
CS62 Class 16: Priority Queues & Heapsort
Sorting

Priority queue: another representation
of a binary heap Heapsort: sorting using a binary heap

Agenda
• From last time: Binary Heaps

• Priority Queues

• Heapsort

• Heapsort Analysis

Binary Heap (pre spring
break review)

Heap-ordered binary trees
• The largest key in a heap-ordered binary tree is found at the root!

Heap-ordered binary trees
• A binary tree is heap-ordered if the key in each node is larger than or equal to the

keys in that node’s two children (if any).

• Equivalently, the key in each node of a heap-ordered binary tree is smaller than
or equal to the key in that node’s parent (if any).

• No assumption of which child is smaller.

• Moving up from any node, we get a non-decreasing sequence of keys.

• Moving down from any node we get a non-increasing sequence of keys.

Array representation of heaps
• Nothing is placed at index 0 (for arithmetic convenience).

• Root is placed at index 1.

• Rest of nodes are placed
in level order.

• Parent of node k: found at index k/2 (round down)

• Children: 2k (left), 2k+1 (right)

• No unnecessary indices and no wasted
space because it’s complete.

private void swim(int k) {
 while (k > 1 && a[k/2].compareTo(a[k])<0) {
 E temp = a[k];
 a[k] = a[k/2];
 a[k/2] = temp;
 k = k/2;
 }
}

Swim/promote/percolate up: code

We swim large nodes so they become parents
We do this by swapping with the parent if it’s larger

Sink/demote/top down heapify code
private void sink(int k) {
 while (2*k <= n) {
 int j = 2*k;
 if (j < n && a[j].compareTo(a[j+1])<0))
 j++;
 if (a[k].compareTo(a[j])>=0))
 break;
 E temp = a[k];
 a[k] = a[j];
 a[j] = temp;
 k = j;
 }
}

We sink small nodes so they become leaves
We do this by swapping with the larger child

Binary Heap (new)

Binary heap: return (and delete) the maximum
• Delete max: Swap the root with the last

node (the rightmost child). Return and
delete the root. Sink the new root down.

• Cost: At most compares.2 log n

Worksheet time!
• Delete and return the maximum of this binary

heap. 100

19 36

17 3 25 1

2 7

Worksheet answers
• First, swap with 7

7

19 36

17 3 25 1

2

100 removed & returned

36

19 7

17 3 25 1

2

• Then, sink 7 (find the bigger child)

Worksheet answers

36

19 25

17 3 7 1

2

• Then, sink 7 (find the bigger child)

• Done when 7 has no more bigger children

Worksheet time!
• Implement public E deleteMax().

• Assume precondition (n > 0) is true.

• Hint: you can do it in 4 lines of code.

• 1. find max

• 2. ??

• 3. ??

• 4. return max

100

19 36

17 3 25 1

2 7

Worksheet answers
 public E deleteMax() {
 E max = a[1];
 a[1] = a[n--];
 sink(1);
 return max;
}

max is always the root

swap root with the last element, decrement size

sink the last element to update tree

Binary heap operation run times
• Insertion is (because insert at the end, swim up to proper place).

• Delete max is (because swap last node to root, and then sink down to
proper place).

• Space efficiency is (because of array representation).

O(log n)

O(log n)

O(n)

Priority Queues

Priority Queue
• An abstract data type of a queue where each element additionally has a priority.

• Two operations:

• Dequeue, aka delete the maximum

• Enqueue, aka insert

• How can we implement a priority queue efficiently?

Option 1: Unordered array
• The lazy approach where we defer doing work (deleting the maximum) until

necessary.

• Insert is and assumes we have the space in the array.

• Delete maximum is (have to traverse the entire array to find the maximum
element and exchange it with the last element).

O(1)

O(n)

Option 2: Ordered array
• The eager approach where we do the work (keeping the array sorted) up front to

make later operations efficient.

