
CS62 Class 6: Singly linked lists
Basic Data Structures

https://www.geeksforgeeks.org/introduction-to-singly-linked-list/

https://www.geeksforgeeks.org/introduction-to-singly-linked-list/

Linked Lists (conceptually)

Linked Lists
• Dynamic linear data structures.

• In contrast to sequential data structures, linked data structures use pointers/links/
references from one object to another.

• For example, the list of elements CS, ?, ! could be in very different memory
locations. We just need a pointer to the head and links to subsequent elements
to reconstruct it.

CS ? !

What the user’s mental model is:

0 1 2

? CS !

0 1 2 3 4 5 6 7

How it is in memory:

Head/Beginning/Front/First

Recursive Definition of Singly Linked Lists

• A singly linked list is either empty (null) or a node having a reference to a singly linked
list.

• Node: is a data type that holds elements of the same type and a reference to a next
node.

• Singly linked lists only have a “next” pointer, and a head pointer

• add() and remove() happen at the head

element

Nodehead

element element element

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

SinglyLinkedList & Node - Nested Classes

element

Node

Instance variables, constructors, and
methods of SLList typically go below
nested class definition

Nested classes are used when a class
doesn’t stand on its own—node may not
make sense out of SLList

SinglyLinkedList: add (v1)

Unfortunately, we don’t have a toString() yet, but let’s implement get(int index) for now to check.

SinglyLinkedList: get

Why do we need to call .toString()? The type
in SLL is Integer, not int — Integer is an
reference type, not a primitive type

In Java, generics do not support primitive
types (https://stackoverflow.com/
questions/2721546/why-dont-java-
generics-support-primitive-types)

https://stackoverflow.com/questions/2721546/why-dont-java-generics-support-primitive-types
https://stackoverflow.com/questions/2721546/why-dont-java-generics-support-primitive-types
https://stackoverflow.com/questions/2721546/why-dont-java-generics-support-primitive-types

SinglyLinkedList: size, recursive (v1)
A SLL, conceptually, is a recursive data structure. But how can we write recursive code if the class itself
is not recursive? The size method doesn’t take in any arguments, so calling size recursively is strange.

What is the base case?
How can you call a size helper recursively to get closer to the base case?

SinglyLinkedList: size, recursive (v1)
What is the base case? -> just one node in the SLL, size = 1
How can you call a size helper recursively to get closer to the base case? -> 1 + size(rest of SLL)

Private recursive helper methods
To implement a recursive method in a class that is not itself recursive (e.g. SLList):

1. Create a private recursive helper method.

2. Have the public method call the private recursive helper method.

size v1 run time
How efficient is size?

Suppose size takes 2 seconds on a list of size 1,000.

How long will it take on a list of size 1,000,000?

A. 0.002 seconds.

B. 2 seconds.

C. 2,000 seconds.

D. 2,000,000 seconds.

slido.com code #626

http://slido.com

size v1 run time
How efficient is size?

Suppose size takes 2 seconds on a list of size 1,000.

How long will it take on a list of size 1,000,000?

A. 0.002 seconds.

B. 2 seconds.

C. 2,000 seconds.

D. 2,000,000 seconds.

Size runs in O(n) because it iterates through the whole list.

Thus, if we double the input, we double the runtime (1:1 scale).

So 100x’ing the input 100x’s the run time.

Towards are more efficient size v2
We can do better. What if I told you we can write size so it always runs in O(1)
with an inclusion of a single variable?

Let’s just keep track of size and update size when we add/remove stuff
It’s redundant (we could always calculate size from the list), but it saves us time.

“There ain’t no free lunch”

By maintaining a special size variable that caches (saves) the size of the list, we
can put aside data to speed up retrieval (a common SWE practice).

“There ain’t no free lunch”: we need to add a redundant variable, but spreading
work over each add call (O(1) work) is a net win.

Pointer danger
In a SLL, we use .next to traverse through the list.

However, there’s nothing preventing us from chaining on .next calls—e.g., calling
node.next.next.

It gets conceptually messy, so it may not be the best SWE design to mess too
much with .next pointers, but it’s important to understand and trace.

head

element element element

head.next head.next.next head.next.next.next (is null)

Worksheet time! • Do Qs 1&2 on your worksheet.

