
CS62 Class 7: Doubly linked lists
Basic Data Structures

https://www.geeksforgeeks.org/doubly-linked-list/

https://www.geeksforgeeks.org/doubly-linked-list/

Agenda
• Garbage collection

• Deriving Doubly Linked Lists from Singly Linked Lists

• Implementation

• Run times, comparison with ArrayLists

Memory management in
Java

What happens to our Java code
• We write our source code in .java files

• The javac Java compiler compiles the source code into bytecode.

• This will result in .class files that match the source code file names.

• This is compile time.

• The JVM Java Virtual Machine will translate bytecode into native machine code.

• WORA is one of the main powers of Java: Write Once, Run Anywhere (or
Away, depending on whom you ask).

‣ Like your DarwinTest .jar file!

• This is runtime.

Typical structure of a Java project
• src - source files (.java), might be organized within packages

• bin - bytecode files (.class)

• lib - libraries and other dependencies

Stack vs heap (review in Python)
• Recall using Python Tutor to step through your code, recall drawing

stack frames in CS51P

Stack frames are the stack Objects are stored in the heap

Static memory allocation,
contains method calls and
primitives (like x = 1234)

Fast, follows a last-in-first-out order Slower

Dynamic memory allocation
(since we don’t know how big
objects are at compile time)

Stack vs heap in Java (walkthrough)

 public static void main(String args[]) {
 int number = 1234;
 String name = “Aden”;
 Person aden = null;
 aden = new Person(name, number)
 }

Call stackSt
ac

k
fr

am
es

public class Person {

 private String name;
 private int phoneNumber;

 public Person(String name, int phoneNumber) {
 this.name = name;
 this.phoneNumber = phoneNumber;
 }

Stack memory

Heap memory

Stack vs heap in Java (walkthrough)

 public static void main(String args[]) {
 int number = 1234;
 String name = “Aden”;
 Person aden = null;
 aden = new Person(name, number)
 }

Call stackSt
ac

k
fr

am
es

public class Person {

 private String name;
 private int phoneNumber;

 public Person(String name, int phoneNumber) {
 this.name = name;
 this.phoneNumber = phoneNumber;
 }

Stack memory

Heap memory

main()

int number = 1234

Stack vs heap in Java (walkthrough)

 public static void main(String args[]) {
 int number = 1234;
 String name = “Aden”;
 Person aden = null;
 aden = new Person(name, number)
 }

Call stackSt
ac

k
fr

am
es

public class Person {

 private String name;
 private int phoneNumber;

 public Person(String name, int phoneNumber) {
 this.name = name;
 this.phoneNumber = phoneNumber;
 }

Stack memory

Heap memory

main()

int number = 1234

String name

The reference to the
String is stored in the
stack

The actual String
object is in the heap in
Java’s “String pool”

String pool

“Aden”

Stack vs heap in Java (walkthrough)

 public static void main(String args[]) {
 int number = 1234;
 String name = “Aden”;
 Person aden = null;
 aden = new Person(name, number)
 }

Call stackSt
ac

k
fr

am
es

public class Person {

 private String name;
 private int phoneNumber;

 public Person(String name, int phoneNumber) {
 this.name = name;
 this.phoneNumber = phoneNumber;
 }

Stack memory

Heap memory

main()

int number = 1234

String name

The reference to the
Person is stored in the
stack

It doesn’t exist in the
heap yet since we set
it to null originally

String pool

“Aden”

Person aden

Stack vs heap in Java (walkthrough)

 public static void main(String args[]) {
 int number = 1234;
 String name = “Aden”;
 Person aden = null;
 aden = new Person(name, number)
 }

Call stackSt
ac

k
fr

am
es

public class Person {

 private String name;
 private int phoneNumber;

 public Person(String name, int phoneNumber) {
 this.name = name;
 this.phoneNumber = phoneNumber;
 }

Stack memory

Heap memory

main()

int number = 1234

String name

1. The call to the Person
constructor method
goes in the stack

2. It creates a Person
object in the heap

String pool

“Aden”

Person aden

Person() this
Person

3. The reference to “this”
also exists in the stack and
points to the Person object
in the heap

Stack vs heap in Java (walkthrough)

 public static void main(String args[]) {
 int number = 1234;
 String name = “Aden”;
 Person aden = null;
 aden = new Person(name, number)
 }

Call stackSt
ac

k
fr

am
es

public class Person {

 private String name;
 private int phoneNumber;

 public Person(String name, int phoneNumber) {
 this.name = name;
 this.phoneNumber = phoneNumber;
 }

Stack memory

Heap memory

main()

int number = 1234

String name

String pool

“Aden”

