CS62 Class 22: Graphs (intro, BFS/DFS)

Undirected graph G(V,E) Directed graph G(V,E)

adjacency matrix

Agenda

» Undirected graphs

* Depth-first search

+ Breadth-first search
» Directed graphs

* Depth-first search

* Breadth-first search

Why study graphs?

» Thousands of practical applications.
* Hundreds of graph algorithms known.
* Interesting and broadly useful abstraction.

» Challenging branch of theoretical computer science.

Undirected graphs

Undirected Graphs

» Graph: A set of vertices connected pairwise by edges.

» Undirected graph: The edges do not point in a specific direction

Palidde METRCLINK REGIONAL RAIL SYSTEM

i

ent Orade/Acten I

‘Asta Canyon O . O Falere SN

Via Princessa i

Santa Clarita
I
-

VENTURA
CO.

LOS ANGELES SAN BERNARDINO
CO. Co.

Syivar/
28 Famarco

.\# & ."'\“'
A+

"f ’»é\:; Do

0@ o j ! o N f
‘\‘Sﬁb \’3} «ﬁs f AUR Q&
\iiz:x:;:f_?\gy & o f@*f@% P e fﬁ f@i e

 Chatsnerth gy L A O & [o &if@
) &‘& e @
—(.\ ‘ @ Riserside: Hunter Park f UCR

iy // ke I

@' \\>\\~°_x_zi Riverside- ® Meen) Valley J Narch Fiald

PACIFIC CCEAN @ Redondc Bsan q&”@ o\m lnSuc
; RIVERSIDE

Alighire/Western D

CO. I Fernis - Dyantewn
QUL ® Ferris - Sauth

e taekge vy Line l:' ms-ucu
EEOIN vlasd Lmghe Jrongs Uousty lise

Bl Drersz Caury line uem mmm
BN Fwside L e Metre Ralde o [us
= Wit Bs

Lo Vesdws Ceurty Line W UM Conmect Shattie s ,-"':SAN DIEGO

5 Tebre Stdtn e e aido o £ Dl co.
el unwimnx — — 3’.':3,:., B -. \} “«.s
~ é‘}« o

M ETR C Ll N K mstrolinktrainacem

o

Protein-protein interaction graph

lﬁiﬁk. /-
RV,
< Wy

£
%
Y 17

%
it

w4

‘.

7/ |

\)
W

\ 1 s > |
-z
A" 3 "‘ ‘\ ~
i 4

O

N o Ny

https://www.researchgate.net/figure/Network-graph-of-the-protein-protein-interactions-Green-color-represents-proteins_figd_ 272297002

The Internet

https.//www.opte.org/the-internet

f; . 5 . “.d X Yo
) -4 \ . ’ - ..

SR :
“ B s .. -

N\ BN &r&f.m.ﬂ. N
- B e . v\ 2
o 0 g f : u...

4 - f ~ o ’ N
. 4 N : . .
N N - - -~
e A > v X
L A ‘) - .]
.) . . X

\

Social media

//www.databentobox.com/2019/07/28/facebook-friend-graph/

https

Graph terminology

VETIEX

+ Path: Sequence of vertices connected mr; _
IENGIN O ™\
by edges

wadde nd
;-uf”)

» Cycle: Path whose first and last vertices
are the same

) P Ny
- .Lo’..k;!'l ‘t

» Two vertices are connected if there is a vertex of
path between them

) connected
components

Anatomy of a graph

Examples of graph-processing problems

s there a path between vertex s and t?

» What is the shortest path between s and t?

s there a cycle in the graph?

. . Is there a cycle that uses each edge exactly once?

. . Is there a cycle that uses each vertex exactly once?
s there a way to connect all vertices?

» What is the shortest way to connect all vertices?

s there a vertex whose removal disconnects the graph?

Graph representation

» Vertex representation: integers between 0 and V-1 (but can be generalized to any
type, e.g., custom Nodes).

0 5 means there's an 05

edge between vertices 4 3

0and 5 0 1
9 12
L 4
5 4
D 2
11 1.2
9 10
0 0
/7 B
9 11
5> 3

Basic Graph API

public class Graph
« Graph(int V): create an empty graph with V vertices.