• Insert is (we have to find the index to insert and shift elements to perform
insertion).

• Delete maximum is (just take the last element which will be the maximum).

O(n)

O(1)

Option 3: Binary heap
• Will allow us to both insert and delete max in running time.

• There is no way to implement a priority queue in such a way that insert and
delete max can be achieved in running time.

• Priority queues are synonymous to binary heaps.

O(log n)

O(1)

Worksheet time!
1. Insert P

2. Insert Q

3. Insert E

4. Delete max

5. Insert X

6. Insert A

7. Insert M

8. Delete max

9. Insert P

10. Insert L

11. Insert E

12. Delete max

Given an empty binary heap that represents a priority queue,
perform the following operations. Ideally draw the binary tree
at each step, but compare with your neighbors what it looks
like in the end, and what the 3 delete maxes return.

1. Insert P

2. Insert Q

3. Insert E

4. Delete max

5. Insert X

6. Insert A

7. Insert M

8. Delete max

9. Insert P

10. Insert L

11. Insert E

12. Delete max

• Look into MaxPQ class https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/MaxPQ.java.html

Worksheet answers

https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/MaxPQ.java.html

Heapsort

Basic plan for heap sort
• Given an array to be sorted, use a priority queue to develop a sorting method

that works in two steps:

• 1) Heap construction: build a binary heap with all keys that need to be sorted.

• 2) Sortdown: repeatedly remove and return the maximum key.

• Basically, we sort an array by constructing a binary heap and continually
removing the max (root).

n

 Naïve heap constructionO(n log n)
• Insert n elements, one by one, swim up to their appropriate position.

• Remember that insert() in a binary heap takes O(log n) time because swim takes O(log
n) time)

• We can do better!

 Heap constructionO(n)
• Recall sink(k): small nodes who are parents are sunken down to their proper place

(switched with their larger child)

• Key insight: After sink(k) completes, the subtree rooted at k is a heap. Basically,
performing sink guarantees the subtree at node k is a valid binary heap because of the
switches.

 Heap construction algorithmO(n)
• 1. Insert all nodes as is, in indices 1 to n (e.g., starting point is the first element is the root,

the second element is the left child, the third is the right child, etc.). This is a binary tree
definitely not in heap order.

• 2. Sink each internal node, ignoring all the leaves (indices n/2+1,…,n). Remember the
leaves will be placed in correct order since they are subtrees of the internal nodes.

Example: SORTEDEXAMPLE
n=11, so k=5 initially

Worksheet time!
• Run the first step of heapsort, heap

construction, on the array [2,9,7,6,5,8]. What is
the resultant binary heap?

Worksheet answer

2

9 7

6 5 8

Step one: just in array order

2

9 8

6 5 7

2. sink(3, 6)

1

2 3

3. sink(2, 6)

2

9 8

6 5 7

1

2 3

(no action needed)

Worksheet answer
4. sink(1,6)

9

2 8

6 5 7

1

2 3

part 1: swap 2 & 9 (9 > 8)

9

6 8

2 5 7

1

2 3

part 2: swap 6 & 2

Final heap!

Sortdown
• Now that we have an ordered binary heap, all that remains is to pull out the roots

(each subsequent max element).

• Recall: deleteMax() in binary heaps swaps the last element to be the new root and
sinks that down.

• Key insight: After each iteration of sortDown, the array consists of a heap-ordered
subarray of k elements, followed by a sub-array of n-k elements in final order.

