
CS62 Class 4: Memory Management,
Inheritance

Java Fundamentals

Lecture 4 agenda
• Memory management: stack vs heap & garbage collection

• Inheritance

• Polymorphism

Memory management in
Java

What happens to our Java code
• We write our source code in .java files

• The javac Java compiler compiles the source code into bytecode.

• This will result in .class files that match the source code file names.

• This is compile time.

• The JVM Java Virtual Machine will translate bytecode into native machine code.

• WORA is one of the main powers of Java: Write Once, Run Anywhere (or
Away, depending on whom you ask).

• This is runtime.

Typical structure of a Java project
• src - source files (.java), might be organized within packages

• bin - bytecode files (.class)

• lib - libraries and other dependencies

Stack vs heap (review in Python)
• Recall using Python Tutor to step through your code, recall drawing

stack frames in CS51P

Stack frames are the stack Objects are stored in the heap

Static memory allocation,
contains method calls and
primitives (like x = 1234)

Fast, follows a last-in-first-out order Slower

Dynamic memory allocation
(since we don’t know how big
objects are at compile time)

Stack vs heap in Java (walkthrough)

 public static void main(String args[]) {
 int number = 1234;
 String name = “Aden”;
 Person aden = null;
 aden = new Person(name, number)
 }

Call stackSt
ac

k
fr

am
es

public class Person {

 private String name;
 private int phoneNumber;

 public Person(String name, int phoneNumber) {
 this.name = name;
 this.phoneNumber = phoneNumber;
 }

Stack memory

Heap memory

Stack vs heap in Java (walkthrough)

 public static void main(String args[]) {
 int number = 1234;
 String name = “Aden”;
 Person aden = null;
 aden = new Person(name, number)
 }

Call stackSt
ac

k
fr

am
es

public class Person {

 private String name;
 private int phoneNumber;

 public Person(String name, int phoneNumber) {
 this.name = name;
 this.phoneNumber = phoneNumber;
 }

Stack memory

Heap memory

main()

int number = 1234

Stack vs heap in Java (walkthrough)

 public static void main(String args[]) {
 int number = 1234;
 String name = “Aden”;
 Person aden = null;
 aden = new Person(name, number)
 }

Call stackSt
ac

k
fr

am
es

public class Person {

 private String name;
 private int phoneNumber;

 public Person(String name, int phoneNumber) {
 this.name = name;
 this.phoneNumber = phoneNumber;
 }

Stack memory

Heap memory

main()

int number = 1234

String name

The reference to the
String is stored in the
stack

The actual String
object is in the heap in
Java’s “String pool”

String pool

“Aden”

Stack vs heap in Java (walkthrough)

 public static void main(String args[]) {
 int number = 1234;
 String name = “Aden”;
 Person aden = null;
 aden = new Person(name, number)
 }

Call stackSt
ac

k
fr

am
es

public class Person {

 private String name;
 private int phoneNumber;

 public Person(String name, int phoneNumber) {
 this.name = name;
 this.phoneNumber = phoneNumber;
 }

Stack memory

Heap memory

main()

int number = 1234

String name

The reference to the
Person is stored in the
stack

It doesn’t exist in the
heap yet since we set
it to null originally

String pool

“Aden”

Person aden

Stack vs heap in Java (walkthrough)

 public static void main(String args[]) {
 int number = 1234;
 String name = “Aden”;
 Person aden = null;
 aden = new Person(name, number)
 }

Call stackSt
ac

k
fr

am
es

public class Person {

 private String name;
 private int phoneNumber;

 public Person(String name, int phoneNumber) {
 this.name = name;
 this.phoneNumber = phoneNumber;
 }

Stack memory

Heap memory

main()

int number = 1234

String name

1. The call to the Person
constructor method
goes in the stack

2. It creates a Person
object in the heap

String pool

“Aden”

Person aden

Person() this
Person

3. The reference to “this”
also exists in the stack and
points to the Person object
in the heap

Stack vs heap in Java (walkthrough)

 public static void main(String args[]) {
 int number = 1234;
 String name = “Aden”;
 Person aden = null;
 aden = new Person(name, number)
 }

Call stackSt
ac

k
fr

am
es

public class Person {

 private String name;
 private int phoneNumber;

 public Person(String name, int phoneNumber) {
 this.name = name;
 this.phoneNumber = phoneNumber;
 }

