
CS62 Class 2: More Classes Java Fundamentals

public class Cat {

 String name;

 public Cat(String name) {

 this.name = name;

 }

}

Cat fluffy = new Cat(“fluffy”); Cat bear = new Cat(“bear”);

Review: if you’re here early,

make sure you can explain this code

to the person next to you.

From lab: course norms & AI policy
• Course norms

• It’s OK to be wrong! No bad or stupid
questions. It’s good to ask questions!

• Acknowledge each other’s efforts

• If you participate a lot in one class, try
to wait a few seconds before answering
to give other people a chance to answer

• What you all added:

• Be nice! Be respectful! Be collaborative

• Check in if lecture is going too fast

• We all come from different backgrounds
and levels of experience

• Be open to helping & asking for help

Summary
• The object-oriented programming

paradigm captures state (through
variables) and behaviors (through
methods). Each class defines the kinds
of state and behaviors each instance of
the class should have. (Class =
PomonaStudent, instance = student1,
student2)

• We need to define constructors in our
class to define how we make instances,
or instantiate new objects

• We then actually instantiate objects
usually in the main() function

Lecture 2: More Java Basics

• Behaviors & Methods

• Static keyword

• String representation of objects

• Access modifiers & data hiding (public vs private keywords)

• Java Syntax (conditionals, loops)

• Intro to Arrays

Methods

Java technically doesn’t have functions
• You can call it a function, but Java only has methods

• Methods are what we think of as functions, but located inside a class.
Java is an OOP language, which means everything needs to be in a
class. Thus, every function is a method.

• (Compare to Python, where most of your code was function
definitions, or Haskell, where everything has to be a function.)

• Method syntax:

 public int add(int x, int y){
 return x + y;
 }

You have to declare the return type before
the name of the function

You also have to declare the
type of the parameters

Compare with Python:
def add(x, y):
 return x + y

PomonaStudent class with a getter and setter method
public class PomonaStudent {

 String name;
 String email;
 int id;
 int yearEntered;
 String academicStanding;
 boolean graduated;

 public PomonaStudent(String name, String email, int id){
 this.name = name;
 this.email = email;
 this.id = id;
 }
 public int getYearEntered(){
 return yearEntered;
 }

 public void setYearEntered(int yearEntered){
 this.yearEntered = yearEntered;
 }

}

Review question: Why do we need
this.yearEntered in the setter, but

not the getter?

Answer: in Java, the “this” keyword is only
necessary when the parameter variable name is
the same as the instance variable name. The
getter has no arguments, so yearEntered is
always referring to the instance variable. The
setter needs the this keyword to differentiate.

getter and setter naming convention:
getVarName(), setVarName(varName)

Instance methods
• Instance methods are a collection of grouped statements that perform a logical

operation and control the behavior of objects (e.g., getters and setters): basically, the
methods you use in your class objects

• By convention, method names should be a verb (+ noun) in lowercase.

• Method signature: method name and the number, type, and order of its parameters.

• Once a method is invoked/called, the control goes back to the calling program as soon as
a return statement is reached. If it does not return anything the return value is void.
E.g.,

• public void printName(){System.out.println(name);}

• Can be overloaded (same name, different number, type, or order of parameters). This is
common for constructors. Note that constructors do not have a return type.

• Invoked using the dot operator, e.g.,

• student1.printName();

Scope & local variables
• Local variables are temporary variables created within a method or constructor.

• Once the last line of the method/constructor is reached, the local variable ceases to exist.

• Access modifiers (e.g., public) CANNOT be used for local variables.

• There is no default value for local variables, so local variables should be declared with a
type and assigned with an initial value before the first use.

public int add(int x, int y){

int sum = x + y;

return sum;

}

static keyword

Static variables and methods
• Static (or class) variables are variables shared across all objects. E.g.,

• static int studentCounter;

• This means each unique Pomona student instance will all share the same studentCounter.

• Static methods: When a method only accesses static (and local) variables, then it can be
defined as static. E.g.,

static void graduateAllStudents(){

studentCounter = 0;

}

• Can be accessed in instance methods through the class name, without needing to
instantiate an object. E.g.,

• System.out.println(PomonaStudent.studentCounter);

• In HW1, where we aren’t really using the OOP paradigm and just writing 3 methods, all the
methods are declared static.

