CS62 Class 6: ArraylLists

Basic Data Structures

0 1 2 3 4 S 6 7 8 9

After Adding 7th element a new
ArrayList is created with capacity 20

BN [[[

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

from https://www.janbasktraining.com/blog/java-print-arraylist/

https://www.janbasktraining.com/blog/java-print-arraylist/

Lecture 6 agenda

» Data structures in general
* What are abstract data types?
* Why do we care + history

* ArrayLists behavior

» ArrayLists implementation

Data structures in general

Abstract data type

» Sometimes, yoUu'll hear specific data structures be
referred to as “abstract data types”. This is a
conceptual model where users know the behavior of
a data structure, but not exactly how it's

implemented. AT e Sy
* How it's implemented = where in memory things R — oablic — prvare
are, what algorithms are used... T | d H [F‘
» For example, the idea of a “list” is an abstract data * q Dl
type. We know we can add, remove, resize a list, but N =
how exactly that happens is not important. N e

—, —

» Arraylists, Singly Linked Lists, Doubly Linked Lists
are not abstract: we have to implement them.

» Basically, the same thing as an interface!

» ...which is also kind of the same thing as an API.

https://www.geeksforgeeks.org/abstract-data-types/

Data structures history

BRIEF & INCOMPLETE HISTORY OF DATA STRUCTURES

Hash table
Stack operations (IBM) Binary Search Trees
Alan M. Turing I
Linked List Heapsort Computer aided proof of

(Rand Corporation) gr aph pr oblem

More array i ;
sorting research Bubble Sort” becomes

mainstream

Arrays implemented by Computers, Array sorting

Mergesort algorithm invented algorithms published
(John von Neumann, 1945)

(link)
g (link)

https://macbookandheels.com/algorithm/2018/10/31/teachingds/

» Lots of concepts in CS came

from math (trees, graphs)
and have been around for a
while

The invention of many data
structures coinciding with
World War Il is no

coincidence

» Arraylists are not one of

these: they are a relatively
modern implementation
(1998), even though arrays
have been around since the
1940s

https://macbookandheels.com/algorithm/2018/10/31/teachingds/

Joshua Bloch: main Java Collections Framework
architect

6\ Joshua Bloch @joshbloch.bsky.social - 19d

* The pPerson who made x# This is disgusting. | am glad that | no longer work for one these Big Tech
ArraylLists isn't some long SlelifeETEE
dead historic figu re: he was an Big Tech donations to inaugural committees
I I After giving sparsely to the swearing-in festivities of Donald Trump in 2017 and Joe
engl neer at SU nM |Cr05yStemS Biden in 2021, some of the biggest tech giants have donated $1 million each to
(the company that made Java) President-elect Trump’s inaugural fund.

b Ut n OW tea C h es at C M U COMPANY 2017 (TRUMP) 2021 (BIDEN) 2025 (TRUMP)

Amazon l $57,746 76, $1,000,000

» He's currently pretty politically
active on BlueSky

Google 85,00(337,50C $1,000,000
Meta $1,000,000
Microsoft i i $1,000,000

Sam Altman

1,000,000
(OpenAl CEO) 5

Tim Cook (Apple

1,000,000
CEO) >

Uber ,000, $1,000,000

Figures represent totals of cash and in-kind donations.

Source: Federal Election Commission filings and company data THE WASHINGTON POST

My (liberal arts-y) wish for you: know history

* It's one thing to know how data structures work
(most data structures courses)

» But it's another to know when to appropriately and
ethically how to use them and understand their

history

» STS (science technology society) scholar Bruno
Latour calls this “opening the black box of science”
- a real person had to create everything we use in
this class to solve real problems, and
understanding this history gives you a deeper
insight into how technology is used by society (and
how it can encode bias, etc.)

» Hopefully, this knowledge will equip you for your
final project

To evaluate an affordance according to its effects on social
systems and institutions [2, 7, 9, |32], consider Ferreira et al.