Person aden

Person() this

String name

int phoneNumber =
1234

Person

1. The reference to name points
to the heap String pool

2. But the phoneNumber is a
primitive, so it’s stored in the stack

Stack vs heap in Java (walkthrough)

 public static void main(String args[]) {
 int number = 1234;
 String name = “Aden”;
 Person aden = null;
 aden = new Person(name, number)
 }

Call stackSt
ac

k
fr

am
es

public class Person {

 private String name;
 private int phoneNumber;

 public Person(String name, int phoneNumber) {
 this.name = name;
 this.phoneNumber = phoneNumber;
 }

Stack memory

Heap memory

main()

int number = 1234

String name

String pool

“Aden”

Person aden

Person

Once the constructor call ends, it’s
wiped from the stack

Stack vs heap in Java (walkthrough)

 public static void main(String args[]) {
 int number = 1234;
 String name = “Aden”;
 Person aden = null;
 aden = new Person(name, number)
 }

Call stackSt
ac

k
fr

am
es

public class Person {

 private String name;
 private int phoneNumber;

 public Person(String name, int phoneNumber) {
 this.name = name;
 this.phoneNumber = phoneNumber;
 }

Stack memory

Heap memory

String pool

“Aden”

Person

Once the main call ends, it’s wiped
from the stack

We’re just left with our heap objects
with no references to them :’(

Stack vs heap in Java (walkthrough)

 public static void main(String args[]) {
 int number = 1234;
 String name = “Aden”;
 Person aden = null;
 aden = new Person(name, number)
 }

Call stackSt
ac

k
fr

am
es

public class Person {

 private String name;
 private int phoneNumber;

 public Person(String name, int phoneNumber) {
 this.name = name;
 this.phoneNumber = phoneNumber;
 }

Stack memory

Heap memory

Java automatically runs a garbage
collector to get rid of heap objects
that have been unreferenced and
unused :D

Summary
• The memory in the stack is fast and is for primitives & function calls

• The memory in the heap is slower and is for objects

• A garbage collector comes around and collects unused memory in the
heap (as a programmer, you don’t have much control over this)

Doubly Linked Lists
(conceptually)

Linked Lists
• Dynamic linear data structures.

• In contrast to sequential data structures, linked data structures use pointers/links/
references from one object to another.

• For example, the list of elements CS, ?, ! could be in very different memory
locations. We just need a pointer to the head and links to subsequent elements
to reconstruct it.

CS ? !

What the user’s mental model is:

0 1 2

? CS !

0 1 2 3 4 5 6 7

How it is in memory:

Head/Beginning/Front/First

One downside of SLLists
• Inserting at the back of a SLList is much slower than the front.

Q: What’s the run time of each method?

A: O(1) A: O(n)

Change: why not a tail pointer?

head

6 4 47

tail

Suppose we want to support add, get, and remove operations for both
ends. Will having a tail pointer result for fast operations on long lists?

A. Yes

B. No, add would be slow.

C. No, get would be slow.

D. No, remove would be slow.

4228…

addLast()

getLast()

removeLast()
slido.com #627

http://slido.com

A tail pointer is not enough
Suppose we want to support add, get, and remove operations for both
ends. Will having a tail pointer result for fast operations on long lists?

A. Yes

B. No, add would be slow.

C. No, get would be slow.

D. No, remove would be slow.

removeLast requires two actions:

● Setting 4’s next variable to null.

● Setting tail equal to 4’s memory location.

○ Have to search through almost the whole list to
find the 4 node (second to last).

head

6 4 47

tail

4228…

Solution: Have .prev pointers as well

element

Recursive Definition of Doubly Linked Lists
• A doubly linked list is either empty (null) or a node having a reference to a doubly

linked list.

• Node: is a data type that holds any kind of data and two references to the
previous and next node.

element

Node

element element element

head tail

DoublyLinkedList & Node

2 changes from SLL: add tail as instance variable,
add prev pointer in Node class

DLL walkthrough

DoublyLinkedList(): Constructs an empty DLL

head

tail

size

What should happen?

DoublyLinkedList<String> dll = new DoublyLinkedList<String>();

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

DoublyLinkedList(): Constructs an empty DLL

head = null

tail = null

size = 0

DoublyLinkedList<String> dll = new DoublyLinkedList<String>();

What should happen?

dll.add(“CS062”);

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

add(E element):Inserts the specified element at the head of
the doubly linked list.

dll.add(“CS062”)

size=1CS062

head tail

What should happen?

dll.addFirst(“ROCKS”);

addFirst(E element):Inserts the specified element at the
head of the doubly linked list

dll.addFirst(“ROCKS”)

size=2

What should happen?

dll.addLast(“!”);

CS062ROCKS

head tail

CS062

addLast(E element):Inserts the specified element at the tail
of the doubly linked list

dll.addLast(“!”)

size=3

What should happen?

dll.add(1,“?”);

!ROCKS

head tail

add(int index, E element):Adds element at the specified
index

dll.add(1,“?”)

size=4

What should happen?

dll.remove();

CS062 !ROCKS

head tail

?