PomonaStudent class with a static
variable & method

public class PomonaStudent {

 String name;
 String email;
 int id;
 int yearEntered;
 String academicStanding;
 boolean graduated;

 static int studentCounter;

 public PomonaStudent(String name, String email, int id){
 this.name = name;
 this.email = email;
 this.id = id;
 studentCounter++;
 }

 public int getYearEntered(){
 return yearEntered;
 }

 public void setYearEntered(int yearEntered){
 this.yearEntered = yearEntered;
 }

 public static void graduateAllStudents(){
 studentCounter = 0;
 }
}

By convention, we declare in order:
1. instance variables
2. static variables
3. constructors
4. getters/setters
5. other methods

PomonaStudent class with a static
variable & method

public class PomonaStudent {

 String name;
 String email;
 int id;
 int yearEntered;
 String academicStanding;
 boolean graduated;

 static int studentCounter;

 public PomonaStudent(String name, String email, int id){
 this.name = name;
 this.email = email;
 this.id = id;
 studentCounter++;
 }

 public int getYearEntered(){
 return yearEntered;
 }

 public void setYearEntered(int yearEntered){
 this.yearEntered = yearEntered;
 }

 public static void graduateAllStudents(){
 studentCounter = 0;
 }
}

Question: Why do we need to write
student1.getYearEntered() in main,
but not student1.graduateAllStudents()?
Why is just graduateAllStudents() OK?

public static void main(String[] args) {
 PomonaStudent student1 = new
 PomonaStudent(“name”, “email@pomona.edu”, 123);
 student1.setYearEntered(2022);
 System.out.println(student1.getYearEntered());
 System.out.println(studentCounter);
 graduateAllStudents();
 System.out.println(studentCounter);
}

Question: Why can we just write
studentCounter in main? Why not
student1.studentCounter?

A: because main is a static class, it can
directly access static variables.
(student1.studentCounter technically
works, but you’ll get a warning - it’s better
to do PomonaStudent.studentCounter)

A: because main is a static class, it can
directly access static methods.
(student1.graduateAllStudents()
technically works, but you’ll get a warning
- it’s better to do
PomonaStudent.graduateAllStudents())

Summary of instance vs static variables & methods

• Instance methods can access instance variables and instance methods directly.

• Instance methods can access static variables and static methods directly (use the
class name, e.g., PomonaStudent.studentCounter).

• Static methods can access static variables and static methods directly.

• Static methods cannot access instance variables or instance methods directly—they
must use an object reference. (e.g., getName() does not work in main, but
student1.getName() does)

• This is what “Error: Cannot make a static reference to the non-
static field” means

• Static methods cannot use the this keyword as there is no instance of an object
for this to refer to.

Constant variables (final keyword)
• If you want a variable to be constant, that is its value to remain

unchanged once it is initialized, you can use the keyword final. E.g.,

• final int LEVELS = 5;

• It is conventional to capitalize the variable name to convey it is a
constant.

• It is common for a final variable to also be static. E.g.,

• static final double PI = 3.141592653589793;

Worksheet time!

• Do problem 1 on your worksheet. Work in a group of 2-4.

Worksheet answers

• It prints
0
11
meow

.toString()

String representation of an object
• If we want to print an object, we must override the method toString. e.g.,

 public String toString(){

 return "Name: " + name + "\nemail: " + email + "\nid: " + id;

 }

 public static void main(String[] args){

 PomonaStudent student1 = new PomonaStudent("Ravi Kumar",
 “rkjc2023@mypomona.edu", 1234);

 System.out.println(student1);

 }
• Will print:

• Name: Ravi Kumar

• email: rkjc2023@mypomona.edu

• id: 1234

compare to Python’s
def __str__():
 return “Name: “ + self.name

Worksheet time!

• Do problem 2 a-e on your worksheet. Work in a group of 2-4.

a. Add a counter in the Cat class that represents the total number of cats in the rescue.

b. Update the constructor to increase the counter by one every time a Cat object is created.

c. Write an adopt() method that updates a cat’s adoption status and decreases the counter.

d. Update the toString() method to say the cat’s name and if was adopted or not.

e. Create a new cat and adopt it in main. Print out the cat object.

make sure your counter variable is static!

just totalCats is OK too

this keyword not necessary

Access keywords &
data hiding

Data hiding (aka encapsulation)
• Data hiding is a core concept in Object-Oriented Programming.

• We encapsulate data and related methods in one class and we restrict
who can see and modify data.

• For example, FERPA protects the privacy of students so the
Registrar cannot share their academic record freely, even if it's
their parents who request it.

