
CS62 Class 17: Binary Search Trees & Maps
Searching

BST: For each node, its left child is smaller, and its right child is bigger
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Maps (Dictionaries)



Dictionaries
• Dictionaries (Python) are known as Maps (Java).  

• Also known as: symbol tables, maps, indices, associative arrays. 

• Key-value pair abstractions that support two operations: 

• Insert a key-value pair. 

• Given a key, search for the corresponding value.



Map Example
Maps are very handy tools for all sorts of tasks. Example: Counting words.

Map<String, Integer> m = new TreeMap<>();
String[] text = {"sumomo", "mo", "momo", 
"mo", "momo", "no", "uchi"};
for (String s : text) {
   int currentCount = m.getOrDefault(s,0);
   m.put(s, currentCount + 1);
}

m = {}
text = ["sumomo", "mo", "momo", “mo", "momo", "no", "uchi"]
for s in text:
   if s in m.keys():
        m[s] += 1
   else:
        m[s] = 1
  

Python equivalent

sumomo 1

mo 2

momo 2

no 1

uchi 1



Basic dictionary API 
• public class Dictionary <Key extends Comparable<Key>, Value>

• Dictionary(): create an empty dictionary. By convention, values are not null. 

• void put(Key key, Value val): insert key-value pair. 

• Overwrites old value with new value if key already exists. 

• Value get(Key key): return value associated with key. 

• Returns null if key not present. (That’s why values can’t be null.) 

• boolean contains(Key key): is there a value associated with key? 

• Iterable keys(): all the keys in the dictionary. 

• void delete(Key key): delete key and associated value. 

• boolean isEmpty(): is the dictionary empty? 

• int size(): number of key-value pairs.



Ordered dictionaries
• Data structure: Maintain parallel arrays for 

keys and values, sorted by keys. 

• Search: Use binary search to find key. 

• At most  compares to search a sorted 
array of length . 

• Insert: Use binary search to find key. If it does 
not exist, shift all larger keys over. 

• At most  time. 

• Note: Remember that in Python, dictionaries 
were inherently unordered (we used lists if we 
wanted ordered data structures). Now we can 
build our own ordered ones!

O(log n)
n

O(n)

floor(x): largest key  < x 

ceiling(x): smallest key > x 

rank(x): # of keys < x 



Ordered dictionary API 
• Key min(): smallest key. 

• Key max(): largest key. 

• Key floor(Key key): largest key less than or equal to given key. 

• Key ceiling(Key key): smallest key greater than or equal to given key. 

• int rank(Key key): number of keys less that given key. 

• Key select(int k): key with rank k. 

• Iterable keys(): all keys in dictionary in sorted order. 

• Iterable keys(int lo, int hi): keys in [lo, …, hi] in sorted order.



Binary Search Trees: 
Motivation



How can we efficiently implement a map?
• Searching is another fundamental problem of computer science: how can we find 

things quickly and efficiently? 

• Our maps/dictionaries should support very fast search operations for key retrieval.



How can data structures support fast searching?

Consider the humble singly linked list (or even ArrayList!) 

This is horrible for fast searching, because we need to iterate through the whole list: 
O(n) time.

A CB D E F G



Optimization: Change the Entry Point
Fundamental Problem: Slow search, even though it’s in order. 

• Move pointer to middle.

A CB D E F G



Optimization: Change the Entry Point, Flip Links
Fundamental Problem: Slow search, even though it’s in order. 

• Move pointer to middle and flip left links. Halved search time!

A CB D E F G



Optimization: Change the Entry Point, Flip Links

Fundamental Problem: Slow search, even though it’s in order. 

• How do we do even better? 
• Dream big!

A CB D E F G



Optimization: Change Entry Point, Flip Links, Allow Big 
Jumps
Fundamental Problem: Slow search, even though it’s in order. 

• How do we do better?

A CB D E F G
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Binary Search Trees: 
Definition



Binary Search Trees
A binary search tree is a rooted binary tree that is symmetrically ordered. 

Symmetric order property of BSTs. For every node X in the tree: 

• Every key in the left subtree is less than X’s key. 
• Every key in the right subtree is greater than X’s key. 

