
CS62 Class 3: Encapsulation, I/O streams
Java Fundamentals

(and a last bit of Java syntax)

Last time review
• Java is OOP: constructors, instances,

methods

• static variables have 1 value across
the class. instance variables have a
new value for each instance

Any questions?

Lecture 3 agenda
• Encapsulation, access keywords & data hiding: public vs private

keywords

• The last bit of more Java Syntax

• The last bit of more on Arrays

• File I/O, reading and writing files

Encapsulation

Data hiding (aka encapsulation)
• Data hiding is a core concept in Object-Oriented Programming.

• We encapsulate data and related methods in one class and we restrict
who can see and modify data.

• For example, FERPA protects the privacy of students so the
Registrar cannot share their academic record freely, even if it's
their parents who request it.

• Java uses access modifiers to set the access level for classes, variables,
methods and constructors.

Access Modifiers: public, private, default, protected
• You are already familiar with the public keyword. E.g., public class PomonaStudent.

• For classes, you can either use public or default:

• public: The class is accessible by any other class. E.g.,

• public class PomonaStudent

• default: The class is only accessible by classes in the same package (think of it as in the same folder.
More soon). This is used when you don't specify a modifier. E.g.,

• class PomonaStudent

• For variables, methods, and constructors, you can use any of the following:

• public: the code is accessible by any other class

• private: The code is only accessible within the declared class

• default: The code is only accessible in the same package. This is used when you don't specify a modifier

• protected: The code is accessible in the same package and subclasses (more later).

Package
• A grouping of related classes that provides access protection and name space management. E.g.,

• java.lang and java.util for fundamental classes or java.io for classes related to
reading input and writing output.

• Packages correspond to folders/directories.

• Lower-case names. E.g.,

• package registrar;

• at top of file and file has to be within registrar folder

• import java.util.*;

• for including all classes.

• or import java.util.Arrays;

• for more specific access.

https://docs.oracle.com/javase/tutorial/java/package/packages.html

demo: using PomonaStudent in Exercise1,
since they’re both in the registrar package

http://java.io
https://docs.oracle.com/javase/tutorial/java/package/packages.html

Data Hiding
• To follow the concept of data hiding, we prefer to define instance

variables as private.

• We provide more lax (i.e. default, protected, or public)
getter and setter methods to access and update the value of
a private variable.

PomonaStudent class with data hiding
package registrar;
public class PomonaStudent {

 private String name;
 private String email;
 private int id;
 private int yearEntered;
 private String academicStanding;
 private boolean graduated;
 private static int studentCounter;

 String getName() {
 return name;
 }

 void setName(String name) {
 this.name = name;
 }

 String getEmail() {
 return email;
 }

 void setEmail(String email) {
 this.email = email;
 }
…

all the instance variables have
been declared private

we have moved the file to the registrar/
folder and declared package registrar

getters and setters are
default access (any code in
the package can use them)

Worksheet time!

• Do problem 2 f-g on your worksheet (from last class). Work in a group
of 2-4.

a. Update all the instance variables to be private.

b. Define a getter method that returns the days spent in rescue, and a setter method that
updates the days spent. Make sure they have the correct access modifiers.

c. Create a new cat, set it to have spent 20 days in rescue, and print out the number of
days.

I set the getter to public because it’s OK if
the public can see this variable

It’s dangerous to set setters to public - what
if there’s a data attack - so I chose
protected, but default/private are also good

remember, we have to call getters and
setters now - technically you could directly
access cat2.daysInRescue since it’s all the
Cat class, but it’s good programming
practice to always use the getter/setter
methods for private instance variables

Our last bit of Java syntax

Operators

Operator precedence
Operators Precedence

postfix expr++ expr--

unary ++expr --expr +expr -expr !expr

multiplicative * / %

additive + -

relational < > <= >=

logical AND &&

logical OR ||

ternary ? :

assignment `= += -= *= /= %=

Higher on the table = evaluated earlier

Unary Operators
• Unary operators require only one operand.

Operator Description Example

+
Unary plus operator; indicates positive value (not
necessary to have) int x = +1;

-
Unary minus operator; negates an expression

x = -x;

++
Increment operator; increments a value by 1

++x;

-- Decrement operator; decrements a value by 1 —x;

!
Logical complement operator; inverts the value of a
boolean

boolean success = false;
!success;

1

-1

0

-1

true

Pre vs post-fix operators
• The increment/decrement operators can be applied before (prefix) or

after (postfix) the operand.

• The code result++; and ++result; will both end in result being
incremented by one. The only difference is that the prefix version (i.e.
++result) evaluates to the incremented value, whereas the postfix
version (i.e. result++) evaluates to the original value.