While the heap has > 1 element,

swap the root with the last element

sink the new root appropriately

Sortdown example

n = 11, so first we call swap
(or “exch”) on (1, 11), then sink(1, 10)

Swap X with E, sink down E -> T is new root
return X

1

2 3

4 5 6 7

8 9 10 11

swap T with E, sink down E -> S is new root
return T, X

swap S with E, sink down E -> R is new root
return S, T, X

swap R with M, sink M -> P is
new root

return R, S, T, X

swap P with A, sink A -> O
is new root

return P, R, S, T, X

swap O with E, sink E -> M
is new root

return O, P, R, S, T, X

swap M with E, sink E -> L is
new root

return M, O, P, R, S, T, X

swap L with A, sink A -> E is
new root

return L, M, O, P, R, S, T, X

swap E with E, sink E (no
action) -> E is new root

return E, L, M, O, P, R, S, T, X

swap E with A, sink A (A is just a
single node, nothing to sink)

return E, E, L, M, O, P, R, S, T, X

because n = 1, we’re done

return A, E, E, L, M, O, P, R, S, T, X

Worksheet time!
• Given the heap you constructed before, run the

second step of heapsort, sortdown, to sort the
array [2,9,7,6,5,8].

Worksheet answer

9

6 8

2 5 7

1

2 3

4 5 6

Starting heap

1. swap(1,6) sink(1,5) means
swap 9 & 7 and sink 7

8

6 7

2 5

2. swap(1,5) sink(1,4) means
swap 8 & 5 and sink 5

7

6 5

2

Return: 9 Return: 8, 9

Worksheet answer

3. swap(1,4) sink(1,3) means
swap 7 & 2 and sink 2

6

2 5

Return: 7, 8, 9

4. swap(1,3) sink(1,2) means
swap 6 & 5 and sink 5 (no sinking needed)

5

2

Return: 6, 7, 8, 9

4. swap(1,2) sink(1,1) means
swap 5 & 2 and sink 2 (no sinking needed, single node)

Return: 5, 6, 7, 8, 9

5. done! Return: 2, 5, 6, 7, 8, 9

2

5 6

7 8 9

Heapsort analysis

Heapsort analysis
• Heap construction (the fast version) makes exchanges and compares.

• Sortdown and therefore the entire heapsort exchanges and compares.

• Each sink() is logn time, and we do n-1 sinks

• worst case. What about best case? Average case?

• The same

• In-place (no need to copy anything).

• Not stable (we are swapping elements)

O(n) O(n)

O(n log n)

O(n log n)

Heapsort analysis
• Review:

• Mergesort: not in place, requires linear extra space.

• Quicksort: quadratic time in worst case.

• Heapsort is optimal both for time and space in terms of Big-O, but:

• Inner loop is longer than quicksort because of sink.

• Poor use of cache because it accesses memory in non-sequential manner,
jumping around the heap/array (more in CS105).

• In general, quicksort is preferred when it comes to speed, and mergesort is
preferred when it comes to stability.

Sorting: we’re done!
Which

Sort
In

place
Stable Best Average Worst Memory Remarks

Selection X exchanges

Insertion X X
Fastest if almost
sorted or small

Merge X
Guaranteed

performance; stable

Quick X
 probabilistic

guarantee; fastest in
practice

Heap X
Guaranteed

performance; in place

Ω(n2) Θ(n2) O(n2) n

O(n2)Ω(n)

Ω(n log n) Θ(n log n) O(n log n)

O(n2)
n log n

Ω(n log n)

Θ(n2)

Θ(n log n)

Θ(1)

Θ(1)

Θ(n)

Θ(log n)

Ω(n log n) Θ(n log n) O(n log n) Θ(1)

Lecture 16 wrap-up
• HW6: On Disk sort due 11:59pm tonight

• The next lecture, dictionaries, will be the last thing on Checkpoint 2

Resources
• Reading from textbook: 2.5 (336-344)

• Heapsort visualization: https://algostructure.com/sorting/heapsort.php

• More visualization to compare the n and nlogn create heap approaches: https://
visualgo.net/en/heap

• Practice problems behind this slide

https://algostructure.com/sorting/heapsort.php
https://visualgo.net/en/heap
https://visualgo.net/en/heap

Practice Problem 1
• Suppose that the sequence 16, 18, 9, 15, *, 18, *, *, 9, *, 20, *, 25, *, *, *, 17, 21, 5,

*, *, *, 21, *, 5 (where a number means insert and an asterisk means delete the
maximum) is applied to an initially empty priority queue. Give the sequence of
numbers returned by the delete maximum operations.

