
CS62 Class 22: Graphs (intro, BFS/DFS)
Graphs

adjacency matrix

Agenda
• Undirected graphs

• Depth-first search

• Breadth-first search

• Directed graphs

• Depth-first search

• Breadth-first search

Why study graphs?
• Thousands of practical applications.

• Hundreds of graph algorithms known.

• Interesting and broadly useful abstraction.

• Challenging branch of theoretical computer science.

Undirected graphs

Undirected Graphs
• Graph: A set of vertices connected pairwise by edges.

• Undirected graph: The edges do not point in a specific direction

Protein-protein interaction graph

https://www.researchgate.net/figure/Network-graph-of-the-protein-protein-interactions-Green-color-represents-proteins_fig4_272297002

The Internet

https://www.opte.org/the-internet

Social media

https://www.databentobox.com/2019/07/28/facebook-friend-graph/

Graph terminology
• Path: Sequence of vertices connected

by edges

• Cycle: Path whose first and last vertices
are the same

• Two vertices are connected if there is a
path between them

Examples of graph-processing problems
• Is there a path between vertex s and t?

• What is the shortest path between s and t?

• Is there a cycle in the graph?

• Euler Tour: Is there a cycle that uses each edge exactly once?

• Hamilton Tour: Is there a cycle that uses each vertex exactly once?

• Is there a way to connect all vertices?

• What is the shortest way to connect all vertices?

• Is there a vertex whose removal disconnects the graph?

Graph representation
• Vertex representation: integers between 0 and V-1 (but can be generalized to any

type, e.g., custom Nodes).

0 5 means there’s an
edge between vertices
0 and 5

Basic Graph API
public class Graph

• Graph(int V): create an empty graph with V vertices.

• void addEdge(int v, int w): add an edge v-w.

• Iterable<Integer> adj(int v): return vertices adjacent to v.

• int V(): number of vertices.

• int E(): number of edges.

Example of how to use the Graph API to process the graph

public static int degree(Graph g, int v){  
 int count = 0;  
 for(int w : g.adj(v))  
 count++;  
 return count;  
}

The degree of a vertex v is the number of vertices connected to v (i.e., the number of edges.)

Graph density
• In a simple graph (no parallel edges or loops), if , then:

• minimum number of edges is 0 and

• maximum number of edges is .

• Dense graph -> edges closer to maximum.

• Sparse graph -> edges closer to minimum.

|V | = n

n(n − 1)/2

|V| = number of vertices

O(n^2) - all vertices are connected to each other

Graph representation: adjacency matrix
• Maintain a -by- boolean array;

for each edge v-w:

• adj[v][w] = adj[w][v] = true;

• Good for dense graphs (edges close to).

• Constant time for lookup of an edge.

• Constant time for adding an edge.

• time for iterating over vertices adjacent to .

• Symmetric, therefore wastes space in
undirected graphs ().

• Not widely used in practice.

|V | |V |

|V |2

|V | v

|V |2

A B C D

A 0 1 1 1

B 1 0 0 1

C 1 0 0 0

D 1 1 0 0

A B

DC

For undirected graphs, adjacency matrices are
always symmetric along the diagonal

Graph representation: adjacency list
• Maintain vertex-indexed array of

lists. The list stores vertices adjacent
to .

• Good for sparse graphs (edges
proportional to) which are much
more common in the real world.

• Space efficient ().

• Constant time for adding an edge.

• Lookup of an edge or iterating over
vertices adjacent to is .

v

|V |

|E | + |V |

v degree(v)

Adjacency-list graph representation in Java

Depth-first search

Mazes as graphs
• Vertex = intersection; edge = passage

http://oatzy.blogspot.com/2011/09/playing-with-pac-man.html

http://oatzy.blogspot.com/2011/09/playing-with-pac-man.html

How to survive a maze: a lesson from a Greek myth

• Theseus escaped from the labyrinth
after killing the Minotaur with the
following strategy instructed by
Ariadne:

• Unroll a ball of string behind you.

• Mark each newly discovered
intersection and passage.

• Retrace steps when no unmarked
options.

• Also known as the Trémaux
algorithm.

Depth-first search
• Basic idea: Go deep in a graph until you can’t anymore, visiting all vertices. Then retrace

your steps.

• Goal: Systematically traverse a graph.

• DFS (to visit a vertex v)

• Mark vertex v.

• Recursively visit all unmarked vertices w adjacent to v.

• Typical applications:

• Find all vertices connected to a given vertex.

• Find a path between two vertices.