• Q: What kind of traversal of the tree returns the nodes in sorted order? (pre-
order, in-order, post-order, or level-order)?

dog

bag flat

alf cat elf glut

debt

bus ears

axe cow fish gut

Binary Tree, but not a Binary Search TreeBinary Search Tree

*Note that our specific implementation of BST 
takes key-value pairs, but we’ll just show the keys 
for most visual examples



Binary Search Trees
A: An in-order (left, root, right) traversal of the nodes returns the nodes in sorted 
order. 

Given keys p and q: 

• Exactly one of p < q and q < p are true. 

• p < q and q < r imply p < r. 

One consequence of these rules: No duplicate keys allowed! 

• Keeps things simple. Most real world implementations follow this rule.



Differences between heaps and BSTs

Heap BST

Used to implement Priority queues Dictionaries

Supported operations Insert, delete max
insert, search, delete, ordered 

operations

What is inserted Keys Key-value pairs

Underlying data structure (Resizing) array Linked nodes

Tree shape Complete binary tree Depends on data

Ordering of keys Heap-ordered Symmetrically-ordered

Duplicate keys allowed? Yes No



BST and Node implementation

In addition to the “obvious stuff” (key-value pairs), 
we’re also keeping track of the size of the subtree 
at each node



BSTs: a recursive data structure
Base case: Node is null  

Otherwise, a BST is a node and the BST made from its Nodes

dog

bag flat

alf cat elf glut

*Note that our specific implementation of BST 
takes key-value pairs, but we’ll just show the keys 
for most visual examples

null null null null null null null null



Binary Search Trees: 
Searching



Finding a searchKey in a BST
If searchKey equals Node.key, return. 

• If searchKey < Node.key, search Node.left. 
• If searchKey > Node.key, search Node.right. 

dog

bag flat

alf cat elf glut



Search - recursive implementation

If we’ve reached a child, the key doesn’t exist

Recursively search left (smaller)

Recursively search right (bigger)

We found the node



Worksheet time!
• Find 4 and 9 in the following BST. Draw the 

route the search takes.



Worksheet answers
• 4: 8 -> 3 -> 6 -> 4 • 9: 8 -> 10 -> null



Search - iterative implementation
public Value get(Key key) {  
     Node x = root;  
     while (x != null) {  
           int cmp = key.compareTo(x.key);  
           if (cmp < 0)  
                   x = x.left;  
           else if (cmp > 0)  
                   x = x.right;  
           else if (cmp == 0)  
                   return x.val;  
      }  
      return null;  
}



Question
What is the runtime to complete a search on a “bushy” BST in the worst case, where 
N is the number of nodes? 

A.Θ(log N) 
B.Θ(N) 
C.Θ(N log N) 
D.Θ(N2) 
E.Θ(2N)

“bushiness” is an intuitive concept 
that we haven’t defined.



BST Search
What is the runtime to complete a search on a “bushy” BST in the worst case, where 
N is the number of nodes? 

A.Θ(log N) : Height of the tree is ~log2(N) 

Worst case search is O(h), where 
h is the height of the tree 
 
What does a BST look like 
that has O(n)  
search?



BSTs
Bushy BSTs are extremely fast. 

• At 1 microsecond per operation, can find something from a tree of size 10300000 in 
one second. 

Much (perhaps most?) computation is dedicated towards finding things in response 
to queries. 

• It’s a good thing that we can do such queries almost for free.



BSTs: Insertion



Inserting a New Key into a BST

Search for key. 

• If found, do nothing. 
• If not found: 

• Create new node. 
• Set appropriate link. 

• Number of compares is equal to the depth of the node + 1. 

Example:  
insert “eyes”

dog

bag flat

alf cat elf glut



Worksheet time!
• Fill in the blanks to implement insert.



if (x == null)

return new Node(key, val, 1)

insert(x.left, key, val)

insert(x.right, key, val)

x.val = val

 size(x.left) + size(x.right) + 1

We have a recursive definition of size: 
the size of a subtree is that is not null 
is 1 (itself) + the size of its 
left and right subtrees





BSTs mathematical analysis
• If  distinct keys are inserted into a BST in random order, the expected number of 

compares of search/insert is . 