• If you are just performing a simple increment/decrement, it doesn't
really matter which version you choose. But if you use this operator
in part of a larger expression, the one that you choose may make a
significant difference.

Pre vs post-fix operators example
int i = 3;
i++;
System.out.println(i); // prints i (4)
++i;
System.out.println(i); // prints i (5)
System.out.println(++i); // first increments to 6 then
prints it (6)
System.out.println(i++); // first prints i (6) then
increments i to 7
System.out.println(i); // prints i (7)

Conditional operators

• The && and || operators perform Conditional-AND and Conditional-
OR operations on two boolean expressions. Remember your truth
tables!

exp1 exp2 exp1 && exp2 exp1 || exp2

`true `true `true `true

`true false false `true

false `true false `true

false false false false

Worksheet time!

• Do problem 1 on the new lecture 3 worksheet.

Worksheet answers

• a. i is 11, n is 0 (since i++ evaluates first, then increments i)

• b. i is 11, n is 1 (since ++i increments i before evaluation)

Even more control flow

do-while loop

• Variant of while loop that will execute the block of code in the do code block
once, before it checks if the condition is true. It will then proceed as usual.

• Basic syntax:

do {

 // code block to be executed

} while(condition);

• Make sure your condition terminates otherwise you will enter an infinite loop.

do-while loop example

int j = 3;

do {

 System.out.println("This is the best semester ever");

 j++;

}

while(j>5);

• Will print

This is the best semester ever

even though the condition never got satisfied

break
• Exits completely out of a for, while/do-while loop.

break example

for (int l = 0; l < 10; l++) {

 if (l == 4) {

 System.out.println("I am out of here");

 break;

 }

 System.out.println(l);

}

• Will print
0
1
2
3
I am out of here

continue
• Will skip the current iteration of a for, while/do-while loop.

continue example

for (int x = 0; x < 5; x++) {

 if (x == 3) {

 System.out.println("I am skipping this step");

 continue;

 }

 System.out.println(x);

}

• Will print:
0
1
2
I am skipping this step
4

switch statement
• Use instead of writing many if-else statements.

• Evaluate expression and compare it with the values of each case

• Works with byte, short, char, int, and String.

• Basic syntax:

switch(expression) {

 case x:

 // code block

 break;

 case y:

 // code block

 break;

 default:

 // code block

}

switch example
int finger = 4;
switch (finger) {
 case 1:
 System.out.println("thumb");
 break;
 case 2:
 System.out.println("index");
 break;
 case 3:
 System.out.println("middle");
 break;
 case 4:
 System.out.println("ring");
 break;
 case 5:
 System.out.println("pinky");
 break;
 default:
 System.out.println("Not a valid number”);
}

break and default

• When Java reaches a break keyword, it breaks out of the switch block
and does not execute the rest of the code.

• You need to add a break statement otherwise you will go through all
the remaining cases!

• The default keyword specifies what code to run if there is no case
match.

What would happen if we didn’t include break?
int finger = 2;

switch (finger) {

 case 1:

 System.out.println("thumb");

 case 2:

 System.out.println("index");

 case 3:

 System.out.println("middle");

 case 4:

 System.out.println("ring");

 case 5:

 System.out.println("pinky");

 default:

 System.out.println("Not a valid number”);

}

It will print :

index

middle

ring

pinky

Not a valid number

Ternary operator
• ?: A conditional operator that is a shorthand for the if-else statement.

• Basic syntax:

variable = expression1 ? expression2: expression3

• Equivalent to:

if (expression1) {

 variable = expression2;

}

else {

 variable = expression3;

}

Ternary operator example
int n1 = 32;

int n2 = 47;

int max;

// Largest among n1 and n2

max = (n1 > n2) ? n1 : n2;

// Print the largest number

System.out.println("Maximum is = " + max);

Worksheet time!

• Do problem 2 on your worksheet:

• What does this print?

int n1 = 10;

int n2 = 47;

int n3 = 4;

System.out.println((n1%n3>n2%n3) ? (n1+n2):(n1-n2));

Worksheet answers

• (n1%n3>n2%n3) ? (n1+n2):(n1-n2)

• 10%4 = 2, 47%4 = 3. 2 > 3 is false, so we evaluate n1-n2, or 10-47, so it
prints -37.