?

remove():Removes and returns the head of the doubly linked
list

dll.remove()

size=3

What should happen?

dll.removeLast();

CS062 !

head tail

removeLast():Removes and returns the tail of the doubly
linked list

dll.removeLast()

size=2

What should happen?

dll.remove(1);

? CS062

head tail

remove(int index):Removes and returns the element at the
specified index

dll.remove(1)

size=1

?

head tail

Worksheet time! • Do Qs 1-2 on your worksheet.

Suppose x and t are references to
different Nodes in a doubly linked list.
What is the effect of the following
code fragment?

t.prev = x;
t.next = x.next;
x.next.prev = t;
x.next = t;

What if the code was in a different
order?

x.next = t;
x.next.prev = t;
t.next = x.next;
t.prev = x;

Worksheet answers
Suppose x and t are references to
different Nodes in a doubly linked list.
What is the effect of the following
code fragment?

t.prev = x;
t.next = x.next;
x.next.prev = t;
x.next = t;

It inserts t between x and x.next.

Before

x x.next

x x.next

t

t

After

Worksheet answers
What if the code was in a different
order?

x.next = t;
x.next.prev = t;
t.next = x.next;
t.prev = x;

It’s gibberish

Before

x x.next

x x.next

t

t

After

More Implementation
Adding

Adding to the head of a DLL

Adding to head of SLL

Largely, we can reuse SLL code, but we need to
think about what to do with .prev pointers and
the tail pointer.

There are 2 cases to adding:

1. The DLL is empty, so we have created the first
element, and need to set tail = head

2. The DLL has an element, so tail is set properly.
But then we need to find the old head, and set
oldHead.prev = new node.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Adding to the head of a DLL

Largely, we can reuse SLL code, but we need to
think about what to do with .prev pointers and
the tail pointer.

There are 2 cases to adding:

1. The DLL is empty, so we have created the first
element, and need to set tail = head

2. The DLL has an element, so tail is set properly.
But then we need to find the old head, and set
oldHead.prev = new node.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

• Insert element at the tail for doubly linked lists.

Worksheet time!

Worksheet answers

More Implementation
Removing

Review: Retrieve and remove head (SLL)

 /**
 * Removes and returns the head of the singly linked list.
 *
 * @return the head of the singly linked list.
 */
public E remove() {  

 // Make a temporary pointer to head
Node temp = head;
// Move head one to the right
head = head.next;
// Decrease number of nodes
size--;
// Return element held in the temporary pointer
return temp.element;

}

Just advance the head pointer
to head.next

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Retrieve and remove head (DLL)

/**
 * Removes and returns the head of the doubly linked list.
 *
 * @return the head of the doubly linked list.
 */
public E removeFirst() {

// Create a pointer to head
Node temp = head;
// Move head to next
head = head.next;

 // if there was only one node in the doubly linked list
if (head == null) {

tail = null
} else {

 head.prev = null;
}
// decrease number of nodes
size--;
// return old head’s element
return temp.element;

}

only this if statement
block is different

Think of all the possible cases.
1. There is only 1 node and now the DLL is
empty
2. There is more than 1 node, so tail
doesn’t need to change.

1. Set tail to null, since the DLL is empty
now
2. head.prev = null to clean up prev
pointers

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Retrieve and remove last element (DLL)

This should be in O(1), as this is what we
motivated in the start of lecture.

O(1) means just pointer manipulation in
your implementation - no loops!

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Review: Retrieve and remove element from a specific
index (SLL)

use fingering method to find the right node

skip the pointer

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

public E remove(int index) {
 if (index >= size || index < 0) {
 throw new IndexOutOfBoundsException("Index " + index + " out of bounds");
 }
 if (index == 0) {
 return _________________
 } else if (index == size - 1) {
 return _________________
 } else {
 Node previous = null;
 Node finger = head;
 // search for value indexed, keep track of previous
 while (index > 0) {
 previous = _________
 finger = ___________
 ___________ // what do we do with index?
 }
 // found the element to remove, change pointers
 previous.next = ____________;
 _____________ = previous;
 size--;
 return finger.element;
 }
 }

Worksheet time!
Fill in the blanks to implement remove at a specific index for DLLs

public E remove(int index) {
 if (index >= size || index < 0) {
 throw new IndexOutOfBoundsException("Index " + index + " out of bounds");
 }
 if (index == 0) {
 return _________________
 } else if (index == size - 1) {
 return _________________
 } else {
 Node previous = null;
 Node finger = head;
 // search for value indexed, keep track of previous
 while (index > 0) {
 previous = _________
 finger = ___________
 ___________ // what do we do with index?
 }
 // found the element to remove, change pointers
 previous.next = ____________;
 _____________ = previous;
 size--;
 return finger.element;
 }
 }

Worksheet answers!
Fill in the blanks to implement remove at a specific index for DLLs

removeFirst();

removeLast();

finger;
finger.next;

index--;

finger.next
finger.next.prev

Worksheet time!