Order visited: 0, 6, 4, 5, 3, 2, 1

Depth-first search
• Goal: Find all vertices connected to s (and a corresponding path).

• Idea: Mimic maze exploration.

• Algorithm:

• Use recursion (ball of string).

• Mark each visited vertex (and keep track of edge taken to visit it).

• Return (retrace steps) when no unvisited options.

• When started at vertex s, DFS marks all vertices connected to s (and no other).

Implementation of depth-first search in Java

for each adjacent vertex, mark it and call DFS on it

Worksheet time!
• Run DFS on the following graph starting at vertex 0 and return the vertices in the order

of being marked. Assume that the adjacent vertices are returned in increasing numerical
order.

Worksheet answers
• Vertices marked as visited: 0, 2, 3, 4, 1, 5

V marked edgeTo
0 T -
1 T 4
2 T 0
3 T 2
4 T 2
5 T 1

Depth-first search analysis
• DFS marks all vertices connected to s in time proportional to in the worst case.

• Initializing arrays marked and edgeTo takes time proportional to .

• Each adjacency-list entry is examined exactly once and there are such entries (two
for each edge in an undirected graph).

• Once we run DFS, we can check if vertex v is connected to s in constant time (look into
the marked array). We can also find the v-s path (if it exists) in time proportional to its
length.

|V | + |E |

|V |

2 |E |

Breadth-first search

Breadth-first search
• Basic idea: BFS traverses vertices in order of distance from s. (All of s’s adjacent vertices

get seen first, then the ones 2 away, then the ones 3 away…)

• BFS (from source vertex s)

• Put s on a queue and mark it as visited.

• Repeat until the queue is empty:

‣ Dequeue vertex v.

‣ Enqueue each of v’s unmarked neighbors and mark them.

Order visited: 0, 2, 1, 5, 3, 4

Breadth-first search in Java

enqueue s

dequeue v

enqueue adjacent vertices, w

Worksheet time!
• Run the BFS on the following graph starting at vertex 0 and return the vertices in the

order of being marked. Assume the adjacent vertices are returned in increasing
numerical order.

Vertices marked as visited: 0, 2, 4, 5, 3, 1

Worksheet answers

V marked edgeTo distTo

0 T - 0
1 T 4 2
2 T 0 1
3 T 2 2
4 T 0 1
5 T 0 1

Worksheet time!
• Run DFS and BFS on the following graph starting at vertex s. Assume the adjacent vertices

are returned in lexicographic (i.e., alphabetical) order.

https://11011110.github.io/blog/2013/12/17/stack-based-graph-traversal.html

Worksheet answer
• Run DFS and BFS on the following graph starting at vertex s. Assume that the adj method

returns back the adjacent vertices in lexicographic order.

• DFS: s->a->b->e->d->c->f->g->h

• BFS: s->a->c->b->d->f->e->g->h

Summary
• DFS: Uses recursion.

• BFS: Put unvisited vertices on a queue.

• Shortest path problem: Find path from s to t that uses the fewest number of edges.

• E.g., calculate the fewest numbers of hops in a communication network.

• E.g., calculate the Kevin Bacon number or Erdös number.

• BFS computes shortest paths from s to all vertices in a graph in time proportional to

• The queue always consists of zero or more vertices of distance k from s, followed by
zero or more vertices of k+1.

• DFS, on the other hand, will find a path, but it’s not guaranteed to be the shortest one.

|E | + |V |

Directed graphs

Directed Graph Terminology
• Directed Graph (digraph) : a set of vertices V connected

pairwise by a set of directed edges E.

• Directed path: a sequence of vertices in which there is a
directed edge pointing from each vertex in the
sequence to its successor in the sequence, with no
repeated edges. (Basically just a path in the graph.)

• A simple directed path is a directed path with no
repeated vertices.

• Directed cycle: Directed path with at least one edge
whose first and last vertices are the same.

• A simple directed cycle is a directed cycle with no
repeated vertices (other than the first and last).

• The length of a cycle or a path is its number of edges.

Directed Graph Terminology
• Self-loop: an edge that connects a vertex to itself.

• Two edges are parallel if they connect the same pair of
vertices.

• The outdegree of a vertex is the number of edges pointing
from it.

• The indegree of a vertex is the number of edges pointing
to it.

• A vertex w is reachable from a vertex v if there is a
directed path from v to w.