History and Context When examining a specific technology, what
are the historical and cultural circumstances in which it emerged?
When was 1t developed? For what purpose? How has its usage
and function changed from then to today?

Power Dynamics and Hegemony Who benefits from this technol-
ogy? At the expense of whose labor? How is this technology
sold and marketed? What are the economic and political interests
for the proliferation of this technology?

Developing Effective Long-Term Solutions What solutions are cur-
rently being implemented to address this labor/benefit asymme-
try? In what ways do they reinforce or challenge the status quo?
What are the long- and short-term implications of these solutions
and who will benefit from them?

See

https://kevinl.info/do-abstractions-have-politics/

Thus, we have a history textbook!

CS62

Overview
Schedule
Course Staff
Grading

Course Policies
Calendar
History

History of ArrayLists

Canvas Gradescope

History of Data Structures

Data structures are fundamental tools in computer science, serving both to organize and manage
data efficiently and to optimize algorithmic performance across various applications. From
developing everyday functions to groundbreaking innovations, programmers increasingly rely on data
structures. Recognizing the history of data structures provides us insight into how they've shaped
our current society, while also exploring their potential to address emerging technological and ethical
challenges. Consequently, it is important to understand not only their technical applications, but also
their historical origins and evolution.

This component of the course will expand our understanding of the historical significance of the data

structures covered in this course by answering these questions:

Where do these data structures originate?

Who developed them, and what potential biases might they reflect?
How have data structures been used historically?

What are their contemporary applications?

In what ways can data structures be used to transform society?

Credits
This history supplemental “textbook” is written by Jing O'Brien (PO '25) under guidance from Jingyi
Li and is generously supported by a Pomona College Wig Grant. Thank you Jing!

TABLE OF CONTENTS

History of ArrayLists

https://cs.pomona.edu/classes/cs62/history/

- My RA Jing O'Brien is doing
research on the history of data
structures as we go along. Read
the pages to supplement
learning purely “technical”
material!

https://cs.pomona.edu/classes/cs62/history/

Why do we need data structures?

To organize and store data so that we can perform efficient operations on them
based on our needs: imagine walking to an unorganized library and trying to find
your favorite title or books from your favorite author.

We can define efficiency in different ways.
» Time: How fast can we perform certain operations on a data structure?
» Space: How much memory do we need to organize our data in a data structure?

» Affordances: How does this data structure bake in assumptions for how we should
think about the problem? What can we and can we not do with it?

There is no data structure that fits all needs.
+ That's why we're spending a semester looking at different data structures.
 So far, the only data structure we have encountered is arrays.

The goal of this class is for you to understand trade offs between data structures, to
choose the appropriate data structure for the appropriate problem

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

Types of operations on data structures

: adding a new element in a data structure.
: Removing (and possibly returning) an element.
. Searching for a specific data element.

. Replacing an existing element with a new one (and possibly returning old).
. Going through all the elements.
. Sorting all elements in a specific way.
. Check if data structure contains any elements.

* Not a single data structure does all these things efficiently.

* You need to know both the kind of data you have, the different operations you will need
to perform on them, and any technical limitations to pick an appropriate data structure.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

Linear vs non-linear data structures

. . elements arranged in a linear sequence based on a specific order.
 E.g., Arrays, ArraylLists, linked lists, stacks, queues.

» Linear memory allocation: all elements are placed in a contiguous block of
memory. E.g., arrays and ArrayLists.

» Use of pointers/links: elements don't need to be placed in contiguous blocks.
The linear relationship is formed through pointers. E.g., singly and doubly
linked lists.

. . elements arranged in non-linear, mostly hierarchical relationship.

- E.g., trees and graphs.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

ArraylLists & their behaviors

ArrayLists

Remember, an ArraylList is implemented using Arrays

0 1 2 3 4 5 6 7

Capacity =38

Size =3

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ArrayLi1st(): Constructs an ArrayList

— e W
l
ArrayLlst<Str1ng> al = new ArrayLlst<Str1ng>())

— ——

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ArraylL1ist(): Constructs an ArrayList

When we first make an Arraylist, it is with a size 2 Array.

