
CS62 Class 6: ArrayLists Basic Data Structures

from https://www.janbasktraining.com/blog/java-print-arraylist/

https://www.janbasktraining.com/blog/java-print-arraylist/

Lecture 6 agenda
• Data structures in general

• What are abstract data types?

• Why do we care + history

• ArrayLists behavior

• ArrayLists implementation

Data structures in general

Abstract data type
• Sometimes, you’ll hear specific data structures be

referred to as “abstract data types”. This is a
conceptual model where users know the behavior of
a data structure, but not exactly how it’s
implemented.

• How it’s implemented = where in memory things
are, what algorithms are used…

• For example, the idea of a “list” is an abstract data
type. We know we can add, remove, resize a list, but
how exactly that happens is not important.

• ArrayLists, Singly Linked Lists, Doubly Linked Lists
are not abstract: we have to implement them.

• Basically, the same thing as an interface!

• …which is also kind of the same thing as an API.

https://www.geeksforgeeks.org/abstract-data-types/

https://www.geeksforgeeks.org/abstract-data-types/

Data structures history
• Lots of concepts in CS came

from math (trees, graphs)
and have been around for a
while

• The invention of many data
structures coinciding with
World War II is no
coincidence

• ArrayLists are not one of
these: they are a relatively
modern implementation
(1998), even though arrays
have been around since the
1940s

https://macbookandheels.com/algorithm/2018/10/31/teachingds/

https://macbookandheels.com/algorithm/2018/10/31/teachingds/

Joshua Bloch: main Java Collections Framework
architect
• The person who made

ArrayLists isn’t some long
dead historic figure; he was an
engineer at Sun Microsystems
(the company that made Java)
but now teaches at CMU

• He’s currently pretty politically
active on BlueSky

My (liberal arts-y) wish for you: know history

• It’s one thing to know how data structures work
(most data structures courses)

• But it’s another to know when to appropriately and
ethically how to use them and understand their
history

• STS (science technology society) scholar Bruno
Latour calls this “opening the black box of science”
- a real person had to create everything we use in
this class to solve real problems, and
understanding this history gives you a deeper
insight into how technology is used by society (and
how it can encode bias, etc.)

• Hopefully, this knowledge will equip you for your
final project

See https://kevinl.info/do-abstractions-have-politics/

https://kevinl.info/do-abstractions-have-politics/

Thus, we have a history textbook!

https://cs.pomona.edu/classes/cs62/history/

• My RA Jing O’Brien is doing
research on the history of data
structures as we go along. Read
the pages to supplement
learning purely “technical”
material!

https://cs.pomona.edu/classes/cs62/history/

Why do we need data structures?
• To organize and store data so that we can perform efficient operations on them

based on our needs: imagine walking to an unorganized library and trying to find
your favorite title or books from your favorite author.

• We can define efficiency in different ways.

• Time: How fast can we perform certain operations on a data structure?

• Space: How much memory do we need to organize our data in a data structure?

• Affordances: How does this data structure bake in assumptions for how we should
think about the problem? What can we and can we not do with it?

• There is no data structure that fits all needs.

• That’s why we’re spending a semester looking at different data structures.

• So far, the only data structure we have encountered is arrays.

• The goal of this class is for you to understand trade offs between data structures, to
choose the appropriate data structure for the appropriate problem

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

Types of operations on data structures
• Insertion: adding a new element in a data structure.
• Deletion: Removing (and possibly returning) an element.
• Searching: Searching for a specific data element.

• Replacement: Replacing an existing element with a new one (and possibly returning old).
• Traversal: Going through all the elements.
• Sorting: Sorting all elements in a specific way.
• Check if empty: Check if data structure contains any elements.

• Not a single data structure does all these things efficiently.
• You need to know both the kind of data you have, the different operations you will need

to perform on them, and any technical limitations to pick an appropriate data structure.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

Linear vs non-linear data structures
• Linear: elements arranged in a linear sequence based on a specific order.

• E.g., Arrays, ArrayLists, linked lists, stacks, queues.