» voi1d addEdge(int v, int w):add an edge v-w.
+ Iterable<Integer> adj(int v):return vertices adjacent to v.
- 1nt V(): number of vertices.

« 1nt EC): number of edges.

Example of how to use the Graph API to process the graph

The degree of a vertex v is the number of vertices connected to v (i.e., the number of edges.)

public static int degree(Graph g, int v){
1nt count = 0;
for(int w : g.adj(v))
count++;
return count;

Graph density

In a simple graph (no parallel edges or loops), if | V| = n, then:
minimum number of edges is 0 and
maximum number of edges is n(n — 1)/2.

Dense graph -> edges closer to maximum.

Sparse graph -> edges closer to minimum.

Graph representation: adjacency matrix

For undirected graphs, adjacency matrices are

Maintain a | V| 'by' | V| boolean array, always symmetric along the diagonal

for each edge v-w:

. adj[vl[w] = adj[w][v] = true; g ? : :’
A
Good for dense graphs (edges close to | V|?). 5 : 0 0 :
Constant time for lookup of an edge. C 1 0 0 0
1 1 0 0
Constant time for adding an edge. i

| V| time for iterating over vertices adjacent to v.

» Symmetric, therefore wastes space in
undirected graphs (| V|?).

(A)
(©) D

Not widely used in practice.

Graph representation: adjacency list

» Good for sparse graphs (edges

—~[1—5]

O S
- Maintain vertex-indexed array of DG O “i—'z
ists. The list stores vertices adjacent © oY0 il
o v. ’o / \\i"
© ORD / -

proportional to | V|) which are much g__/' ~[s {6
more common in the real world. '

”:/' RElgtl
» Space efficient (|E| + | V]). J'_}"“* ~[0f—~14]
+ Constant time for adding an edge. L ~L8

» Lookup of an edge or iterating over 1
vertices adjacent to v is degree(v).

7
4|
T
i
|

/
=L
ol |l
|
=

Adjacency-list graph representation in Java

9 public class Graph {

10
11
12
13
14
15
16
17
138
19
20
21
22
23

private final int V;

private int E;

// number of vertices

// number of edges
// adjacency lists

private final List<Integer>[] adj;

//init empty graph with V vertices and @ edges

@SuppressWarnings ("unchecked")
public Graph(int V) {

this.V = V;
this.E = 0:

adj = (List<Integer>[]) new List[V];

for (int v
adj[v]

0; v < V; v++) {
new ArrayList<>();

24

25
26
27
28
29
30
31
32
33

//adds undirected edge v—w to graph. parallel edges and
self-loops allowed
public void addEdge(int v, int w) {
E++;
adj [v].add(w);
adj [w].add(v);
}
//returns vertices adjacent to vertex v
public Iterable<Integer> adj(int v) {
return adjlv];

Depth-first search

Mazes as graphs

+ Vertex = intersection; edge = passage

http://oatzy.blogspot.com/2011/09/playing-with-pac-man.html

How to survive a maze: a lesson from a Greek myth

» Theseus escaped from the labyrinth ~— \ T~ ’\ = “\
after killing the Minotaur with the yé % %
following strategy instructed by
Ariadne: ‘ = , = = S

Unroll a ball of string behind you. %\ % %

Mark each newly discovered
intersection and passage.

Retrace steps when no unmarked
options.

» Also known as the Trémaux
algorithm.

Depth-first search

» Basicidea: Go deep in a graph until you can't anymore, visiting all vertices. Then retrace
your steps.

» Goal: Systematically traverse a graph.

« DFES (to visit a vertex V)
« Mark vertex v.

» Recursively visit all unmarked vertices w adjacent to v.

» Typical applications:
» Find all vertices connected to a given vertex.

» Find a path between two vertices.

. e. | : AOeOaBaE
A l go Il th IMS ROBERT SEDGEWICK | KEVIN WAYNE o\
&l
~s 4]
e
G0

~of+{4]
~

@ \ representations
" of the same edge
\IZJ »
~[11j—~10~12]
aD
~o 2]
\ E]

[
[T R - B R P N N L™
&

[
NP -

4.1 DEPTH-FIRST SEARCH DEMO

Algorithms

ROBERT SEDGEWICK | KEvVIN WAYNE

http://algs4.cs.princeton.edu

Order visited: 0, 6,4, 5, 3, 2, 1

Depth-first search

Goal: Find all vertices connected to s (and a corresponding path).

l[dea: Mimic maze exploration.