Suppose x is a reference to a Node
and that node is not the last one on
the linked list. What is the effect of
the following code fragment?

x.next = x.next.next;

Suppose x and t are references to
different Nodes. What is the effect of
the following code fragment?

t.next = x.next;

x.next = t;

Worksheet answers
Suppose x is a reference to a Node
and that node is not the last one on
the linked list. What is the effect of
the following code fragment?

x.next = x.next.next;

It removes the node after x.

Before

x x.next x.next.next

After

x

x.next

x.next.next

Worksheet answers
Suppose x and t are references to
different Nodes. What is the effect of
the following code fragment?

t.next = x.next;

x.next = t;

It inserts t between x and x.next.

Before

x x.next

After

x x.next

t

t

More Implementation

Reminder: Interface List
public interface List <E> {
 void add(E element); ✅
 void add(int index, E element);
 void clear();
 E get(int index); ✅
 boolean isEmpty();
 E remove();
 E remove(int index);
 E set(int index, E element);
 int size(); ✅
}

We’ve already implemented 3 abstract
methods for our SLList so far…

isEmpty()

What does it mean for a SLL to be empty? (There are 2 options)

Note that we haven’t explicitly defined a construct for SLList yet. That’s fine—the default
constructor will initialize its instance variables (head, size) to be null and 0.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

clear()

How can we shortcut clearing a SLL besides calling remove() many times?

Just reset our instance variables, head and size. Garbage collection will handle the
rest.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Replace element at a specified index

1. Finger through list to get the Node at the requested index

2. Change that Node’s element

E set(int index, E element)

Q: What’s the Big O run time for set()?

A: O(n), since we need to iterate through the whole
list worst case

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

• We talked about inserting elements at the head of an SLL. What about at a specific index?

Worksheet time!

Hint: think about worksheet Q2!Hint: try to call the already implemented add()!

Worksheet answers /**
 * Inserts the specified element at the specified index.
 *
 * @param index
 * the index to insert the element
 * @param element
 * the element to insert
 * @pre: 0<=index<=size()
 */
 public void add(int index, E element) {
 if (index > size || index < 0){
 throw new IndexOutOfBoundsException("Index " + index + " out of bounds");
 }
 if (index == 0) {
 add(element); //can call already implemented add
 } else {
 Node previous = null;
 Node finger = head;
 // search for index-th position
 for(int i=0; i<index; i++){
 previous = finger;
 finger = finger.next;
 }
 // create new value to insert in correct position.
 Node current = new Node();
 current.next = finger;
 current.element = element;
 // make previous value point to new value.
 previous.next = current;

 size++;
 }

 };

have to make sure .next links are replaced
for both “previous” and “current”

We are inserting between previous and finger

Retrieve and remove head

1. How do we remove the head? Think about your worksheet.

2. Decrement size

E remove()

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

• We talked about removing elements at the head of an SLL. What about at a specific index?

Worksheet time!

Hint: combine add(int index) with remove()

Worksheet answers

Lecture 6 wrap-up
• SLLs are linear data structures that are not continuous in memory since we use .next

pointers to construct the list.
• Next time: Doubly Linked Lists, runtimes, and comparison to ArrayLists
• Lab this week: learn how to use the Java debugger
• Part I of Darwin due Tues 11:59pm

• If you don’t have a partner yet / haven’t gotten started yet, let’s resolve this now.
• Checkpoint I is in 2 weeks. If you have SDRC accommodations, please schedule them

now. We cannot offer alternate proctoring in-class (e.g., if you have extra time,
please get it proctored via the SDRC). 1 double sided handwritten cheat sheet OK.

Resources
• Linked lists from the textbook: https://algs4.cs.princeton.edu/13stacks/

• See slides following this for more practice problems

https://algs4.cs.princeton.edu/13stacks/

Bonus practice problem
• Add a deleteLast method in the SinglyLinkedList class that removes the last node of a singly linked list. Think of

edge cases.

Bonus answer
 public void deleteLast() {
 if (!isEmpty()) {
 if (size == 1) {
 head = null;
 } else {
 Node current = head;
 for (int i = 0; i < size - 2; i++) {
 current = current.next;
 }
 current.next = null;
 }
 size--;
 }

else{//throw some appropriate exception}
 }