Stack memory

Heap memory

main()

int number = 1234

String name

String pool

“Aden”

Person aden

Person() this

String name

int phoneNumber =
1234

Person

1. The reference to name points
to the heap String pool

2. But the phoneNumber is a
primitive, so it’s stored in the stack

Stack vs heap in Java (walkthrough)

 public static void main(String args[]) {
 int number = 1234;
 String name = “Aden”;
 Person aden = null;
 aden = new Person(name, number)
 }

Call stackSt
ac

k
fr

am
es

public class Person {

 private String name;
 private int phoneNumber;

 public Person(String name, int phoneNumber) {
 this.name = name;
 this.phoneNumber = phoneNumber;
 }

Stack memory

Heap memory

main()

int number = 1234

String name

String pool

“Aden”

Person aden

Person

Once the constructor call ends, it’s
wiped from the stack

Stack vs heap in Java (walkthrough)

 public static void main(String args[]) {
 int number = 1234;
 String name = “Aden”;
 Person aden = null;
 aden = new Person(name, number)
 }

Call stackSt
ac

k
fr

am
es

public class Person {

 private String name;
 private int phoneNumber;

 public Person(String name, int phoneNumber) {
 this.name = name;
 this.phoneNumber = phoneNumber;
 }

Stack memory

Heap memory

String pool

“Aden”

Person

Once the main call ends, it’s wiped
from the stack

We’re just left with our heap objects
with no references to them :’(

Stack vs heap in Java (walkthrough)

 public static void main(String args[]) {
 int number = 1234;
 String name = “Aden”;
 Person aden = null;
 aden = new Person(name, number)
 }

Call stackSt
ac

k
fr

am
es

public class Person {

 private String name;
 private int phoneNumber;

 public Person(String name, int phoneNumber) {
 this.name = name;
 this.phoneNumber = phoneNumber;
 }

Stack memory

Heap memory

Java automatically runs a garbage
collector to get rid of heap objects
that have been unreferenced and
unused :D

Summary
• The memory in the stack is fast and is for primitives & function calls

• The memory in the heap is slower and is for objects

• A garbage collector comes around and collects unused memory in the
heap (as a programmer, you don’t have much control over this)

Inheritance

Inheritance conceptual overview
• Classes can be parent/child classes of each other (subclasses)

class Person
getName()

class PomonaStudent
getStudentId()

class FirstYearPomonaStudent
getID1course()

class FourthYearPomonaStudent
getThesisAdvisor()

Changes to PomonaStudent class
package registrar;
class PomonaStudent {
 private String name;
 private String email;
 private int id;
 private String major;
 private static int studentCounter;

 protected PomonaStudent(String name, String email, int id){
 this.name = name;
 this.email = email;
 this.id = id;
 major = "Undeclared";
 studentCounter++;
 }
 //protected setters getters
 protected int getMaxCredits(){
 return 4;
 }
 public String toString(){
 return "Name: " + name + "\nemail: " + email + "\nid: " + id + "\n";
 }
}

Students across different years have some unique characteristics

• First-year students take ID1

• Fourth-year students write a thesis

• Second-year students and above can take 6 credits

• Transfer students take 1 PE class instead of 2, etc.

• But, they still are Pomona students so the basic information we would
need about them doesn’t change.

Inheritance
• When you want to create a new class and there is already a class that

includes some of the code that you want, you can derive your new class
from the existing class. In doing this, you can reuse the variables and
methods of the existing class without having to write (and debug!) them.

• A class that is derived from another is called a subclass or child class.

• The class from which the subclass is derived is called a superclass or
parent class.

• Java allows multilevel inheritance: A class can extend a class which
extends a class etc.

Inheritance
• The subclass inherits all the public and protected variables and

methods.

• Not the private ones, although it can access them with appropriate
getters and setters.

• The inherited variables can be used directly, just like any other variables.

• You can write a new instance method in the subclass that has the same
signature as the one in the superclass, thus overriding it.

• We have already done that! (How?)

All classes inherit class Object
• Directly if they do not extend any other class, or indirectly as descendants.

• Object class has built-in methods that are inherited.

• public String toString()
• Returns string representation of object – default is hexadecimal hash of

memory location.