• Linear memory allocation: all elements are placed in a contiguous block of
memory. E.g., arrays and ArrayLists.

• Use of pointers/links: elements don’t need to be placed in contiguous blocks.
The linear relationship is formed through pointers. E.g., singly and doubly
linked lists.

• Non-linear: elements arranged in non-linear, mostly hierarchical relationship.

• E.g., trees and graphs.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

ArrayLists & their behaviors

ArrayLists

CS062 ROCKS !

0 1 2 3 4 5 6 7

Capacity = 8

Size = 3

Remember, an ArrayList is implemented using Arrays

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

What should happen?

ArrayList<String> al = new ArrayList<String>();

ArrayList(): Constructs an ArrayList

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ArrayList(): Constructs an ArrayList

0 1

Capacity = 2

Size = 0

ArrayList<String> al = new ArrayList<String>();

What should happen?

al.add(“CS062”);

When we first make an ArrayList, it is with a size 2 Array.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

add(E element):Appends the element to the end of the
ArrayList

CS062

0 1

Capacity = 2

Size = 1

al.add(“CS062”);

What should happen?

al.add(“ROCKS”);

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

add(E element):Appends the element to the end of the
ArrayList

CS062 ROCKS

0 1

Capacity = 2

Size = 2

al.add(“ROCKS”);

What should happen?

al.add(“!”);

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

add(E element):Appends the element to the end of the
ArrayList

CS062 ROCKS

0 1

Capacity = 4

Size = 3

!

2 3

al.add(“!”);

- Double capacity since it’s full
and then add new element

What should happen?

al.add(1, “THROWS”);

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

add(int index, E element):Adds element at the specified
index

CS062 THRO
WS

0 1

Capacity = 4

Size = 4

ROCKS !

2 3

al.add(1, “THROWS”);

- Shift elements to the right

What should happen?

al.add(3, “?”);

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

add(int index, E element):Adds element at the specified
index

CS062 THRO
WS

0 1

Capacity = 8

Size = 5

ROCKS ?

2 3

al.add(3, “?”);

!

4 5 6 7

- Double capacity since full
- Shift elements to the right

What should happen?

al.remove();

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

CS062 THRO
WS

0 1

Capacity = 8

Size = 4

ROCKS ?

2 3

al.remove();

4 5 6 7

What should happen?

al.remove();

remove():Removes and returns element from the end of
ArrayList

- Remove and Return last element

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

CS062 THRO
WS

0 1

Capacity = 8

Size = 3

ROCKS

2 3

al.remove();

4 5 6 7

What should happen?

al.remove();

remove():Removes and returns element from the end of
ArrayList

- Remove and Return last element

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

remove():Removes and returns element from the end of
ArrayList

CS062 THRO
WS

0 1

Capacity = 4

Size = 2

2 3

al.remove();

- Remove and return last element
- Halve capacity when 1/4 full

What should happen?

al.remove(0);

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

remove(int index):Removes and returns element from
specified index

THRO
WS

0 1

Capacity = 2

Size = 1

al.remove(0);

- Remove element from index
- Shift elements to the left
- Halve capacity when 1/4th full

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Reminder: Interface List

Standard Operations of ArrayList<E> class

• ArrayList(): Constructs an empty ArrayList with an initial capacity of 2 (can vary across
implementations, another common initial capacity is 10).

• ArrayList(int capacity): Constructs an empty ArrayList with the specified initial capacity.

• isEmpty(): Returns true if the ArrayList contains no elements.

• size(): Returns the number of elements in the ArrayList.

• get(int index): Returns the element at the specified index.

• add(E element): Appends the element to the end of the ArrayList.

• add(int index, E element): Inserts the element at the specified index and shifts the element
currently at that position (if any) and any subsequent elements to the right (adds one to their indices).

• E remove(): Removes and returns the element at the end of the ArrayList.

• E remove(int index): Removes and returns the element at the specified index. Shifts any
subsequent elements to the left (subtracts one from their indices).