• Java uses access modifiers to set the access level for classes, variables,
methods and constructors.

Access Modifiers: public, private, default, protected

• You are already familiar with the public keyword. E.g., public class PomonaStudent.

• For classes, you can either use public or default:

• public: The class is accessible by any other class. E.g.,

• public class PomonaStudent

• default: The class is only accessible by classes in the same package (think of it as in the same folder.
More soon). This is used when you don't specify a modifier. E.g.,

• class PomonaStudent

• For variables, methods, and constructors, you can use any of the following:

• public: the code is accessible by any other class

• private: The code is only accessible within the declared class

• default: The code is only accessible in the same package. This is used when you don't specify a modifier

• protected: The code is accessible in the same package and subclasses (more later).

Package
• A grouping of related classes that provides access protection and name space management. E.g.,

• java.lang and java.util for fundamental classes or java.io for classes related to
reading input and writing output.

• Packages correspond to folders/directories.

• Lower-case names. E.g.,

• package registrar;

• at top of file and file has to be within registrar folder

• import java.util.*;

• for including all classes.

• or import java.util.Arrays;

• for more specific access.

https://docs.oracle.com/javase/tutorial/java/package/packages.html

demo: using PomonaStudent in Exercise1,
since they’re both in the registrar package

http://java.io
https://docs.oracle.com/javase/tutorial/java/package/packages.html

Data Hiding
• To follow the concept of data hiding, we prefer to define instance

variables as private.

• We provide more lax (i.e. default, protected, or public)
getter and setter methods to access and update the value of
a private variable.

PomonaStudent class with data hiding
package registrar;
public class PomonaStudent {

 private String name;
 private String email;
 private int id;
 private int yearEntered;
 private String academicStanding;
 private boolean graduated;
 private static int studentCounter;

 String getName() {
 return name;
 }

 void setName(String name) {
 this.name = name;
 }

 String getEmail() {
 return email;
 }

 void setEmail(String email) {
 this.email = email;
 }
…

all the instance variables have
been declared private

we have moved the file to the registrar/
folder and declared package registrar

getters and setters are
default access (any code in
the package can use them)

Worksheet time!

• Do problem 2 f-g on your worksheet. Work in a group of 2-4.

a. Update all the instance variables to be private.

b. Define a getter method that returns the days spent in rescue, and a setter method that
updates the days spent. Make sure they have the correct access modifiers.

c. Create a new cat, set it to have spent 20 days in rescue, and print out the number of
days.

I set the getter to public because it’s OK if
the public can see this variable

It’s dangerous to set setters to public - what
if there’s a data attack - so I chose
protected, but default/private are also good

remember, we have to call getters and
setters now - technically you could directly
access cat2.daysInRescue since it’s all the
Cat class, but it’s good programming
practice to always use the getter/setter
methods for private instance variables

More Java syntax
(conditionals, loops)

if-else if-else statement
• The most basic of control flow statements.

• Execute a certain section of code only if a particular test evaluates to true. Optionally, if not, execute another.

• Basic syntax:

if (expression) {

 statement

}

else if (expression) { //optional, can have many of these

 statement

}

else { //also optional

 statement

}

if-else if-else example
int testscore = 76;
char grade;

if (testscore >= 90) {
 grade = 'A';
} else if (testscore >= 80) {
 grade = 'B';
} else if (testscore >= 70) {
 grade = 'C';
} else if (testscore >= 60) {
 grade = 'D';
} else {
 grade = 'F';
}
System.out.println("Grade = " + grade);

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/if.html

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/if.html

while loop
• Repeatedly execute a block of code as long as a specific condition is true.

• Basic syntax:

while (condition) {

 // code block to be executed

}

• Make sure your condition terminates otherwise you will enter an infinite
loop.

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/while.html

while loop example
int i = 0;

while (i < 3) {

 System.out.println("CS62 will become my favorite class");

 i++;

}

• Will print:

CS62 will become my favorite class

CS62 will become my favorite class

CS62 will become my favorite class

Compare to Python:
i = 0
while i < 3:
 print(“i love cs62”)
 i += 1

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/while.html

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/while.html

for loop
• Repeatedly execute a block of code for a specific number of times:

• Basic syntax:

for (initialization; termination; increment) {

 // code block to be executed

}

• The initialization expression initializes the loop; it's executed once, as the loop begins.

• When the termination expression evaluates to false, the loop terminates.

• The increment expression is invoked after each iteration through the loop; it is perfectly
acceptable for this expression to increment or decrement a value.