Even more arrays

Review: working with arrays
• Creating a variable to refer to an array
int[] numArray; // declares a variable to refer to an array of ints
int numArray[]; //also works but discouraged

• Creating and initializing an array
int[] numArray = new int[10]; // allocates an array for 10 integers

• Creating and initializing an array - shorthand

int[] numArray = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

Multi-dimensional arrays
• An array of arrays. Each array, will have its own set of curly braces. E.g.,

•int[][] myNumbers = { {1, 2, 3, 4}, {5, 6, 7} };

• To access the elements of a multi-dimensional array, you need first to specify the array
and then the element of the array. For example:

•System.out.println(myNumbers[1][2]); // Outputs 7

• We still count starting at 0!

• To change the value of an element in a multi-dimensional array, you have to index it as
above. For example:

•myNumbers[1][2] = 9;

•System.out.println(myNumbers[1][2]); // Outputs 9 instead of 7
https://www.w3schools.com/java/java_arrays.asp

Looping through Arrays: Using a for loop and length

• Arrays have fixed length so a for loop makes sense. E.g.,

String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

for (int i = 0; i < cars.length; i++) {

 System.out.println(cars[i]);

}

• Will print

Volvo

BMW

Ford

Mazda

For-each loop
• A new way of looping through arrays that doesn’t need an iteration counter.

• Basic syntax:

for (type variableName : arrayName) {

 ...

}

• For example:

String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

for (String car : cars) {

 System.out.println(car);

} //works same as before

compare to Python:
cars = [“Volvo”, “BMW”, …]
for car in cars:
 print(car)

• Declare and initialize an array of strings with all the classes you are taking this semester.

• Remember the word class is a reserved word, you cannot use it to name your variables.

• Write a for loop that loops through each class

• If a class is called “CS62” you need to print “CS62: This is the best class ever, no need to see
more” and break the for loop.

• We will use the equals method to compare equality among Strings.

• e.g., someString.equals(someOtherString)

• Otherwise, if a class is called “CS101”, you need to print “CS101: New CS achievement unlocked”
and continue to the next iteration.

• Otherwise, print the name of the class.

Worksheet time!

• You could have also used a regular for loop instead of a for-each loop.

String[] classes = {"PHYS32", "CS101", "ANTH51", "CS62", "IMAG2"};

for(String myClass:classes){

 if(myClass.equals(”CS62”)){

 System.out.println("CS62: This is the best class ever, no need to see more");

 break;

 }

 else if(myClass.equals(“CS101”)){

 System.out.println("CS101: New CS achievement unlocked");

 continue;

 }

 System.out.println(myClass);

}

Worksheet answers

do you need the continue
statement?

I/O Streams

I/O streams
‣ Input stream: a stream from which a program reads its input data

‣ Output stream: a stream to which a program writes its output data

‣ Error stream: output stream used to output error messages or diagnostics

‣ Stream sources and destinations include disk files, keyboard, peripherals, memory
arrays, other programs, etc.

‣ Data stored in variables, objects and data structures are temporary and lost when the
program terminates. Streams allow us to save them in files, e.g., on disk or flash drive or
even a CD (!)

‣ Streams can support different kinds of data: bytes, characters, objects, etc.

https://docs.oracle.com/javase/tutorial/essential/io/streams.html

In Python, it was open()…
read()… write()…

https://docs.oracle.com/javase/tutorial/essential/exceptions/declaring.html
https://docs.oracle.com/javase/tutorial/essential/io/streams.html

Files
• Every file is placed in a directory in the file system.

• Absolute file name: the file name with its complete path and drive letter. E.g.,

• On Windows: C:\jli\somefile.txt

• On Mac/Unix: /~/jli/somefile.txt

• CAUTION: DIRECTORY SEPARATOR IN WINDOWS IS \, WHICH IS A SPECIAL
CHARACTER IN JAVA. SHOULD BE “\\” INSTEAD.

• File class: contains methods for obtaining file properties, renaming, and deleting
files. Not for reading/writing!

Writing data to a text file
• PrintWriter output = new PrintWriter(new File("filename"));

• If the file already exists, it will overwrite it. Otherwise, new file will be created.

• Invoking the constructor may throw an IOException so we will need to follow the
catch or specify rule.

• output.print and output.println work with Strings, and
primitives.

• Always close a stream!

https://docs.oracle.com/javase/7/docs/api/java/io/PrintWriter.html

Writing data to a text file
import java.io.File;
import java.io.IOException;
import java.io.PrintWriter;

public class WriteData {
 public static void main(String[] args) {

 PrintWriter output = null;
 try {
 output = new PrintWriter(new File("addresses.txt"));
 // Write formatted output to the file
 output.print("Alexandra Papoutsaki ");
 output.println(222);
 output.print(“Jingyi Li ");
 output.println(111);

 } catch (IOException e) {
 System.err.println(e.getMessage());
 } finally {
 if (output != null)
 output.close();
 }
 }
}

https://liveexample.pearsoncmg.com/html/WriteData.html

need to import relevant classes

call .print or .println to write to file

catch IOException for any errors

.close() the I/O stream

Reading data
• java.util.Scanner reads Strings and primitives and breaks input into tokens, denoted

by whitespaces.