• If  distinct keys are inserted into a BST in random order, the expected height of 
tree is  . [Reed, 2003]. 

• Worst case height is  but highly unlikely. 

• Keys would have to come (reversely) sorted! 

• All ordered operations in a dictionary implemented with a BST depend on the 
height of the BST. You can assume the BST is reasonably “bushy” (log(n) time). 

n
O(log n)

n
O(log n)

n



BSTs: Hibbard Deletion



Deleting from a BST
3 Cases: 

• Deletion key has no children. 
• Deletion key has one child. 
• Deletion key has two children.

eyes

dog

bag flat

alf cat elf glut



Case 1: Deleting from a BST: Key with no Children

Deletion key has no children (“glut”): 

• Just sever the parent’s link. 
• What happens to “glut” node?

eyes

dog

bag flat

alf cat elf glut



Case 1: Deleting from a BST: Key with no Children

Deletion key has no children (“glut”): 

• Just sever the parent’s link. 
• What happens to “glut” node? 

• Garbage collected.

eyes

dog

bag flat

alf cat elf glut



Case 2: Deleting from a BST: Key with one Child

Example: delete(“flat”): 

Goal: 

• Maintain symmetric order (BST property). 
• Flat’s child elf is still larger than dog. 

• Safe to just move that child into flat’s spot. 
• Why? Because of the BST property. When inserting elf in the 

BST originally, it had to have gone to the right of the dog.  

Thus: Move flat’s parent’s pointer to flat’s child.

eyes

dog

bag flat

alf cat elf



Case 2: Deleting from a BST: Key with one Child
Example: delete(“flat”): 

Thus: Move flat’s parent’s pointer to flat’s 
child. 

• Flat will be garbage collected (along with 
its instance variables).  

• Even though flat still links to elf, we can’t 
access it because nothing points to it.

eyes

dog

bag flat

alf cat elf



Hard Challenge
Delete k. How do you choose the new root?

e

b g

a d f

v

p y

m r x z

k



Case 3: Deleting from a BST: Deletion with two Children 
(Hibbard)
Example: delete(“dog”) 

Goal: 

• Find a new root node. 
• Must be > than everything in left subtree. 
• Must be < than everything right subtree. 

 
Would bag work? 

eyes

dog

bag flat

alf cat elf glut

No: We can keep alf as its left child, but where does cat go? Replacing 
flat with cat requires too many movements/adjustments and the cases get really messy quickly



Case 3: Deleting from a BST: Deletion with two Children 
(Hibbard)
Example: delete(“dog”) 

Goal: 

• Find a new root node. 
• Must be > than everything in left subtree. 
• Must be < than everything right subtree. 

 
Choose either predecessor (“cat”) or successor (“elf”). 
• Predecessor = largest key in left subtree 
• Successor = smallest key in right subtree 
• Delete “cat” or “elf”, and stick a new copy of that node in the root position: 

• This deletion guaranteed to be either case 1 or 2.  
• By deleting “cat” or “elf”, we replace that node with its subtree  

• This strategy is sometimes known as “Hibbard deletion”.

eyes

dog

bag flat

alf cat elf glut



Choose predecessor example
Example: delete(“dog”) 

• cat has replaced dog 

• cat’s subtree (null) is in the place of 
cat

dog

eyes

cat

bag flat

alf elf glut



Choose successor example
Example: delete(“dog”) 

• elf has replaced dog 

• elf’s subtree (eyes) is in the place of 
elf eyes

cat

bag flat

alf cat glut

dog



Hard Challenge (Hopefully Now Easy)
Delete k. 

What are the predecessor/successor?

e

b g

a d f

v

p y

m r x z

k



Hard Challenge (Hopefully Now Easy)
Delete k. Two solutions: Either promote g or m to be in the root. 

• Below, solution for g is shown.

e

b g

a d f

v

p y

m r x z

k



Hard Challenge (Hopefully Now Easy)
Two solutions: Either promote g or m to be in the root. 