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/for.html

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/for.html

for loop example
for(int k=1; k<=5; k++){

 System.out.println("Count is: " + k);

}

• Will print

Count is 1

Count is 2

Count is 3

Count is 4

Count is 5

Compare to Python:
for k in range(1, 6):
 print(“count is”, k)

You can initialize your index variable in the
loop heading (int k = 1)

Arrays

Array
• Simple data structure that can hold a fixed number of values of the same

data type.

• The length or storing capacity of an array is established when the array is
created and after creation it is fixed. (Different than a Python list! There’s no
.append()!)

• Each item in an array is called an element, and each element is accessed by
its numerical index.

• Numbering begins at 0. The 9th element, for example, would therefore be
accessed at index 8.

Kind of like Python lists but of a
fixed length.

Declaring and initializing arrays
• Declaring an array requires the use of square brackets next to the type of the

values it will hold. For example:

• String[] cars;

• int[] numbers;

• When we declare it, we can also initialize it with certain values separated by
comma. Note that we use {} curly brackets to contain the values. For example,

• String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

• int[] numbers = {10, 20, 30, 40};

https://www.w3schools.com/java/java_arrays.asp

https://www.w3schools.com/java/java_arrays.asp

Accessing the elements of an array

• Accessing an array element is done using the square brackets. E.g.,

• String[] cars = {"Volvo", "BMW", "Ford", “Mazda"};

• System.out.println(cars[0]);

• Will print Volvo

Changing the value of an element

• We will use again square brackets to index the element we want to
change. E.g.,

• String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

• cars[0] = "Toyota";

• System.out.println(cars[0]);

• Will now print Toyota instead of Volvo.

Array length

• We can determine the storing capacity of an array using the length
property. E.g.,

• String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

• System.out.println(cars.length);

• Will print 4

• If you request an index that is either negative or larger than length-1,
then you will get an ArrayIndexOutOfBoundsException.

http://download.oracle.com/javase/6/docs/api/java/lang/ArrayIndexOutOfBoundsException.html

Printing values in an array
• We’ve only printed individual values so far.

• To print the whole array, we need to use the Arrays.toString(x) method to
print the contents of array x in a human readable format.

import java.util.Arrays;

String[] cars = {"Volvo", "BMW", "Ford", "Mazda"};

System.out.println(cars); //prints [I@6d06d69c, array’s location in memory

System.out.println(Arrays.toString(cars)); // prints ["Volvo", "BMW",
"Ford", “Mazda”]

https://www.w3schools.com/java/java_arrays.asp

Exit tickets
• Exit tickets help me gauge how you’re

learning and my pacing

• Names are optional

• Let me know your feelings on an optional
review session for the past week’s material
10 minutes before lecture on Tuesdays (so
2:35pm)

• We’ll do them at the end of every Thurs
lecture

• This weeks: https://forms.gle/
7EtuhypES1UAFvQB8

https://forms.gle/7EtuhypES1UAFvQB8
https://forms.gle/7EtuhypES1UAFvQB8
https://forms.gle/7EtuhypES1UAFvQB8

Lecture 2 wrap-up
• Exit ticket

• TODO: HW1 due Tuesday night

• Mentor hours are happening this week! First one tomorrow 4-5pm!

• I will send out an email by Friday morning with suggested HW groups (3-4)

Resources
• Oracle’s guide: What Is an Object? What Is a Class?

https://docs.oracle.com/javase/tutorial/java/concepts/index.html

• Classes and Objects: https://docs.oracle.com/javase/tutorial/java/javaOO/index.html

• Optional further practice: Now make a Dog class for your rescue. Make sure to hide sensitive data and
write getter/setter methods, as well as fill in the toString(). Or, go back and redo the Employee lab.

• PS: If you want to see how Prof. Papoutsaki taught it, the URL for last semester is https://
cs.pomona.edu/classes/cs62/archive/fa2024/schedule.html

https://docs.google.com/forms/d/e/1FAIpQLScsrV3rz5PjGt_SGAykT1LsQRkpLZqyzPcP0N0F8AHgWcUxQA/viewform?usp=dialog
https://docs.oracle.com/javase/tutorial/java/concepts/index.html
https://docs.oracle.com/javase/tutorial/java/javaOO/index.html
https://cs.pomona.edu/classes/cs62/archive/fa2024/schedule.html
https://cs.pomona.edu/classes/cs62/archive/fa2024/schedule.html