• E set(int index, E element): Replaces the element at the specified index with the specified
element and returns the olde element.

• clear(): Removes all elements.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ArrayList Implementation

Our own implementation of ArrayLists

• We will implement the List interface we defined in the last lecture.

• We will work with generics because we want arrayLists to hold objects of an type.

• We will use an array and we will keep track of how many elements we have in our
ArrayList.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Instance variables & constructors

We have 2 instance variables: our data (in an
Array) and size (number of elements present)

With a no argument constructor, the default
capacity is 2.

With an argument, we just set the capacity to
the number passed in.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

isEmpty(), size()

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Getting an element at index i

@pre means preconditions that need to be
true for the method to work

Otherwise, we’ll thrown an exception.

Remember, data is just a plain old Java Array,
so we access elements by indexing into it.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Adding an element to the ArrayList

First, double if the Array is full

Assign element to index “size” (we know that
size will always be the last empty index)

Increment size

(calling a mysterious resize method…which you will write soon as practice :))

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Worksheet time!
• Divide into 3 groups. Each group will write on the whiteboard together an

implementation for

• void resize(int capacity) // resizing the arrayList to a new
capacity

• void add(int i, E element) // inserting element at specific
index

• E set(int index, E element) //replacing an element at an index,
and returning the old one that was changed

• We’ll look over and correct the code together as a class. If your group finishes
early, try doing the other methods together :)

Worksheet answer: resize

Worksheet answer:
add with index

Worksheet answer: set

Removing (and returning) the last element

Checking pre-condition

Remember, the size of the array - 1 is the index
of the last element

Q: Why size == data.length / 4? Why not size <=
data.length / 4?

A: Because we can only remove one element at a
time, so it’s guaranteed to eventually be equal

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Clearing the ArrayList

Iterate through the underlying Array and set
everything to null - prevent “loitering”

Update size

Note that we don’t need to call remove()
many times - let’s avoid unnecessary
computation.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Worksheet time!
• With a partner, write the implementation for

• E remove(int index) // returns and removes the element at the
specified index

Worksheet answer: remove with index

ArrayLists vs Vectors

• Honestly, in the real world, not many people use ArrayLists. They prefer Vectors
(e.g., most Leetcode problems in Java will use Vectors as “lists”)

• Vectors are slower, but synchronized, so they are memory safe.

• .push(), .pop() methods…we won’t learn them in this class, but telling you so
you’re familiar in case they show up!

ArrayList in Java Collections

 https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

• Resizable list that increases by 50% when full and does NOT shrink.

• Not thread-safe (more in CS105).
java.util.ArrayList;

public class ArrayList<E> extends AbstractList<E> implements List<E>

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Vector in Java Collections

 https://docs.oracle.com/javase/8/docs/api/java/util/Vector.html

• Java has one more class for resizable arrays.

• Doubles when full.

• Is synchronized (more in CS105).
java.util.Vector;

public class Vector<E> extends AbstractList<E> implements List<E>

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/Vector.html

Lecture 6 wrap-up
• Exit ticket: https://forms.gle/UmwLXKqEEHpz9j2S7

• Part I of Darwin (first two classes) due Tues 11:59pm

Resources
• Collections: https://docs.oracle.com/javase/tutorial/collections/intro/index.html

• ArrayLists: https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

• Resizable arrays in our textbook: https://algs4.cs.princeton.edu/13stacks/

• History of ArrayLists (made just for you all!) https://cs.pomona.edu/classes/cs62/
history/arraylists/

• Note: the code has some Iterator<E> stuff for toString(), we’ll go over it in a later
lecture!

https://forms.gle/UmwLXKqEEHpz9j2S7
https://docs.oracle.com/javase/tutorial/collections/intro/index.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://algs4.cs.princeton.edu/13stacks/
https://cs.pomona.edu/classes/cs62/history/arraylists/
https://cs.pomona.edu/classes/cs62/history/arraylists/
https://cs.pomona.edu/classes/cs62/history/arraylists/
https://cs.pomona.edu/classes/cs62/history/arraylists/

