CS62 Lab1: Exceptions
& Bag of tokens

AE

f‘t&) ;//%7.-5\) DD 1 MW




Lab 1 agenda

* Finishing the File I/0 worksheet
* Your first quiz
* Review: exceptions

» The actual lab :) - Bag of Tokens



Finishing up file 1/0



Hint: pull up the slides to see the

WorkSheet time! writing/reading code snippet

examples

 Fill in lines of code in the Java class called FilelOExample

o [t will contain a main method that will prompt the user for a String
corresponding to a text file in their directory and a number for how many
lines of text they want to read from that file.

|t should use these 2 pieces of information to open the file, read the
specified number of lines, and write them into a new file called output.txt.

* You can add whatever checks for exceptions you think are appropriate.

* Don't forget to close the input and output streams!



Writing data to a text file

import
import
import

public

java.10.File;
java.10.I0Exception;
java.l1lo.PrintWriter;

need to import relevant classes

class WriteData {

public static void main(Stringl[] args) {

PrintWriter output = null;

try {
output = new PrintWriter(new File("addresses.txt"));
// Write formatted output to the file
output.print("Alexandra Papoutsaki ");
output.println(222);
output.print(“Jingyi Li ");
output.println(111);

call .print or .println to write to file

} catch (IOException e) {

System.err.println(e.getMessage()); catch IOException for any errors

} finally {
if (output '= null)
output.close(); .close() the I/0O stream
I3

https://liveexample.pearsoncmg.com/html/WriteData.html



Reading data from a text file

import java.1io0.File;
import java.io.IOException;
import java.util.Scanner;

public class ReadData {
public static void main(Stringl[] args) {

Scanner 1nput = null; | same try...catch...finally structure
// Create a Scanner for the file
try {

input = new Scanner(new File("addresses.txt")); use Scanner class

// Read data from a file use a while loop to check if file still has lines
while (input.hasNext()) {

String firstName = input.next(); .next()is space separated (if you want the

String lastName = input.next(); : .
int room = input.nextInt(): whole line, call .nextLine())

System.out.printin(firstName + " " + lastName + " " + room);

}
} catch (IOException e) {

System.err.println(e.getMessage());

} finally {
if (input !'= null)
\ input.close(); close the file

} https://liveexample.pearsoncmg.com/html/ReadData.html



Worksheet answers

public class FileIOExample {
public static void main(String[] args) {
Scanner inputScanner = new Scanner(System.in);
System.out.println("Enter the input file name: ");
String inputFile = inputScanner.nextLine();
System.out.println("Enter the number of lines to read: ");

String linesInput = » inputScanner.nextLine()

int numberOfLines = -1;

try { linesInput
numberOfLines = Integer.parseInt ) ;

} catch (NumberFormatException e) {
System.err.println("_Invalid # of lines "),

}
finally{

inputScanner.(fhgse(% //close the scanner
s

Scanner fileScanner = null;
PrintWriter writer = null;



Worksheet answers

Scanner fileScanner = null;
PrintWriter writer = null;

try { Scanner (new File(inputFile))
fileScanner = new .
writer = new ("output.txt");
PrinterWriter
int linesRead = 0;

//while there are still 11nes and we’'ve read less than the input
while (fileScanner. hasNext &Qelg.%esRead < humberOfL{ines
String line = fileScanner.nextLine();

System.out.println(line);
writer.println(Line);
lLinesRead ++: //increment # of lines read

} .

} catch (L1OExceptionye
System.err.println("Error reading or writing files: " +
e.getMessage());

5
finally{
if(fileScanner!=null){
fileScanner.close();

}

if(writer!=null){
writer.close() :







Exceptions



Exceptions are exceptional or unwanted events

* They are operations that disrupt the normal flow of the program. E.g.,

* wrong input, divide a number by zero, run out out of memory, ask for a file that does
not exist, etc. E.g.,

int[] myNumbers = {1, 2, 3};
System.out.println(myNumbers([10]); // error!
* Will print something like

Exception in thread "main"
java. lang.ArrayIndexOutOfBoundsException: 10

and terminate the program.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.htm|


https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

Exception terminology

* When an error occurs within a method, the method throws an
exception object that contains its name, type, and state of program.

* The runtime system looks for something to handle the exception

among the call stack, the list of methods called (in reverse order) by
maln to reach the error.

* The exception handler catches the exception. If no appropriate
handler, the program terminates.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html



https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

unreported exception FileNotFoundException; must be caught
or declared to be thrown (errors(2): 23:27-23:59)

java.util.Scanner

public Scanner(File source)
throws FileNotFoundException

Three major types of exception classes

The exception in the worksheet was an example
of a checked exception: we need to handle the

* Checked Exceptions: Should follow the Catch or Specify requirement.

exception or our code won't run!