• We’ve overrode this!
• public boolean equals (Object other)

• Default behavior uses == returns true only if this and other are located in same
memory location.

• Works fine for primitives but not objects. We would need to override it (more
later).

• public int hashCode()
• Unique identifier defined so that if a.equals(b) then a, b have same hash

code (more later).

•

use the super keyword to access the parent

• Refers to the direct parent of the subclass.

• E.g., super in FirstYearPomonaStudent refers to PomonaStudent

• super.instanceMethod(): for overridden methods.

• What is an overridden method? If FirstYearPomonaStudent has a method
that’s the same name as a method in PomonaStudent, but we want to call
the PomonaStudent one instead, we need to use super.

• super(args): to call the constructor of the super class. Should be called in
the first line of the subclass’s constructor.

Finally, some code
package registrar;

class FirstYearPomonaStudent extends PomonaStudent{
 private String id1;
 private static int firstYearCounter;

 protected FirstYearPomonaStudent(String name, String email, int id,
String id1){
 super(name, email, id);
 this.id1 = id1;
 firstYearCounter++;
 }
 //getters and setters

 public String toString(){
 return super.toString() + "First-Year Student Attending ID1: " +
id1;
 }
}

A unique instance variable to first years: the ID1 course

Keep track of freshmen

calls PomonaStudent(name, email, id)

then fill in the extra, subclass specific stuff

calls PomonaStudent.toString()
Q: Why do we need super? Why can’t we
write PomonaStudent.toString() directly?

A: the class name syntax is reserved
for static methods! Java will think
you’re trying to call a static method,
instead of the instance method of the
parent class.

remember: for inheritance, you need the extends keyword

SecondYearPomonaStudent

We have an @Override label to remind ourselves
that getMaxCredits() was defined in the parent class:
this is an overridden instance method.

FourthYearPomonaStudent

Recall your Cat class. You also made a Dog class for the animal shelter, but
realized there are lots of commonalities – name, sex, age, daysInRescue. Let’s
make a parent class Animal that both Dog and Cat can extend. From your
research, people who adopt cats care about their furType (short, long, etc.) and
people who adopt dogs care about their breed (Corgi, Golden Retriever, etc.).
Write 3 classes to represent this information. Be sure to:
• Put all the classes in an appropriate package

• Choose the right access modifiers for your fields and methods

• Have getter and setter methods for your instance variables

• Have a constructor (that takes all the relevant parameters) and a counter variable for each
class

• Have a toString() method for each class, with Dog and Cat calling the Animal’s toString()
before adding their own information.

Worksheet time!

https://github.com/pomonacs622025sp/code/tree/main/Lecture4/
animalShelter
(We’ll walk through on VSCode)

Worksheet answers

https://github.com/pomonacs622025sp/code/tree/main/Lecture4/animalShelter
https://github.com/pomonacs622025sp/code/tree/main/Lecture4/animalShelter

Polymorphism

Overriding methods
FirstYearPomonaStudent s1 = new FirstYearPomonaStudent("Daniel",
"daniel@pom.edu", 1, "War and Peace");
System.out.println(s1);

• Will print
Name: Daniel
email: daniel@pom.edu
id: 1
First-Year Student Attending ID1: War and Peace

Polymorphism
• Polymorphism means one object can take many forms: they can use

instance variables and methods (public/protected/default) from many
classes.
• FirstYearPomonaStudents are still PomonaStudents are still Objects

Polymorphism

Since all specific kinds of PomonaStudents are still PomonaStudents,
we can declare an array with their parent type

Polymorphism

ParentClass obj = new ChildClass();

For flexibly changing objects between child classes, use this syntax:

Overriding, dynamic vs static polymorphism
• Overriding: Instance methods in child classes override the instance methods

in the parent classes (like .getMaxCredits()).

• This is called dynamic polymorphism, since it happens at runtime.

• In contrast to static polymorphism, which happens when we overload
methods (such as having multiple constructors).

static polymorphism example dynamic polymorphism example

Method hiding
• Method hiding occurs when a

subclass defines a static method
with the same signature as a static
method in its superclass.

• Unlike instance methods, which
can be overridden, static methods
are resolved at compile time
based on the class type (the type
on the left side), not the object
type.

• Same thing happens with all
variables: both static and instance.