ArraylList<String> al = new ArraylList<String>();

.‘ What should happen?}

Capacity = 2

Size=0

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

add(E element) : Appends the element to the end of the
ArraylList

al.add(“CS062”);

.' What should hapen?

Capacity = 2

Cive = 1 al.add(“ROCKS™); |

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

add(E element) : Appends the element to the end of the
ArraylList

al .add(“ROCKS”);

.' What should happen?

Capacity = 2

Size =2

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

add(E element) : Appends the element to the end of the
ArraylList

- Double capacity since it's full
and then add new element

0 1 2 3

,' What should happen? |

Capacity =4

Size =3 - A

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

add(int 1ndex, E element) :Adds element at the specified
index

- Shift elements to the right

0 1 2 3

.' What should happen?}

Capacity =4

e 4 al.add(3, “?”); |

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

add(int 1ndex, E element) :Adds element at the specified
index

- Double capacity since full
- Shift elements to the right

0 1 2 3 4 5 6 7
Capacity= 3 CI]..CICICI(3, cc?”);
Size =5

. What should happen?

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

remove() : Removes and returns element from the end of
ArraylList

- Remove and Return last element

0 1 2 3 4 5 6 7

Capacity =38

al.remove();

Size =4
. What should happen?

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

remove() : Removes and returns element from the end of
ArraylList

- Remove and Return last element

0 1 2 3 4 5 6 7

Capacity =38

al.remove();

Size =3
. What should happen?

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

remove() : Removes and returns element from the end of
ArraylList

- Remove and return last element
- Halve capacity when 1/4 full

.... o

0 1 2 3

Capacity =4

Size = 2
What should happn

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

remove(1nt 1ndex):Removes and returns element from
specified index

- Remove element from index

- Shift elements to the left
- Halve capacity when 1/4th full

0 1

al.remove(0);

Capacity = 2

Size =1

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

O 00O O U1 B W NN =

-
> S

Reminder: Interface List

interface List<E> {
” void add(E element);
void add(int index, E element);
void clear();
E get(int index);
boolean isEmpty();
E removel();
E remove(int index);
E set(int index, E element);
int size();

-

Standard Operations of ArraylLi1st<E> class

* ArrayList () : Constructs an empty ArrayList with an initial capacity of 2 (can vary across
implementations, another common initial capacity is 10).

» ArraylList(int capacity): Constructs an empty ArrayList with the specified initial capacity.

» isEmpty () : Returns true if the ArrayList contains no elements.

* size(): Returnsthe number of elements in the ArrayList.

» get(int index) : Returns the element at the specified index.

» add(E element) : Appends the element to the end of the ArrayList.

 add(int 1ndex, E e]

currently at that positio

L.ement) : Inserts the element at the specified index and shifts the e

N (if any) and any subsequent elements to the right (adds one to thei

* E remove () : Removes and returns the element at the end of the ArrayList.

ement
r indices).

- E remove(int index): Removes and returns the element at the specified index. Shifts any
subsequent elements to the left (subtracts one from their indices).

- E set(int index, E element): Replaces the element at the specified index with the specified
element and returns the olde element.

« clear (): Removes all elements.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ArrayList Implementation

Our own implementation of ArrayLists

* We will implement the List interface we defined in the last lecture.
* We will work with generics because we want arrayLists to hold objects of an type.

* We will use an array and we will keep track of how many elements we have in our
ArrayList.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Instance variables & constructors

public class ArrayList<E> implements List<E> {
private E[] data; // underlying array of Es
private int size; // number of Es in arraylist.