Algorithm:
» Use recursion (ball of string).
» Mark each visited vertex (and keep track of edge taken to visit it).

» Return (retrace steps) when no unvisited options.

When started at vertex s, DFS marks all vertices connected to s (and no other).

Implementation of depth-first search in Java

public void dfs(int s) {
boolean[] marked = new boolean[V]; //marked|[v] - is there an s-v path?
int[] edgeTo = new int[V]; //edgeTolv] = previous vertex on path from s to v
int[] distTo = new int[V]; //distTo[v] - distance from s to v

for (int i =0; i < V; i++) {
distTo[i] = -1; // initialize distances to -1

}

marked[s] = true;
distTols] = 0;
dfsHelper(s, marked, edgeTo, distTo);

private void dfsHelper(int v, boolean[] marked, int[] edgeTo, int[] distTo) {
for (int w : adjlv]) {
if (!'marked[w]) {

marked [w] = true; for each adjacent vertex, mark it and call DFS on it
edgeTolw] = v;
distTo[w] = distTolv] + 1;

dfsHelper(w, marked, edgeTo, distTo);

Worksheet time!

Run DFS on the following graph starting at vertex O and return the vertices in the order
of being marked. Assume that the adjacent vertices are returned in increasing numerical
order.

Worksheet answers

« Vertices marked as visited: 0, 2,3,4, 1,5

marked edqgeTo

<

SN PN ==
— | |= [| |
= NN o |

Depth-first search analysis

DFS marks all vertices connected to s in time proportional to |V| + | E| in the worst case.
» |Initializing arrays marked and edgeTo takes time proportional to | V]|.

» Each adjacency-list entry is examined exactly once and there are 2| E| such entries (two
for each edge in an undirected graph).

Once we run DFS, we can check if vertex v is connected to s in constant time (look into
the marked array). We can also find the v-s path (if it exists) in time proportional to its
length.

Breadth-first search

Breadth-first search

» Basic idea: BFS traverses vertices in order of distance from s. (All of s's adjacent vertices
get seen first, then the ones 2 away, then the ones 3 away...)

« BFS (from source vertex s)
» Puts onaqueue and mark it as visited.

» Repeat until the queue is empty:

» Dequeue vertex v.

>~ Enqueue each of v's unmarked neighbors and mark them.

Algorithms

Algorithms

URTH EDITION

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

el
O W m N R WO
[

[
~N

4.1 BREADTH-FIRST SEARCH DEMO

Order visited: 0,2, 1,5, 3,4

representations
" of the same edge

\[z]‘

~[11f—~{20~12]

=[]

G

\@

Breadth-first search in Java

public void bfs(int s) {
boolean[] marked = new boolean[V];
int[] edgeTo = new int[V];
int[] distTo = new int[V];

Queue<Integer> queue = new LinkedList<>();
marked[s] = true;

distTol[s] = 0;

queue.add(s); engueue s

while (!queue.isEmpty()) {
int v = queue.remove(); dequeue v

for (int w : adjlv]) {
if (!'marked[w]) {

marked [w] true;
edgeTo[w] = v;
distTo[w] = distTol[v] + 1;

ueue.add(w) ; : :
\ enqueue adjacent vertices, w

Worksheet time!

Run the BFS on the followir

g graph starting at vertex 0 and return tr

order of being marked. Ass
numerical order.

ume the adjacent vertices are returned ir

e vertices in the
INncreasing

Worksheet answers

Vertices marked as visited: 0, 2,4, 5, 3, 1

marked edgeTo distTo

oA w N f=lo] <
— | |- [| |
O IOIN O |H& |
=N =N o

Worksheet time!

» Run DFS and BFS on the following graph starting at vertex s. Assume the adjacent vertices
are returned in lexicographic (i.e., alphabetical) order.

input

https://11011110.github.io/blog/2013/12/17/stack-based-graph-traversal.html

Worksheet answer

» Run DFS and BFS on the following graph starting at vertex s. Assume that the adj method
returns back the adjacent vertices in lexicographic order.