ANSWER 1
• Suppose that the sequence 16, 18, 9, 15, *, 18, *, *, 9, *, 20, *, 25, *, *, *, 17, 21, 5,

*, *, *, 21, *, 5 (where a number means insert and an asterisk means delete the
maximum) is applied to an initially empty priority queue. Give the sequence of
numbers returned by the delete maximum operations.

• 18, 18, 16, 15, 20, 25, 9, 9, 21, 17, 5, 21

Code for priority queue option 1: Unordered array
public class UnorderedArrayMaxPQ<Key extends Comparable<Key>> {
 private Key[] pq; // elements
 private int n; // number of elements

 // set inititial size of heap to hold size elements
 public UnorderedArrayMaxPQ(int capacity) {
 pq = (Key[]) new Comparable[capacity];
 n = 0;
 }

 public boolean isEmpty() { return n == 0; }
 public int size() { return n; }
 public void insert(Key x) { pq[n++] = x; }

 public Key delMax() {
 int max = 0;
 for (int i = 1; i < n; i++){
 if (pq[max].compareTo(pq[i]) < 0) {
 max = i;
 }
 }
 Key temp = pq[max];
 pq[max] = pq[n-1];
 pq[n-1] = temp;

 return pq[--n];
 }
}

Practice problem 2
1. Insert P

2. Insert Q

3. Insert E

4. Delete max

5. Insert X

6. Insert A

7. Insert M

8. Delete max

9. Insert P

10. Insert L

11. Insert E

12. Delete max

Given an empty array of capacity 10, perform the following
operations in a priority queue based on an unordered array
(lazy approach):

Answer 2

Priority queue option 2: Ordered array
public class OrderedArrayMaxPQ<Key extends Comparable<Key>> {
 private Key[] pq; // elements
 private int n; // number of elements

 // set inititial size of heap to hold size elements
 public OrderedArrayMaxPQ(int capacity) {
 pq = (Key[]) (new Comparable[capacity]);
 n = 0;
 }

 public boolean isEmpty() { return n == 0; }
 public int size() { return n; }
 public Key delMax() { return pq[--n]; }

 public void insert(Key key) {
 int i = n-1;
 while (i >= 0 && key.compareTo(pq[i]) < 0) {
 pq[i+1] = pq[i];
 i--;
 }
 pq[i+1] = key;
 n++;
 }
}

Practice Problem 3
1. Insert P

2. Insert Q

3. Insert E

4. Delete max

5. Insert X

6. Insert A

7. Insert M

8. Delete max

9. Insert P

10. Insert L

11. Insert E

12. Delete max

Given an empty array of capacity 10, perform the following
operations in a priority queue based on an ordered array
(eager approach):

Answer 3

Practice Problem 4: Heapsort
• Given the array [93,36,1,46,91,92,29,60,67,6,45,11,28], apply heap sort. Visualize

what the heap will initially look like (apply the O(n) heap construction algorithm)
and visualize it during sortdown as well.

ANSWER 4
• Given the array [93,36,1,46,91,92,29,60,67,6,45,11,28], apply heap sort. Visualize

what the heap will initially look like (apply the O(n) heap construction algorithm)
and visualize it during sortdown as well.

• Heap construction step:

ANSWER 4: sortdown
• Extract max (93)

• Extract max (92)

ANSWER 4
• Extract max (91)

• Extract max (67)

ANSWER 4
• Extract max (60)

• Extract max (46)

ANSWER 4
• Extract max (45)

• Extract max (36)

ANSWER 4
• Extract max (29)

• Extract max (28)

ANSWER 4
• Extract max (11)

• Extract max (6)

• Extract max (1)

