
Review: polymorphism

• What’s printed? Why?

• Why does .show() behave
differently from num?

• What keyword can be used to
access the value of num in the
parent class from the child class?

• How can we modify the code so we
can print out 20 for num in main(),
while keeping the type of obj as
Parent?

Review: polymorphism
• What’s printed? Why?

• 20, Child show() method

• Why does .show() behave differently from
num?

• .show() is overridden in the child class,
while num hides the parent value

• What keyword can be used to access the
value of num in the parent class from the
child class?

• super

• How can we modify the code so we can print
out 20 for num in main(), while keeping the
type of obj as Parent?

• create a getter (getNum()) so overriding
happens

• SUMMARY: instance methods get overridden,
but variables (and static methods) are hidden

CS62 Class 5: Interfaces, Generics

Java Fundamentals

From Understanding Comics by Scott McCloud
AKA: Today is all about abstraction!

Lecture 5 agenda
• Interfaces

• Generics

• ArrayLists (brief intro)

Interfaces

Interfaces: managing abstraction
• An interface is a form of abstraction that is a contract of what a class must do.

As an abstraction, it does not say how a class should do it.

• In Java, an interface is a reference type (like a class), that contains abstract
methods and default methods.

• A class that implements an interface is obliged to implement its abstract
methods.

• Interfaces cannot be instantiated (no new keyword). They can only be implemented
by classes or extended by other interfaces.

Example
public interface Enrollable{
 void enrollInCourse(String course);
 void withdrawFromCourse(String course);
 void viewCourseSchedule();

 default int getMaxCredits(){
 return 4;
 }
}

abstract methods - just include the signature.
any class that “implements” the interface has
to have these signatures filled out

note syntax - just ; no {}

all methods are implicitly public in an interface
- no need for “public” modifier

default method: need “default” keyword in
beginning. everything that implements this
interface can use this method

Example
class PomonaStudent implements Enrollable{

…
 public void enrollInCourse(String course) {
 // implementation
 }

 public void withdrawFromCourse(String course) {
 // implementation
 }

 public void viewCourseSchedule() {
 // implementation
 }

Example
class FourthYearPomonaStudent extends PomonaStudent{

…
 public int getMaxCredits(){
 return 6;
 }
}

can override default methods of interfaces

Q: Why don’t we need “implements
Enrollable” for FourthYearPomonaStudent?

Interfaces
• A class can implement multiple interfaces.

• class A implements Interface1, Interface2{…}

• An interface can extend multiple interfaces.

• public interface GroupedInterface extends
Interface1,Interface2{…}

Remember: a class can only extend one class

Worksheet time!
• Create an interface called Adoptable that contains four abstract methods: a
void requestAdoption(), boolean isAdopted(), void
completeAdoption(), and String makeHappyNoise().

• Have the class Animal implement the interface. You can provide some very
minimal implementation of the methods so that you don’t receive a compile-time
error.

• Override the makeHappyNoise() in the Cat and Dog subclasses.

Worksheet answers

Worksheet answers

Generics

Towards building our own data structures…
• Arrays in Java are OK, but they’re not resizable. Let’s define our own data

structure that supports adding elements, getting them at an index, removing
them, etc…

• As such, we will build an interface List that forces any data structure that
implements it to implement these operations.

• But what about types? We want our List interface to be able to hold objects of any
type.

Lists should support any type of element
• We want our data structure to support any type of elements, as long as they are

of the same type. We could use the class Object but this requires casting to the
desired type:

casting objects[0] to String, since it’s type
Object

but we might accidentally mix types! that’s not OK! but
you won’t get a compiler error

results in runtime error: ClassCastException

Why generics help
• Generics are type parameters which are, well, generic.

• Let’s say we want to create an interface that defines a new List data structure, but we
don’t know yet what type of object should be in the List. That’s where we can us a
generic type.

• Benefits:

• Type safety (can’t mix types in a list anymore)

• No explicit casting needed anymore

• Errors are caught at compile time instead of run time

public interface List <E> {
 void add(E element);
 void add(int index, E element);
 E get(int index);
 boolean isEmpty();
}

We use <> to denote generics in an interface
or class declaration

Generics
public interface List <E> {
 void add(E element);
 void add(int index, E element);
 void clear();
 E get(int index);
 boolean isEmpty();
 E remove();
 E remove(int index);
 E set(int index, E element);
 int size();
}

public class MyList<E> implements List<E>{…}
• In the invocation, all occurrences of the formal type parameters are replaced by the

actual type argument
• MyList<String> list = new MyList<String>();
list.add("hello");
String s = list.get(0); // no cast

Formal type parameters

Kinds of formal type parameters:

E: element (common in data structures),
T: type, K: key, V: value, N: number.

ArrayLists

Limitations of Arrays

• Fixed-size.

• Do not work well with generics.
• E[] myArray = (E[]) new Object[capacity];

• Limited functionality (Java requires the use of Arrays class for printing contents
and manipulating arrays, such as sorting and searching).

• We want resizable arrays that support any type of object.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ArrayList (or dynamic/growable/resizable/mutable array)

• Dynamic linear data structure that is zero-indexed.

• We will use the List interface to build it next class. This class, we’ll use a pre-built
version that we can import.

• Sequential data structure that requires consecutive memory cells.

• Implemented with an underlying array of a specific capacity.

• But the user does not see that!

CS062 ROCKS !

0 1 2 3 4 5 6 7

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

The Java Collections Framework

• Built in data structure classes that you can use in your code
• We’ll be using it in this week’s lab to practice using ArrayLists. Then, in Thursday’s

lecture, we’ll practice writing our own ArrayList implementation.

https://www.geeksforgeeks.org/collections-in-java-2/

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://www.geeksforgeeks.org/collections-in-java-2/

Worksheet time!
1. Fill in the 5 blanks.

2. What gets printed?

3. If you called fruitBox.addItem(47), what would
happen and why?

4. How do generics ensure type safety in this
example?

Worksheet answers
1. Fill in the 5 blanks.

2. What gets printed?

3. If you called fruitBox.addItem(47), what would
happen and why?

4. How do generics ensure type safety in this
example?

T item

public T

new Box<>(); // Box<String>() is OK too

Box<double>

fruitBox.getSize()

2
25.0

Compiler error because types are mismatched
(can’t add int to a String box)

They are flexible enough to be any type, but they enforce that
every item that’s added to the ArrayList as to be the same type

Lecture 5 wrap-up
• HW2 due tonight 11:59pm

• HW3 Darwin is already released. Pair programming, so find a partner
(remember, we want you to code together in person, not I do this part, you do
that part)

• Last retake for the quiz is tomorrow 4-5pm (remember, your lowest score is
dropped)

Resources
• Interfaces: https://docs.oracle.com/javase/tutorial/java/IandI/

createinterface.html

• Generics: https://docs.oracle.com/javase/tutorial/java/generics/index.html
https://docs.oracle.com/javase/tutorial/extra/generics/intro.html

• Textbook: https://algs4.cs.princeton.edu/home/

https://docs.oracle.com/javase/tutorial/java/IandI/createinterface.html
https://docs.oracle.com/javase/tutorial/java/IandI/createinterface.html
https://docs.oracle.com/javase/tutorial/java/IandI/createinterface.html
https://docs.oracle.com/javase/tutorial/java/generics/index.html
https://docs.oracle.com/javase/tutorial/extra/generics/intro.html
https://algs4.cs.princeton.edu/home/