 Check all the methods that are the same between singly linked lists and
doubly linked lists (i.e., their implementation is the same, you can just copy/
paste the SLL code and it will work for DLL).

☐ void clear() ☐ E get(int index) ☐ boolean isEmpty()

☐ E set(int index, E element) ☐ int size()

Worksheet answers!
 Check all the methods that are the same between singly linked lists and
doubly linked lists (i.e., their implementation is the same, you can just copy/
paste the SLL code and it will work for DLL).

☐ void clear()

☐ E get(int index)

☐ boolean isEmpty()

☐ E set(int index, E element)

☐ int size()

no, need to also set tail = null

mostly — could do if index == size-1, return tail.element to speed up, not required

yes, if size == 0 implementation

yes, just replacing element means no pointer manipulation required

yes

Linked List invariants
• The head variable will always point to the start of the list or null

• The tail variable will always point to the end of the (doubly linked) list or null

• The size variable is always the total number of nodes

Running times

operation SLL time complexity DLL time complexity explanation

addFirst

addLast

add(index)

removeFirst

removeLast

remove(index)

get(index)

set(index)

clear()

O(1) O(1) pointer manip

O(n) O(1) SLL doesn’t have tail pointer

O(n) O(n) iterate through whole list

O(1) O(1) pointer manip

O(n) O(1) SLL doesn’t have tail pointer

O(n) O(n) iterate through whole list

O(n) O(n) iterate through whole list

O(n) O(n) iterate through whole list

O(1) O(1) pointer manip

operation SLL time
complexity

DLL time
complexity

ArrayList

addFirst

addLast

add(index)

removeFirst

removeLast

remove(index)

get(index)

set(index)

clear()

O(1)

O(n)

O(n) O(n)

O(1) O(1)

O(n) O(1)

O(n) O(n)

O(n) O(n)

O(n) O(n)

O(1) O(1)

What about ArrayLists?
Explanation

O(1) O(n) Need to shift rest of array

O(n) Need to copy/shift elements

O(n) Need to copy/shift elements

O(1) Just array indexing

O(1) Just array indexing

O(n)
Loop through array to set
= null

O(1) O(1)+ Could call resize()

O(n) Need to shift rest of array

O(1)+ Could call resize()

Space complexity?
• Space complexity is a measure of the total memory an algorithm/data structure

uses.

• Both linked lists and ArrayLists use O(n) space complexity (where n is the number
of items).

• However, linked lists are slightly higher, since there is additional memory
overhead since each element is a Node with pointers. In an Arraylist, each
element is just the element itself.

Run time summary
• If we are iterating through the linked list to find a specific Node (“finger”), O(n)

worst case

• get(), set(), add() with index, remove() with index

• If we are just moving pointers around, O(1) worst case

• add() from the head, remove() from the head, clear()

• ArrayLists benefit from O(1) get() and set() times, so often are used over linked
lists in practice.

Lecture 7 wrap-up
• DLLs maintain prev pointers and a reference to the end of the list.
• Lab tonight: learn how to use the Java debugger and get out of a maze of linked

list pointers. (New assignment!)
• Part II of Darwin (everything else) due next Tues 11:59pm
• Checkpoint I is 9/29. If you have SDRC accommodations, please schedule them

now. We cannot offer alternate proctoring in-class (e.g., if you have extra time,
please get it proctored via the SDRC). 1 double sided handwritten cheat sheet OK.
• Lab next week is checkpoint 1 review, includes next week’s 2 lectures

Resources
• Linked lists from the textbook: https://algs4.cs.princeton.edu/13stacks/

• See slides following this for one more practice problem

https://algs4.cs.princeton.edu/13stacks/

Bonus practice problem
• Add a method removeAfter(Node node) in the DoublyLinkedList class that removes the node following the

given one.

Bonus answer
 public void removeAfter(Node node) {
 if (isEmpty() || node == null) {
 return;
 }
 for (Node current = head; current != null; current = current.next) {
 if (current == node) {
 if (current.next != null) {
 current.next = current.next.next;
 if(current.next != null){
 current.next.prev = current;
 }
 size--;
 }
 break;
 }
 }
 }