We have 2 instance variables: our data (in an
Array) and size (number of elements present)

VES:

* Constructs an ArrayList with an initial capacity of 2.
*/

@SuppressWarnings("unchecked")

oublic ArrayList() { With a no argument constructor, the default

data = (E[]) new Object[2]; capacity is 2.
size = 0,
s
/ %
* Constructs an ArrayList with the specified capacity.
*/
@SuppressWarnings("unchecked")
public ArrayList(int capacity) { With an argument, we just set the capacity to
data = (E[]) new Object[capacity]; the number passed in.
size = 0,

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

iIsEmpty(), size()

/ ¥*k

* Returns true 1if the ArraylList contains no Es.

%

* @return true 1if the ArraylList does not contain any E
%/

public boolean isEmpty() A

return size == 0;
}
/ k%
* Returns the number of Es in the ArraylList.
X

* @return the number of Es in the ArraylList
*/

VNN

return size:

}

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Getting an element at index |

JES
*x Returns the element at the specified index.
%
* @param index the index of the element to return
x @return the element at the specified index @pre means preconditions that need to be
x @pre: O<=index<size true for the method to work
*/
public E get(int index) {
if (index >= size || index < 8){
throw new IndexOutOfBoundsException("Index " + index + " out of bounds");
! Otherwise, we'll thrown an exception.
return datalindex]:
I

Remember, data is just a plain old Java Array,
SO we access elements by indexing into it.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Adding an element to the ArrayList

/ Kk

*x Appends the element to the end of the ArraylList. Doubles its capacity 1if
X necessary.

X

* @param element the element to be inserted

x/

public void add(E element) {

VAAAANANN

if (size == data.length){ First, double if the Array is full
resize (2 *x data. length) y (calling a mysterious resize method...which you will write soon as practice :))

Assign element to index “size” (we know that

datal[size] = element; | | _
size will always be the last empty index)

size++:

Increment size

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Worksheet time!

» Divide into 3 groups. Each group will write on the whiteboard together an
implementation for

* voi1d resize(int capacity) // resizing the arraylList to a new
capacity

* void add(int 1, E element) // 1nserting element at specific
index

« E set(int index, E element) //replacing an element at an 1index,
and returning the old one that was changed

» We'll look over and correct the code together as a class. If your group finishes
early, try doing the other methods together :)

Worksheet answer: resize

/ Kk
* Resizes the ArrayList's capacity to the specified capacity.
*/
@SuppressWarnings("unchecked")
private void resize(int capacity) {
//reserve a new temporary array of Es with the provided
capacity
E[] temp = (E[]) new Object[capacityl];

//copy all elements from old array (data) to temp array
for (int i = 0; i < size; i++){
temp[i] = datalil;

W NN

//point data to the new temp array
data = temp;

/ ¥k

* Inserts the element at the specified index. Shifts existing elements to the

*x right and doubles its capacity if necessary.

*

* @param index the index to insert the element
*x @param element the element to be inserted

* @pre: @ <= index <= size

*/

public void add(int index, E element) {

//check whether index is in range
if (index > size || index < @){

Worksheet answer:
add with index

throw new IndexOutOfBoundsException("Index " + index + " out of bounds");

h

//1f full double in size
if (size == data.length){
resize(2 x data.length);

// shift elements to the right

for (int 1 = size; i > index; i——){
datali] = datali - 11;

r

//increase number of elements

size++;

//put the element at the right index in data

data[index] = element;

Worksheet answer: set

/ k%
* Replaces the element at the specified index with the specified E.
*x
* @param index the index of the element to replace
* @param element element to be stored at specified index
* @return the old element that was replaced
* @pre: @<=index< size
*/
public E set(int index, E element) {

//chéEﬁMif index is 1n range

if (index >= size || index < 0){

throw new IndexOutOfBoundsException("Index " + index + " out of bounds");

}

//retreivew old element at index
E old = datalindex];

//update index with new element
datal[index] = element;

//return old element

return old;

Removing (and returning) the last element

FE =
* Removes and returns the element from the elementnd of the ArraylList.
K
* @return the removed E
*x @pre size>0
x/
public E remove() { Checking pre-condition
if (isEmpty()){
throw new NoSuchElementException("The list is empty");

}.
size——; Remember, the size of the array - 1 is the index
E element = datalsize]l; of the last element

datalsize] null; // Avoid loitering (see recommended textbook).