* errors caused by program and external circumstances and caught during compile time. E.g.,
 java.1lo.FileReader
» Unchecked Exceptions: Do NOT follow the Catch or Specify requirement and are caught during runtime.
* Error: the application cannot recover from. E.g.,
 java. lang.StackOverflowError (for stack)
 java. lang.OutOfMemoryError (for heap)

 RuntimeException:internal programming errors that can occur in any Java method and are
unexpected. E.g.,

 java. lang.IndexOutOfBoundsException The exception you'll write in lab will
. java.lang.NullPointerException handle a RuntimeException

* java. lang.ArithmeticException

https://docs.oracle.com/javase/tutorial/essential/exceptions/catchOrDeclare.html



https://docs.oracle.com/javase/tutorial/essential/exceptions/catchOrDeclare.html

Useful exceptions to know

Checked - you have to catch or specity they throw an exception

I0Exception: when using file I/0 stream operations.

Unchecked - you don't have to catch/specify them, but it can still be a good idea to do so.

ArrayIndexOutOfBoundsException: when you try to access an array with an invalid index value

ArithmeticException: when you perform an incorrect arithmetic operation. For example, if you
divide any number by zero.

IllegalArgumentException: when an inappropriate or incorrect argument is passed to a
method.

NullPointerException: when you try to access an object with the help of a reference variable
whose current value is nulLl.

NumberFormatException: when you pass a string to a method that cannot convert it to a number.
e.g., Integer.parselnt(“hello”)

https://stackify.com/types-of-exceptions-java/



https://stackify.com/types-of-exceptions-java/

The Catch or Specify requirement

* Code that might throw checked exceptions must be enclosed either by
* atry-catch statement that catches the exception,

try {

//one or more legal lines of code that could throw an
exception

} catch (TypeOfException e) {
System.err.println(e.getMessage());

}

* or have the method specity that it can throw the exception. The method must
provide a throws clause that lists the exception.

method () throws Exception({
1f(some error) {
throw new Exception();

;

https://docs.oracle.com/javase/tutorial/essential/exceptions/catchOrDeclare.html


https://docs.oracle.com/javase/tutorial/essential/exceptions/catchOrDeclare.html

Catching exceptions

method(){
try {
statements; //statements that could throw exception
} catch (Exceptionl el) {
//handle el,;
}

catch (Exception2 e2) {
//handle e2;
I3

* |If no exception is thrown, then the catch blocks are skipped.
* |f an exception is thrown, the execution of the try block ends at the responsible statement.

* The order of catch blocks is important. A compile error will result if a catch block for a
more general type of error appears before a more specific one, e.g., Exception should be
after ArithmeticException.

https://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.6



https://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.6

finally block

* Used when you want to execute some code regardless of whether an
exception occurs or is caught

method(){
try {
statements; //statements that could thrown exception
} catch (Exceptionl e) {
//handle e; catch 1s optional.

+
finally A

//statements that are executed no matter what:
+

}

°* The finally block will execute no matter what. Even after a return.

https://docs.oracle.com/javase/tutorial/essential/exceptions/finally.html



https://docs.oracle.com/javase/tutorial/essential/exceptions/finally.html

Grading

(I README

For grading purposes, you will be graded based on the following criteria:

Lab - A Bag of Tokens

Criterion Points
Learning Goals

Token methods work correctly 3
e Building and running simple Java programs.

Follow the instructions from the first lab on how to clone the assignment. Bag methods work o
Classes Style and formatting 2
In this project, you will be making simple changes to complete a program that is composed of two classes: Total 10

Token

A Token represents a virtual token/chip/coin with a (randomly chosen) color and value .

¢ Provides two different constructors:

o The first constructor receives the specific color and value for the token FI n d P rOf- I—I Oor a TA tO gEt Ch ECked Off

o The second no-argument constructor selects a random color from a finite number of options (i.e.
"Green", "Blue", "Yellow", "Red") and a value that is between 0 and MAX_VALUE

e |t supports methods to get and set both the color and value of the token.

for style points on Gradescope!

e |t supports a toString method to enable it to be printed.

o Remember, the toString is a special method that all classes can implement to return what the
String representation of an object of that class would be. This is useful when we want to print an
object. E.g.,

Token example = new Token("Green", 5); =
System.out.println(example);

would print something that looks like jibberish (it's actually a hashcode which might be connected to the
memory location of the object). Overriding the toString method and returning (not printing!) what the
String representation should be will ensure that the above code will provide a meaningful print output.

e |t also includes a main method that can be used (if this class is run as an application) to exercise this
implementation.