• Two vertices v and w are strongly connected if they are
mutually reachable.

self loop

V =
{0,1,2,3,4,5,6,7,8,9,10,11,12
}  
  
E = {{0,0}, {0,1}, {0,5},
{2,0}, {2,3},{3,2},{3,5},
{4,2},{4,3},{5,4},{6,0},
{6,4},{6,9},{7,6}{7,8},{8,7},
{8,9},{9,10},{9,11},{10,12},
{11,4},{11,12},{12,9}}.

Directed Graph Terminology
• A digraph is strongly connected if there is a

directed path from every vertex to every other
vertex.

• A digraph that is not strongly connected consists
of a set of strongly connected components,
which are maximal strongly connected
subgraphs.

• A directed acyclic graph (DAG) is a digraph with
no directed cycles.

Digraph Applications

Digraph Vertex Edge

Web Web page Link

Cell phone Person Placed call

Financial Bank Transaction

Transportation Intersection One-way street

Game Board Legal move

Citation Article Citation

Infectious Diseases Person Infection

Food web Species Predator-prey relationship

Popular digraph problems

Problem Description

s->t path Is there a path from s to t?

Shortest s->t path What is the shortest path from s to t?

Directed cycle Is there a directed cycle in the digraph?

Topological sort Can vertices be sorted so all edges point from earlier to later
vertices?

Strong connectivity Is there a directed path between every pair of vertices?

Basic Graph API
public class Digraph

Digraph(int V): create an empty digraph with V vertices.

void addEdge(int v, int w): add an edge v->w.

Iterable<Integer> adj(int v): return vertices adjacent from v.

int V(): number of vertices.

int E(): number of edges.

Digraph reverse(): reverse edges of digraph.

Digraph representation: adjacency list
• Maintain vertex-indexed array of lists.

• Good for sparse graphs (edges proportional to
) which are much more common in the

real world.

• Algorithms based on iterating over vertices
adjacent from .

• Space efficient ().

• Constant time for adding a directed edge.

• New difference: Lookup of a directed edge or
iterating over vertices adjacent from is

.

|V |

v

|E | + |V |

v
outdegree(v)

Adjacency-list digraph representation in Java

Very similar to undirected graph implementation,
main change is adding directed edges (1 edge,
not 2)

DFS in Directed graphs

Reachability
• Find all vertices reachable from s along a directed path.

https://apprize.info/science/algorithms_2/2.html

https://apprize.info/science/algorithms_2/2.html

Depth-first search in digraphs
• Same method as for undirected graphs.

• Every undirected graph is a digraph with edges in both directions.

• Maximum number of edges in a simple digraph is .

• DFS (to visit a vertex v)

• Mark vertex v.

• Recursively visit all unmarked vertices w adjacent from v.

• Typical applications:

• Find a directed path from source vertex s to a given target vertex v.

• Topological sort (sort so dependencies are ordered, e.g. for fulfilling course pre-reqs).

• Directed cycle detection.

n(n − 1)

Worksheet time!
• Given the following adjacency list, visualize the resulting digraph and run DFS on it

starting at vertex 0. In what order did you visit the vertices?

Note: Ignore the “1” value

Worksheet answer
• Given the following adjacency list, visualize the resulting

digraph and run DFS on it starting at vertex 0.

V marked edgeTo

0 T -

1 T 3

2 T 6

3 T 0

4 T 2

5 T 3

6 T 1

7 T 4

Order: 0, 3, 1, 6, 2, 4, 7, 5

Depth-first search analysis
• DFS marks all vertices reachable from s in time proportional to in the worst case.

• Initializing arrays marked takes time proportional to .

• Each adjacency-list entry is examined exactly once and there are such edges (different
than undirected graphs, which have 2|E| edges).

• Once we run DFS, we can check if vertex v is reachable from s in constant time (look into
the marked array). We can also find the s->v path (if it exists) in time proportional to its
length.

|V | + |E |

|V |

E

BFS in Directed graphs

Breadth-first search
• Same method as for undirected graphs.

• Every undirected graph is a digraph with edges in both directions.

• BFS (from source vertex s)

• Put s on queue and mark s as visited.

• Repeat until the queue is empty:

‣ Dequeue vertex v.

‣ Enqueue all unmarked vertices adjacent from v, and mark them.

• Typical applications:

• Find the shortest (in terms of number of edges) directed path between two vertices in time proportional to
.|E | + |V |

Worksheet time!
• Given the following adjacency list, visualize the resulting digraph and run BFS on it

starting at vertex 0. In what order did you visit the vertices?

Worksheet answer
• Given the following adjacency list, visualize the

resulting digraph and run BFS on it starting at vertex
0. In what order did you visit the vertices?