* DFS: s-=>a->b->e->d->c->f->g->h

» BFS: s->a->c->b->d->f->e->g->h

Summary

» DFS: Uses recursion.

» BFS: Put unvisited vertices on a queue.

 Shortest path problem: Find path from s to t that uses the fewest number of edges.
» E.g., calculate the fewest numbers of hops in a communication network.
 E.g., calculate the Kevin Bacon number or Erdos number.

- BFS computes shortest paths from s to all vertices in a graph in time proportional to
[E|+|V]

» The queue always consists of zero or more vertices of distance k from s, followed by
zero or more vertices of k+1.

» DFS, on the other hand, will find a path, but it's not guaranteed to be the shortest one.

Directed graphs

Directed Graph Terminology

Directed Graph (digraph) : a set of vertices V connected
pairwise by a set of directed edges E.

Directed path: a sequence of vertices in which there is a
directed edge pointing from each vertex in the
seguence to its successor in the sequence, with no
repeated edges. (Basically just a path in the graph.)

« Asimple directed path is a directed path with no
repeated vertices.

Directed cycle: Directed path with at least one edge
whose first and last vertices are the same.

» Asimple directed cycle is a directed cycle with no
repeated vertices (other than the first and last).

The length of a cycle or a path is its number of edges.

directed
w10
Ld,_u

directed
cycie of

length3

.

directed

= path of

vertexof length 4
ndegree 3 and l

outdegree 2
C

Anatomy of a digraph

Directed Graph Terminology selfloop

» Self-loop: an edge that connects a vertex to itself. ® (D=
» Two edges are parallel if they connect the same pair of é (9)

vertices. \::
oz ®

CACIC

» The outdegree of a vertex is the number of edges pointing

from it. v _

+ The indegree of a vertex is the number of edges pointing 19,1,2,3,4,5,6,7,8,9,10,11,12
to it. }

« Avertex Wis reachable from a vertex v if there is a E = {{0,0}, {0,1}, {0,5},

12,0, 12,3},13,2},13,5},
14,2},14,3},15,4},16,0;},

» Two vertices v and w are strongly connected if they are 16,45,16,95,17,0517,8},18, 7},

18,91,19,10},19,11},110,12},
mutually reachable. (11,4} {11,12}. {12,911

directed path from v to w.

Directed Graph Terminology Wj@

+ Adigraph is strongly connected if there is a ?{\é ©
directed path from every vertex to every other Gr— \@9

vertex.

« A digraph that is not strongly connected consists

o
of a set of strongly connected components, Q{

which are maximal strongly connected
subgraphs. Oz

A digraph and its strong components

» Adirected acyclic graph (DAG) is a digraph with
no directed cycles. 0

<5
<5
-
4"
i
7

P
° l“‘e
N N
N\ N\
-
N\ N\

Digraph Applications

Digraph Vertex Edge
Web Web page Link
Cell phone Person Placed call
Financial Bank Transaction

Transportation

Intersection

One-way street

Game Board Legal move
Citation Article Citation
Infectious Diseases Person Infection

Food web

Species

Predator-prey relationship

Popular digraph problems

Problem

s->t path

Description

Is there a path from s to t?

Shortest s->t path

What is the shortest path from s to t?

Directed cycle

Is there a directed cycle in the digraph?

Topological sort

Can vertices be sorted so all edges point from earlier to later
vertices?

Strong connectivity

Is there a directed path between every pair of vertices?

Basic Graph API

public class Digraph
Digraph(int V): create an empty digraph with V vertices.
vold addEdge(int v, int w):add an edge v->w.
Iterable<Integer> adj(int v):return vertices adjacent fromv.
1nt V(): number of vertices.
int EC): number of edges.

Digraph reverse(): reverse edges of digraph.

Digraph representation: adjacency list

» Maintain vertex-indexed array of lists.
: - A
ood for sparse graphs (edges proportional to
| V]) which are much more common in the ;f\é) @’@
real world. Grm O \®>®

» Algorithms based on iterating over vertices il
adjacent from v.

o W N O

/NN

» Space efficient (|E| + | V]).

» Constant time for adding a directed edge.

* New difference: Lookup of a directed edge or)

10

iterating over vertices adjacent from v is -

12

outdegree(v).