// Shrink to save space if possible
if (size > 0 & size == data.length / 4){ Q: Why size == data.length / 4? Why not size <=

resize(data.length / 2); data.length / 4?
}
A: Because we can only remove one element at a
return element; time, so it's guaranteed to eventually be equal

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Clearing the ArraylList

/ X%k
* Clears the ArraylList of all elements.

*/ | . Note that we don’t need to call remove()
public void clear() { many times - let’s avoid unnecessary
computation.

// Help garbage collector.
for (int i = 0; i < size; i++){

datali] = null; lterate through the underlying Array and set
I everything to null - prevent “loitering”

size = 0; Update size

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Worksheet time!

- With a partner, write the implementation for

 E remove(int 1ndex) // returns and removes the element at the
specified i1ndex

/ %k
* Removes and returns the element at the specified index.
k
* @param index the index of the element to be removed
* @return the removed element
* @pre: @<=index<size

«/ Worksheet answer: remove with index

public E remove(int index) {
//check if index 1is in range
if (index >= size || index < 0){

throw new IndexQOutOfBoundsException("Index

+ index + " out of bounds");

}
//retrieve element at index
E element = datal[index];
//reduce number of elements by 1
size——;
//shift all elements from the index until the end left 1
for (int i = index; i < size; i++){
datal[i] = datal[i + 1];
¥
//set last element to null (since they've been shifted)
datalsize] = null;

// shrink to save space if necessary

if (size > 0 && size == data.length / 4){
resize(data. length / 2);

¥

//return removed element

return element;

ArraylLists vs Vectors

Collection Interface

<<interface>>

Collection

<<interface>> <<interface>>
Set ' Queue

LinkedHashSet <<|n-t erface>> .
Navigable S et | — * 1IN |p|e| nents
A

— ., extends

* Honestly, in the real world, not many people use ArraylLists. They prefer Vectors
(e.g., most Leetcode problems in Java will use Vectors as “lists")

» Vectors are slower, but synchronized, so they are memory safe.

.push(), .pop() methods...we won't learn them in this class, but telling you so
you're familiar in case they show up!

ArraylList in Java Collections

» Resizable list that increases by 50% when full and does NOT shrink.

* Not thread-safe (more in CS5105).
java.util.ArraylList;

public class ArraylList<E> extends AbstractlList<E> implements List<E>

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Vector in Java Collections

* Java has one more class for resizable arrays.
* Doubles when full.

* |s synchronized (more in CS105).
java.util.Vector;

public class Vector<E> extends AbstractList<E> implements List<E>

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/Vector.html

Lecture 6 wrap-up

o EXit ticket: https://forms.gle/UmwLXKqEEHPZz9|257

» Part | of Darwin (first two classes) due Tues 11:59pm

Resources

» Collections: https://docs.oracle.com/javase/tutorial/collections/intro/index.html

» ArrayLists: https.//docs.oracle.com/javase/8/docs/api/java/util/ArrayList.ntml

» Resizable arrays in our textbook: https://algs4.cs.princeton.edu/13stacks/

» History of ArrayLists (made just for you all!) https://cs.pomona.edu/classes/cs62/
history/arraylists/

* Note: the code has some Iterator<E> stuff for toString(), we'll go over it in a later
lecture!

https://forms.gle/UmwLXKqEEHpz9j2S7
https://docs.oracle.com/javase/tutorial/collections/intro/index.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://algs4.cs.princeton.edu/13stacks/
https://cs.pomona.edu/classes/cs62/history/arraylists/
https://cs.pomona.edu/classes/cs62/history/arraylists/
https://cs.pomona.edu/classes/cs62/history/arraylists/
https://cs.pomona.edu/classes/cs62/history/arraylists/