• 0, 2, 4, 5, 7, 6

V marked edgeTo distTo

0 T - 0

1 F

2 T 0 1

3 F

4 T 0 1

5 T 2 2

6 T 7 3

7 T 4 2

Summary
• Single-source reachability in a digraph: DFS/BFS.

• Shortest path in a digraph: BFS.

Algorithm: Is a digraph strongly connected?
• A strongly connected digraph is a directed graph in which it is possible to reach any

vertex starting from any other vertex by traversing edges.

• Pick a random starting vertex s.

• Run DFS/BFS starting at s.

• If have not reached all vertices, return false.

• Reverse edges.

• Run DFS/BFS again on reversed graph.

• If have not reached all vertices, return false.

• Else return true.

Lecture 22 wrap-up

• Exit ticket: https://forms.gle/JYzmdDxt58XcrBJ28

• HW9: Transplant Manager due next Tues 11:59pm

• Final project (groups of 2-3 or 3-4…haven’t decided yet) released in lab next week

Resources
• Recommended Textbook: Chapter 4.1 (Pages 522-556), Chapter 4.2 (Pages 566-594)

• Website: https://algs4.cs.princeton.edu/41graph/, https://algs4.cs.princeton.edu/
42digraph/

• Visualization: https://visualgo.net/en/dfsbfs

• Practice problems (3!) behind this slide

https://forms.gle/JYzmdDxt58XcrBJ28
https://algs4.cs.princeton.edu/41graph/
https://algs4.cs.princeton.edu/42digraph/
https://algs4.cs.princeton.edu/42digraph/
https://visualgo.net/en/dfsbfs

Problem 1
• What is the maximum number of edges in an undirected graph with V vertices and no parallel edges?

• What is the minimum number of edges in an undirected graph with V vertices, none of which are isolated (have
degree 0)?

• What is the maximum number of edges in a digraph with V vertices and no parallel edges?

• What is the minimum number of edges in a digraph with V vertices, none of which are isolated?

Problem 2
• Assume you are given the following 16 edges of an undirected graph with 12 vertices, inserted in an adjacency

list in this order:

• 8-4

• 2-3

• 1-11

• 0-6

• 3-6

• 10-3

• 7-11

• 7-8

• ...

▸ 11-8

▸ 2-0

▸ 6-2

▸ 5-2

▸ 5-10

▸ 5-0

▸ 8-1

▸ 4-1

Problem 3
• Run DFS and BFS on the following digraph starting at vertex 0.

Answer 1
• What is the maximum number of edges in an undirected graph with V vertices and no parallel edges?

• , where .

• What is the minimum number of edges in an undirected graph with V vertices, none of which are isolated (have
degree 0)?

• .

• What is the maximum number of edges in a digraph with V vertices and no parallel edges?

• , where .

• What is the minimum number of edges in a digraph with V vertices, none of which are isolated?

• .

n(n − 1)/2 n = |V |

n − 1

n(n − 1) n = |V |

n − 1

Answer 2
• Assume you are given the following 16 edges of an undirected graph with 12 vertices, inserted in an adjacency

list in this order:

• 8-4

• 2-3

• 1-11

• 0-6

• 3-6

• 10-3

• 7-11

• 7-8

• ...

▸ 11-8

▸ 2-0

▸ 6-2

▸ 5-2

▸ 5-10

▸ 5-0

▸ 8-1

▸ 4-1

▸ 0 -> 5 -> 2 -> 6

▸ 1 -> 4 -> 8 -> 11

▸ 2 -> 5 -> 6 -> 0 -> 3

▸ 3 -> 10 -> 6 -> 2

▸ 4 -> 1 -> 8

▸ 5 -> 0 -> 10 -> 2

▸ 6 -> 2 -> 3 -> 0

▸ 7 -> 8 -> 11

▸ 8 -> 1 -> 11 -> 7 -> 4

▸ 9 ->

▸ 10 -> 5 -> 3

▸ 11 -> 8 -> 7 -> 1

Answer 3
• DFS - Order of visit: 0, 1, 3, 2, 4, 5, 7, 6

V marked edgeTo
0 T -
1 T 0
2 T 3
3 T 1
4 T 3
5 T 4
6 T 7
7 T 5

Answer 3
• BFS - Order of visit: 0, 1, 3, 2 4, 5, 7, 6

V marked edgeTo distTo

0 T - 0

1 T 1 1

2 T 3 2

3 T 1 2

4 T 3 3

5 T 4 4

6 T 7 6

7 T 5 5