• To read from keyboard: Scanner inputStream = new Scanner(System.in);

• String input = inputStream.nextLine();

• input is a String. If you want to convert it into a number, you will need to use the
wrapper class of the primitive you want, e.g., Integer.parseInt(input);

• To read from file: Scanner inputStream = new Scanner(new File("filename"));

• Need to close stream as before.

• inputStream.hasNext() tells us if there are more tokens in the stream.
inputStream.next() returns one token at a time.

• Variations of next are nextLine(), nextByte(), nextShort(), etc.

Reading data from a text file
import java.io.File;
import java.io.IOException;
import java.util.Scanner;

public class ReadData {
 public static void main(String[] args) {

 Scanner input = null;
 // Create a Scanner for the file
 try {
 input = new Scanner(new File("addresses.txt"));

 // Read data from a file
 while (input.hasNext()) {
 String firstName = input.next();
 String lastName = input.next();
 int room = input.nextInt();
 System.out.println(firstName + " " + lastName + " " + room);
 }
 } catch (IOException e) {
 System.err.println(e.getMessage());
 } finally {
 if (input != null)
 input.close();
 }
 }
} https://liveexample.pearsoncmg.com/html/ReadData.html

same try…catch…finally structure

use Scanner class

close the file

use a while loop to check if file still has lines

.next() is space separated (if you want the
whole line, call .nextLine())

• Fill in lines of code in the Java class called FileIOExample

• It will contain a main method that will prompt the user for a String
corresponding to a text file in their directory and a number for how many
lines of text they want to read from that file.

• It should use these 2 pieces of information to open the file, read the
specified number of lines, and write them into a new file called output.txt.

• You can add whatever checks for exceptions you think are appropriate.

• Don’t forget to close the input and output streams!

Worksheet time!

• https://github.com/pomonacs622025sp/code/blob/main/Lecture3/
FileIOExample.java

Worksheet answers

https://github.com/pomonacs622025sp/code/blob/main/Lecture3/FileIOExample.java
https://github.com/pomonacs622025sp/code/blob/main/Lecture3/FileIOExample.java

Lecture 3 wrap-up
• Data and methods can be declare public, private, default, or protected

• File I/O classes: Scanner, FileWriter

• TODO: HW1 due TONIGHT! (Kellie’s mentor hours 8-10pm)

• Lab (and HW2) have been released on Canvas, please come to lab tomorrow
having already forked Lab 1 to your own computer and read the README file.

• Your first quiz will be in lab (on all the material we’ve seen before). 5 min. It’s not
too hard! Bring a red or differently colored pen; self graded.

Resources
• I/O: https://docs.oracle.com/javase/tutorial/essential/io

• See the appendix for more practice problems

https://docs.oracle.com/javase/tutorial/essential/io

Appendix: More review

The simple assignment operator

• One of the most common operators that we’ve already encountered is
the simple assignment operator “="; it assigns the value on its right to
the operand on its left. For example:

• int age = 19;

• int year = 2024;

Arithmetic operators

• Java arithmetic operators support addition, subtraction, multiplication,
division, and remainder/modulo.

Operator Description

+ Additive operator (also used for String concatenation)

- Subtraction operator

* Multiplication operator

/ Division operator

% Remainder operator

Practice problems
Assume you are given the following Java code. What would be printed on your screen?

 int result = 1 + 2;
 System.out.println("1 + 2 = " + result);
 int original_result = result;

 result = result - 1;
 System.out.println(original_result + " - 1 = " + result);
 original_result = result;

 result = result * 2;
 System.out.println(original_result + " * 2 = " + result);
 original_result = result;

 result = result / 2;
 System.out.println(original_result + " / 2 = " + result);
 original_result = result;

Answer
1 + 2 = 3

3 - 1 = 2

2 * 2 = 4

4 / 2 = 2

2 + 8 = 10

10 % 7 = 3

Other assignment operators

• The assignment operators +=, -=, *=, /=, and %= are a compound of
arithmetic and assignment operators.

• They operate by adding/subtracting/multiplying/dividing/taking the
remainder of the current value of the variable on the left to the value
on the right and then assigning the result to the operand on the left.
E.g.,

• num1 += num2; means num1 = num1 + num2;

Equality and relational operators
• Determine if one operand is greater than, less than, equal to, or not

equal to another operand

Operator Description

`== equal to

!= not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

