose first row (last column 0) contains an
array of 18 unsorted numbers between 1 and 50. The last row (last column 6)
contains the numbers in sorted order. The other rows show the array in some
intermediate state during one of these five sorting algorithms:

» 1-Selection sort

» 2-Insertion sort

» 3-Mergesort

* 4-Quicksort (one partition only)
* 5-Heapsort

» Match each algorithm with the right row by writing its number (1-5) in the last
column.

Problem 1 - Sorting

12 11 35 46 20 43
11 12 20 35 42 43
12 11 10 15 20 43
10 11 12 15 16 43
43 32 42 28 20 40
11 12 20 35 46 43
10 11 12 15 16 18

42 47 44
46 47 44
42 47 44
42 47 44
41 21 15
42 47 44
20 21 28

32 16 10 40 18 41 21 28 15
32 16 10 40 18 41 21 28 15
32 16 35 40 18 41 21 28 46
32 20 35 40 18 41 21 28 46
11 16 10 35 18 12 44 46 47
32 16 10 40 18 41 21 28 15
32 35 40 41 42 43 44 46 47

Problem 2 - Heaps

» Consider the following max-heap:

+ Draw the heap after you insert key 13.

» Suppose you delete the maximum key from the original heap. Draw the heap
after you delete 14.

Problem 3 - Tree Traversals

» Circle the correct binary tree(s) that would produce both of the following
traversals:

* Pre-order: CRBWOSTNQ
* In-order: BRWOCSNTQ

‘3@:@9@ ® 53@ @ @

Problem 4 - Binary Trees

* You are extending the functionality of the BinaryTree class that represents binary
trees with the goal of counting the number of leaves. Remember that BLnaryTree
has a pointer to a root Node and the inner class Node has two pointers, Left and
right to the root nodes that correspond to its left and right subtrees.

* You are given the following public method:

public 1nt sumLeafTree()

return sumLeafTree(root);

¥

" Please fill in the body of the following recursive method

private int sumLeafTree(Node x){..}

Problem 5 - Binary Search Trees

* You are extending the functionality of the BST class that represents binary search trees with
the goal of counting the number of nodes whose keys fall within a given [Llow, high]

range. That is you want to count how many nodes have keys that are equal or larger than
Low and equal or smaller than high. Remember that BST has a pointer to a root Node and

the inner class Node has two pointers, Left and right to the root nodes that correspond
to its left and right subtrees and a Comparable Key key (please ignore the value).

* You are given the following public method:
public 1nt countRange(Key low, Key high)
return countRange(root, Key low, Key high);

¥

" Please fill in the body of the following recursive method

private int countRange(Node x, Key low, Key high){..}

Problem 6 - Iterators

» A programmer would like to traverse an arraylist in reverse order (from last element to first
element). Modity the class ArrayList we wrote together to provide such an iterator.

public class ArraylList<E> implements List<E>, Iterable<E> {
//1nstance variables data and size
public Iterator<E> 1iterator() {

return new ArraylListIterator();

private class ArraylListIterator implements Iterator<kE> {
//your implementation

¥

Problem 7 - Balanced Binary Search Trees

* Insertthe keys 1,2, 3,4,5,6,7,8,9,10in a 2-3-4 search tree and draw it after
each insertion.

Problem 8 - run times

* You are given the observed running times of six different programs based on
different input sizes. On each row of the table below, indicate your best
hypothesis for the order of growth of the program. Please choose among

constant, linear, quadratic, cubic, and none of these (an answer can be used more
than once).

Observed running time Order of growth hypothesis
Program 1 million 2 million | 4 million | 8 million Constant / linear /
inputs inputs inputs inputs quadratic / cubic /
none of these
Program 1 15 min 1 hr 6 hr 2 days
Program 2 0.1 sec 0.21 sec 0.45sec | 0.89 sec
Program 3 2 min 16 min 2 hr 16 hr
Program 4 30 min 4 hr 32 hr 5.3 days
Program 5 | 3.02 days 3.01 days | 3.02 days | 3.01 days

Solutions

Answers

» Solution to Problem 1 - Sorting

» Solution to Problem 2 - Heaps

 Solution to Problem 3 - Tree traversals

* Solution to Problem 4 - Binary Trees

» Solution to Problem 5 - Binary Search Trees
» Solution to Problem 6 - Iterators

» Solution to Problem 7 - Balanced Search Trees

Solution to Problem 1 - Sorting

0-Starting point

1-Selection sort

2-Insertion sort

3-Mergesort

4-Quicksort (one partition only)
5-Heapsort

6-Final sorted result

12 11 35
11 12 20
12 11 10
10 11 12
43 32 42
11 12 20
10 11 12

46 20 43
35 42 43
15 20 43
15 16 43
28 20 40
35 46 43
15 16 18

42
46
42
42

42
20

47 44 32 16 10
47 44 32 16 10
47 44 32 16 35
47 44 32 20 35
21 15 11 16 10
47 44 32 16 10
21 28 32 35 40

40 18 41
40 18 41
40 18 41
40 18 41
35 18 12
40 18 41
41 42 43

21 28 15
21 28 15
21 28 46
21 28 46
44 A6 A7
21 28 15
44 46 47

O W O =2 b N O

Solution to Problem 2 - Heaps

* Insert key 13:

Solution to Problem 3 - Tree traversals

* Pre-order: CRBWOSTNQ
* In-order: BRWOCSNTQ

Solution to Problem 4 - Binary Trees

private 1nt sumLeafTree(Node x){
1f (X == null){
return 0;
¥
else 1f (xX.left == null && x.right == null){

return 1;

¥

elseqd
return sumLeafTree(x.left) + sumLeafTree(x.right);

¥
¥

Solution to Problem 5 - Binary Search Trees

private int countRange(Node x, Key low, Key high){
1f (X == null){
return 0;

}
1f (x.key.compareTo(low)>=0 && x.key.compareTo(high)<=0){

return 1 + countRange(x.left, low, high) + countRange(x.right, low, high);
¥
else 1f (x.key.compareTo(low)<@){
return countRange(x.right, low, high);
¥
elseq
return countRange(x.left, low, high);

Solution to Problem 6 - Iterators

- A programmer would like to traverse an arraylist in reverse order (from last element to first element). Modify the class ArrayList we wrote together to provide such an
iterator.

public class ArraylList<E> implements List<E>, Iterable<E> {
//1instance variables data and size
public Iterator<E> iterator() {

return new ArraylListIterator();

private class ArraylListIterator implements Iterator<E> {
private int 1 = size -1;

public boolean hasNext() {
return 1 >= 0;

¥

public E next() {
return data[1--];

¥

public void remove() {

¥

Problem 8 - run times

* You are given the observed running times of six different programs based on
different input sizes. On each row of the table below, indicate your best
hypothesis for the order of growth of the program. Please choose among
constant, linear, quadratic, cubic, and none of these (an answer can be used more

than once).

Observed running time Order of growth hypothesis

Program 1 million 2 million | 4 million | 8 million Constant / linear /

inputs inputs inputs inputs quadratic / cubic /

none of these

Program 1 15 min 1 hr 6 hr 2 days none
Program 2 0.1 sec 0.21 sec 0.45sec | 0.89 sec linear
Program 3 2 min 16 min 2 hr 16 hr cubic
Program 4 30 min 4 hr 32 hr 5.3 days none
Program 5 | 3.02 days 3.01 days | 3.02 days | 3.01 days constant

Why? Remember the doubling hypothesis from the timing sorting lab.

Solution to Problem 7 a - Balanced Search Trees

2