Remember: static methods only,
but all variables

Example: Animal
public class Animal {
 public int legs = 2;
 public static String species = "Animal";
 public static void testStaticMethod() {
 System.out.println("The static method in Animal");
 }
 public void testInstanceMethod() {
 System.out.println("The instance method in Animal");
 }
}

Example: Cat
public class Cat extends Animal {
 public int legs = 4;
 public static String species = "Cat";
 public static void testStaticMethod() {
 System.out.println("The static method in Cat");
 }
 public void testInstanceMethod() {
 System.out.println("The instance method in Cat");
 }
}

Hiding vs overriding
public static void main(String[] args) {
 Cat myCat = new Cat();
 myCat.testStaticMethod(); //invoking a hidden method
 myCat.testInstanceMethod(); //invoking an overridden method
 System.out.println(myCat.legs); //accessing a hidden field
 System.out.println(myCat.species); //accessing a hidden field
}

• Output:
The static method in Cat
The instance method in Cat
4
Cat

What we expected (hopefully).

Hiding vs overriding
public static void main(String[] args) {
 Animal yourCat = new Cat();
 yourCat.testStaticMethod(); //invoking a hidden method
 yourCat.testInstanceMethod(); //invoking an overridden method
 System.out.println(yourCat.legs); //accessing a hidden field
 System.out.println(yourCat.species); //accessing a hidden field
}

• Output:
The static method in Animal
The instance method in Cat
2
Animal

Used the Animal method because of the Animal type
Used the Cat method because it was overriden

Used the Animal instance variable because of the Animal type
Used the Animal static variable because of the Animal type

Recall your Cat class. You also made a Dog class for the animal shelter, but
realized there are lots of commonalities – name, sex, age, daysInRescue. Let’s
make a parent class Animal that both Dog and Cat can extend. From your
research, people who adopt cats care about their furType (short, long, etc.) and
people who adopt dogs care about their breed (Corgi, Golden Retriever, etc.).
Write 3 classes to represent this information. Be sure to:
• Put all the classes in an appropriate package

• Choose the right access modifiers for your fields and methods

• Have getter and setter methods for your instance variables

• Have a constructor (that takes all the relevant parameters) and a counter variable for each
class

• Have a toString() method for each class, with Dog and Cat calling the Animal’s toString()
before adding their own information.

Worksheet time!

public class ClassA {
 public void methodOne(int i) {
 }
 public void methodTwo(int i) {
 }
 public static void methodThree(int i) {
 }
 public static void methodFour(int i) {
 }
}

public class ClassB extends ClassA {
 public static void methodOne(int i) {
 }
 public void methodTwo(int i) {
 }
 public void methodThree(int i) {
 }
 public static void methodFour(int i) {
 }
}

Worksheet time!
• 1. Which method overrides a

method in the superclass?

• 2. Which method hides a method
in the superclass?

• 3. What do the other methods do?

public class ClassA {
 public void methodOne(int i) {
 }
 public void methodTwo(int i) {
 }
 public static void methodThree(int i) {
 }
 public static void methodFour(int i) {
 }
}

public class ClassB extends ClassA {
 public static void methodOne(int i) {
 }
 public void methodTwo(int i) {
 }
 public void methodThree(int i) {
 }
 public static void methodFour(int i) {
 }
}

Worksheet answers • 1. Which method overrides a
method in the superclass?

• methodTwo

• 2. Which method hides a method in
the superclass?

• methodFour

• 3. What do the other methods do?

• Compile-time errors

• methodOne: “This static method
cannot hide the instance method
from ClassA”.

• methodThree: “This instance
method cannot override the static
method from ClassA”.

Lecture 4 wrap-up
• Exit ticket: https://forms.gle/q8MD8rQHBBLyMdNs5

• Reminder, do your quiz retakes in OH Tues or Weds
next week (please bring your original quiz)

• HW2 due next Tuesday 11:59pm

Resources
• Memory management: https://docs.oracle.com/cd/E13150_01/jrockit_jvm/

jrockit/geninfo/diagnos/garbage_collect.html

• Inheritance: https://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html

• Extra practice: CS majors don’t have to write a senior thesis (for now…). How
would you edit FourthYearPomonaStudent to reflect this?

https://forms.gle/q8MD8rQHBBLyMdNs5
https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html
https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html
https://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html