• Below, solution for g is shown.

e

b

g

a d

f

v

p y

m r x z



Worksheet time!
• Delete 21 in this tree. Choose the successor.



Worksheet answer
• 70 is the successor, and its subtree (71) moves into 70’s place



Hibbard deletion
    public void delete(Key key) { //recursive implementation 
        root = delete(root, key); 
    } 
     
    //helper (@returns root of new subtree at x) 
    private Node delete(Node x, Key key) { 
        if (x == null) return null;  
        //search part 
        int cmp = key.compareTo(x.key); 
        if (cmp < 0) x.left = delete(x.left, key); 
        else if (cmp > 0) x.right = delete(x.right, key); 
        //found the node, now the 3 cases 
        else { 
            if (x.right == null) return x.left; //1 & 2 - no or single child 
            if (x.left == null) return x.right;  
            Node temp = x; //3. replace with successor  
            x = min(temp.right); //changes root to new successor - min key of right subtree 
            x.right = deleteMin(temp.right); //new root right is old root's right side minus successor 
            x.left = temp.left; //new root left is old root's left 
        } 
        x.size = size(x.left) + size(x.right) + 1; //recalculate size given size of subtrees plus self 
        // decrements size because subtree (x.left / x.right) was probably set to null 
        return x; 
    }



Hibbard’s deletion
• Unsatisfactory solution. If we were to perform many insertions and deletions the BST ends up being 

not symmetric and skewed to the left. 

• Extremely complicated analysis, but average cost of deletion ends up being . Let’s simplify 
things by saying it stays . 

• No one has proven that alternating between the predecessor and successor will fix this. 

• Hibbard devised the algorithm in 1962. Still no algorithm for efficient deletion in Binary Search 
Trees! 

• Overall, BSTs can have  worst-case for search, insert, and delete. We want to do better for 
dictionaries/maps (and will learn how to in future lectures!)

n
O(log n)

O(n)



Lecture 17 wrap-up
• Exit ticket: https://forms.gle/Ez9hzu1CF8gAWzMu7  

• HW7: Autocomplete due next Tues 11:59pm 

• This is the last lecture on checkpoint 2, lab next week is checkpoint review 

Resources
• Reading from textbook: Chapters 3.2 (Pages 396–414); https://

algs4.cs.princeton.edu/32bst/ 

• BST visualization: https://visualgo.net/en/bst  

• Practice problems behind this slide

https://forms.gle/Ez9hzu1CF8gAWzMu7
https://algs4.cs.princeton.edu/32bst/
https://algs4.cs.princeton.edu/32bst/
https://visualgo.net/en/bst


Problem 1 
• Draw the BST that results when you insert the keys  5, 1, 19, 25, 17, 5, 19, 20, 9, 15, 14 in that order. 



Problem 2
• Inserting the keys in the order A X C S E R H into an initially empty BST gives a worst-case tree where 

every node has one null link (one child), except one at the bottom that has two null links (it's a leaf). 
Give five other orderings of these keys that produce worst-case trees.



Problem 3
• Give five orderings of the keys A X C S E R H that when inserted into an initially empty binary search 

tree, produce best-case trees.



ANSWER 1
• Draw the BST that results when you insert the keys  5, 1, 19, 25, 17, 5, 19, 20, 9, 15, 14 in that order.  

• -2 indicates that this node has been updated to the second value associated with that key.



ANSWER 2
• Inserting the keys in the order A X C S E R H into an initially empty BST gives a worst-case tree where 

every node has one null link (one child), except one at the bottom that has two null links (it's a leaf). 
Give five other orderings of these keys that produce worst-case trees. 

• A C E H R S X 

• X S R H E C A 

• X A S C R E H 

• X A S C R H E 

• A X C S E H R



ANSWER 3
• Inserting the keys in the order A X C S E R H into an initially empty BST gives a worst-case tree where 

every node has one null link (one child), except one at the bottom that has two null links (it's a leaf). 
Give five other orderings of these keys that produce worst-case trees. 

• H C S A E R X 

• H C A E S R X 

• H C E A S R X 

• H S R X C A E 

• H S X R C A E


