
CS62 Lab1: Exceptions
& Bag of tokens

Java Fundamentals

Lab 1 agenda

• Finishing the File I/O worksheet

• Your first quiz

• Review: exceptions

• The actual lab :) - Bag of Tokens

Finishing up file I/O

• Fill in lines of code in the Java class called FileIOExample

• It will contain a main method that will prompt the user for a String
corresponding to a text file in their directory and a number for how many
lines of text they want to read from that file.

• It should use these 2 pieces of information to open the file, read the
specified number of lines, and write them into a new file called output.txt.

• You can add whatever checks for exceptions you think are appropriate.

• Don’t forget to close the input and output streams!

Worksheet time!
Hint: pull up the slides to see the
writing/reading code snippet
examples

Writing data to a text file
import java.io.File;
import java.io.IOException;
import java.io.PrintWriter;

public class WriteData {
 public static void main(String[] args) {

 PrintWriter output = null;
 try {
 output = new PrintWriter(new File("addresses.txt"));
 // Write formatted output to the file
 output.print("Alexandra Papoutsaki ");
 output.println(222);
 output.print(“Jingyi Li ");
 output.println(111);

 } catch (IOException e) {
 System.err.println(e.getMessage());
 } finally {
 if (output != null)
 output.close();
 }
 }
}

https://liveexample.pearsoncmg.com/html/WriteData.html

need to import relevant classes

call .print or .println to write to file

catch IOException for any errors

.close() the I/O stream

Reading data from a text file
import java.io.File;
import java.io.IOException;
import java.util.Scanner;

public class ReadData {
 public static void main(String[] args) {

 Scanner input = null;
 // Create a Scanner for the file
 try {
 input = new Scanner(new File("addresses.txt"));

 // Read data from a file
 while (input.hasNext()) {
 String firstName = input.next();
 String lastName = input.next();
 int room = input.nextInt();
 System.out.println(firstName + " " + lastName + " " + room);
 }
 } catch (IOException e) {
 System.err.println(e.getMessage());
 } finally {
 if (input != null)
 input.close();
 }
 }
} https://liveexample.pearsoncmg.com/html/ReadData.html

same try…catch…finally structure

use Scanner class

close the file

use a while loop to check if file still has lines

.next() is space separated (if you want the
whole line, call .nextLine())

Worksheet answers

inputScanner.nextLine()

linesInput

Invalid # of lines

close()

Worksheet answers
Scanner(new File(inputFile))

hasNextLine()

IOException e

writer.close()

PrinterWriter

numberOfLines

line
linesRead

Quiz

Exceptions

Exceptions are exceptional or unwanted events
• They are operations that disrupt the normal flow of the program. E.g.,

• wrong input, divide a number by zero, run out out of memory, ask for a file that does
not exist, etc. E.g.,

 int[] myNumbers = {1, 2, 3};

 System.out.println(myNumbers[10]); // error!

• Will print something like

Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 10

and terminate the program.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

Exception terminology

• When an error occurs within a method, the method throws an
exception object that contains its name, type, and state of program.

• The runtime system looks for something to handle the exception
among the call stack, the list of methods called (in reverse order) by
main to reach the error.

• The exception handler catches the exception. If no appropriate
handler, the program terminates.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

Three major types of exception classes

• Checked Exceptions: Should follow the Catch or Specify requirement.

• errors caused by program and external circumstances and caught during compile time. E.g.,

• java.io.FileReader

• Unchecked Exceptions: Do NOT follow the Catch or Specify requirement and are caught during runtime.

• Error: the application cannot recover from. E.g.,

• java.lang.StackOverflowError (for stack)

• java.lang.OutOfMemoryError (for heap)

• RuntimeException: internal programming errors that can occur in any Java method and are
unexpected. E.g.,

• java.lang.IndexOutOfBoundsException

• java.lang.NullPointerException

• java.lang.ArithmeticException

https://docs.oracle.com/javase/tutorial/essential/exceptions/catchOrDeclare.html

The exception in the worksheet was an example
of a checked exception: we need to handle the
exception or our code won’t run!

The exception you’ll write in lab will
handle a RuntimeException

https://docs.oracle.com/javase/tutorial/essential/exceptions/catchOrDeclare.html

Useful exceptions to know
• Checked - you have to catch or specify they throw an exception

• IOException: when using file I/O stream operations.

• Unchecked - you don’t have to catch/specify them, but it can still be a good idea to do so.

• ArrayIndexOutOfBoundsException: when you try to access an array with an invalid index value

• ArithmeticException: when you perform an incorrect arithmetic operation. For example, if you
divide any number by zero.

• IllegalArgumentException: when an inappropriate or incorrect argument is passed to a
method.

• NullPointerException: when you try to access an object with the help of a reference variable
whose current value is null.

• NumberFormatException: when you pass a string to a method that cannot convert it to a number.
e.g., Integer.parseInt(“hello”)

https://stackify.com/types-of-exceptions-java/

https://stackify.com/types-of-exceptions-java/

The Catch or Specify requirement
• Code that might throw checked exceptions must be enclosed either by

• a try-catch statement that catches the exception,
 try {
 //one or more legal lines of code that could throw an
exception
 } catch (TypeOfException e) {
 System.err.println(e.getMessage());
 }

• or have the method specify that it can throw the exception. The method must
provide a throws clause that lists the exception.
method() throws Exception{
 if(some error) {
 throw new Exception();
 }
}

https://docs.oracle.com/javase/tutorial/essential/exceptions/catchOrDeclare.html

https://docs.oracle.com/javase/tutorial/essential/exceptions/catchOrDeclare.html

Catching exceptions
method(){
 try {
 statements; //statements that could throw exception
 } catch (Exception1 e1) {
 //handle e1;
 }
 catch (Exception2 e2) {
 //handle e2;
 }
}

• If no exception is thrown, then the catch blocks are skipped.

• If an exception is thrown, the execution of the try block ends at the responsible statement.

• The order of catch blocks is important. A compile error will result if a catch block for a
more general type of error appears before a more specific one, e.g., Exception should be
after ArithmeticException.

https://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.6

https://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.6

finally block
• Used when you want to execute some code regardless of whether an

exception occurs or is caught

method(){
 try {
 statements; //statements that could thrown exception
 } catch (Exception1 e) {
 //handle e; catch is optional.
 }
 finally {
 //statements that are executed no matter what;
 }
}
• The finally block will execute no matter what. Even after a return.

https://docs.oracle.com/javase/tutorial/essential/exceptions/finally.html

https://docs.oracle.com/javase/tutorial/essential/exceptions/finally.html

Find Prof. Li or a TA to get checked off
for style points on Gradescope!