Adjacency-list digraph representation in Java

9 public class DirectedGraph {

10 private final int V;

11 private int E;

12 private final List<Integer>[] adj;

13

14 @SuppressWarnings ("unchecked")

15 public DirectedGraph(int V) {

16 this.V = V;

17 this.E = 0;

18 adj = (List<Integer>[]) new List[V];

19 for (int v = 0; v < V; v++) A

20 adj [v]l = new ArraylList<>();

21 }

22 s

23

24 public void addEdge(int v, int w) { Very similar to undirected graph implementation,
2> A | main change is adding directed edges (1 edge,
26 adj[v].add(w); // Directed edge from v to w

27 } not 2) //adds undirected edge v-w to graph. parallel edges and
28 self-loops allowed

29 public Iterable<Integer> adj(int v) { public void addEdge(int v, int w) {

30 return adj[v]; E++;

31 } adj[v].add(w);

3?2 adj [w]l.add(v);

DFS in Directed graphs

Reachability

Find all vertices reachable from s along a directed path.

A A
Y Y Y Y Y Y
® >0« @ >0 >0« O« ’ P
. A A A |
Y Y | | | Y
® »0=« @& »0=« O= 0=« ¢ »0
A | 2 . A
Y Y Y | Y
Pt 9«0 >0 >0 >0 >0 9
A A A A | |
Y | Y Y Y
® »0=« 0=« O« Q>Q<-—’—->Q
B A " |
Y Y Y | Y
P9 >0 90«9 >0 >0 >0
: i A A
Y Y | Y Y
o >0 >0« @ >0 >0« 0= O
N A A A B
Y Y | Y
® >0 >0« @& 0=« 0 »0< 9

Is w reachable from v in this digraph?

https://apprize.info/science/algorithms_2/2.html

® »>® >0« 0« 9« 9=« >0‘

W

https://apprize.info/science/algorithms_2/2.html

Depth-first search in digraphs

Same method as for undirected graphs.
Every undirected graph is a digraph with edges in both directions.
Maximum number of edges in a simple digraph is n(n — 1).

(to visit a vertex v)
Mark vertex v.

Recursively visit all unmarked vertices w adjacent from v.

Find a directed path from source vertex s to a given target vertex v.

Topological sort (sort so dependencies are ordered, e.g. for fulfilling course pre-reqs).

Directed cycle detection.

Algorithms

Algorithms

ROBERT SEDGEWICK | KEvVIN WAYNE

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

4.2 DIRECTED DFS DEMO

~
o

LTI I Il

~—

VAN

ity

~o(3]

pEltl

pElntl

~[4]

a8 0]

~e 9]

~e]

~m—m

"l

~la e

~]

Worksheet time!

» Given the following adjacency list, visualize the resulting digraph and run DFS on it
starting at vertex 0. In what order did you visit the vertices?

[
Note: Ignore the “1” value

=00

a0

[SRR

Y= a0Ea0)

3.0 a0

330580

I\

Worksheet answer

+ Given the following adjacency list, visualize the resulting
digraph and run DFS on it starting at vertex 0.

Order:0,3,1,6,2,4,7,5

Ennnnnne

marked

edgeTo

N |([oju AW NI O

Al WINIO|O|W|.

Depth-first search analysis

» DFS marks all vertices reachable from s in time proportional to |V| + | E| in the worst case.
» Initializing arrays marked takes time proportional to | V]|.

» Each adjacency-list entry is examined exactly once and there are E such edges (different
than undirected graphs, which have 2 |E| edges).

Once we run DFS, we can check if vertex v is reachable from s in constant time (look into
the marked array). We can also find the s->v path (if it exists) in time proportional to its
length.

BFS In Directed graphs

Breadth-first search

Same method as for undirected graphs.
Every undirected graph is a digraph with edges in both directions.
BFS (from source vertex s)
Put s on queue and mark s as visited.
Repeat until the queue is empty:
Dequeue vertex v.
Enqueue all unmarked vertices adjacent from v, and mark them.

Typical applications:

Find the shortest (in terms of number of edges) directed path between two vertices in time proportional to
|E|+|V].

A l g() Il th 1IN S ROBERT SEDGEWICK | KEVIN WAYNE

4.2 DIRECTED BFS DEMO

Algorithms

ROBERT SEDGEWICK | KEvVIN WAYNE

http://algs4.cs.princeton.edu

Worksheet time!

Given the following adjacency list, visualize the resulting digraph and run BFS on it
starting at vertex 0. In what order did you visit the vertices?

0 —521-{»41X

1 —b21-{551-{b61h

Worksheet answer

 Given the following adjacency list, visualize the
resulting digraph and run BFS on it starting at vertex
0. In what order did you visit the vertices?

+ 0,2,4,5,7,6

Vv marked edgeTo distTo
0 T 0

1 F

2 T 0 1

3 F

4 0 1

5 2 2

6 7 3

7 4 2

Summary

» Single-source reachability in a digraph: DFS/BFS.
» Shortest path in a digraph: BFS.

Algorithm: Is a digraph strongly connected?

A is a directed graph in which it is possible to reach any
vertex starting from any other vertex by traversing edges.

Pick a random starting vertex s.
Run DFS/BFS starting at s.

If have not reached all vertices, return false.
Reverse edges.
Run DFS/BFS again on reversed graph.

If have not reached all vertices, return false.

Else return true.

Lecture 22 wrap-up

» EXit ticket:

» HWO: Transplant Manager due next Tues 11:59pm

» Final project (groups of 2-3 or 3-4...haven’t decided yet) released in lab next week

Resources

Recommended Textbook: Chapter 4.1 (Pages 522-556), Chapter 4.2 (Pages 566-594)
+ Website:

* Visualization:

* Practice problems (3!) behind this slide

https://forms.gle/JYzmdDxt58XcrBJ28
https://algs4.cs.princeton.edu/41graph/
https://algs4.cs.princeton.edu/42digraph/
https://algs4.cs.princeton.edu/42digraph/
https://visualgo.net/en/dfsbfs

Problem 1

What is the maximum number of edges in an undirected graph with V vertices and no parallel edges?

What is the minimum number of edges in an undirected graph with V vertices, none of which are isolated (have
degree 0)?

What is the maximum number of edges in a digraph with V vertices and no parallel edges?

What is the minimum number of edges in a digraph with V vertices, none of which are isolated?

Problem 2

Assume you are given the following 16 edges of an undirected graph with 12 vertices, inserted in an adjacency
list in this order:

- 84
¢ 2-3

» 11-8
« 1-11

2.

. 0-6 > 0
. 3.6 y 6-2
« 10-3 » 5-2
« /-11 » 5-10
AL » 5-0

» 8-1

Problem 3

Run DFS and BFS on the following digraph starting at vertex 0.

Answer 1

What is the maximum number of edges in an undirected graph with V vertices and no parallel edges?
* n(n—1)/2, wheren=|V]|.

» Whatis the minimum number of edges in an undirected graph with V vertices, none of which are isolated (have
degree 0)?

* n-—1.
» What is the maximum number of edges in a digraph with V vertices and no parallel edges?
* n(n—1),wheren=|V]|.
» What is the minimum number of edges in a digraph with V vertices, none of which are isolated?

c n-—1.

Answer 2

» Assume you are given the following 16 edges of an undirected graph with 12 vertices, inserted in an adjacency
list in this order:

. 84
« 2-3
. 1_11 > 11_8 » 0 ->5>2->6
» 1 ->4->8->11
° 0-6 g 2-0 » 2 ->5>6->0->3
. 3'6 > 6'2 y 3 >10->6->2
» 4 ->1->8
¢ 10-3 2 5-2 » 5>0->10->2
o« /11 . 5.10 b6 ->2->3->0
. 7-8 » 7 ->8->11
» 5-0) 8 >1->11->7->4
, 8-1 » 9 >
» 10 ->5->3

y 4-1 y 11 >8->7->1

Answer 3

DFS - Order of visit: 0, 1, 3, 2,4, 5, 7, 6

marked edgeTo
T

N ool INI=(OILZ
— | |||
iN|ID|lw|lm|lwl|o

Answer 3

BFS - Order of visit: 0, 1, 3,24,5, 7, 6

\' marked edgeTo distTo
0 T - 0
1 T 1 1
2 T 3 2
3 T 1 2
4 T 3 3
5 T 4 4
6 T 7 6
7 T 5 S

