
CS62 Class 16: Priority Queues & Heapsort
Sorting

Priority queue: another representation 
of a binary heap Heapsort: sorting using a binary heap



Agenda
• From last time: Binary Heaps 

• Priority Queues 

• Heapsort 

• Heapsort Analysis



Binary Heap (pre spring 
break review)



Heap-ordered binary trees
• The largest key in a heap-ordered binary tree is found at the root!



Heap-ordered binary trees
• A binary tree is heap-ordered if the key in each node is larger than or equal to the 

keys in that node’s two children (if any). 

• Equivalently, the key in each node of a heap-ordered binary tree is smaller than 
or equal to the key in that node’s parent (if any). 

• No assumption of which child is smaller. 

• Moving up from any node, we get a non-decreasing sequence of keys. 

• Moving down from any node we get a non-increasing sequence of keys.



Array representation of heaps
• Nothing is placed at index 0 (for arithmetic convenience). 

• Root is placed at index 1. 

• Rest of nodes are placed  
in level order. 

• Parent of node k: found at index k/2 (round down) 

• Children: 2k (left), 2k+1 (right) 

• No unnecessary indices and no wasted  
space because it’s complete.



private void swim(int k) {
   while (k > 1 && a[k/2].compareTo(a[k])<0) {
      E temp = a[k];
      a[k] = a[k/2];
      a[k/2] = temp;
      k = k/2;
   }
}

Swim/promote/percolate up: code

We swim large nodes so they become parents 
We do this by swapping with the parent if it’s larger



Sink/demote/top down heapify code
private void sink(int k) {
    while (2*k <= n) {
        int j = 2*k;
        if (j < n && a[j].compareTo(a[j+1])<0))
            j++; 
        if (a[k].compareTo(a[j])>=0))
            break; 
        E temp = a[k];
        a[k] = a[j];
        a[j] = temp;
        k = j; 
    } 
}

We sink small nodes so they become leaves 
We do this by swapping with the larger child



Binary Heap (new)



Binary heap: return (and delete) the maximum
• Delete max: Swap the root with the last 

node (the rightmost child). Return and 
delete the root. Sink the new root down. 

• Cost: At most  compares.2 log n



Worksheet time!
• Delete and return the maximum of this binary 

heap. 100

19 36

17 3 25 1

2 7



Worksheet answers
• First, swap with 7

7

19 36

17 3 25 1

2

100 removed & returned

36

19 7

17 3 25 1

2

• Then, sink 7 (find the bigger child)



Worksheet answers

36

19 25

17 3 7 1

2

• Then, sink 7 (find the bigger child)

• Done when 7 has no more bigger children



Worksheet time!
• Implement public E deleteMax(). 

• Assume precondition (n > 0) is true. 

• Hint: you can do it in 4 lines of code.  

•    1. find max 

•    2. ?? 

•    3. ?? 

•    4. return max 

100

19 36

17 3 25 1

2 7



Worksheet answers
 public E deleteMax() {
    E max = a[1]; 
    a[1] = a[n--];
    sink(1);
    return max;
}

max is always the root

swap root with the last element, decrement size

sink the last element to update tree



Binary heap operation run times
• Insertion is  (because insert at the end, swim up to proper place). 

• Delete max is  (because swap last node to root, and then sink down to 
proper place). 

• Space efficiency is  (because of array representation). 

O(log n)

O(log n)

O(n)





Priority Queues



Priority Queue
• An abstract data type of a queue where each element additionally has a priority.  

• Two operations: 

• Dequeue, aka delete the maximum 

• Enqueue, aka insert  

• How can we implement a priority queue efficiently?



Option 1: Unordered array
• The lazy approach where we defer doing work (deleting the maximum) until 

necessary. 

• Insert is  and assumes we have the space in the array. 

• Delete maximum is  (have to traverse the entire array to find the maximum 
element and exchange it with the last element).

O(1)

O(n)



Option 2: Ordered array
• The eager approach where we do the work (keeping the array sorted) up front to 

make later operations efficient. 

• Insert is  (we have to find the index to insert and shift elements to perform 
insertion). 

• Delete maximum is  (just take the last element which will be the maximum).

O(n)

O(1)



Option 3: Binary heap
• Will allow us to both insert and delete max in  running time.  

• There is no way to implement a priority queue in such a way that insert and 
delete max can be achieved in  running time. 

• Priority queues are synonymous to binary heaps.

O(log n)

O(1)



Worksheet time!
1. Insert P 

2. Insert Q 

3. Insert E 

4. Delete max 

5. Insert X 

6. Insert A 

7. Insert M 

8. Delete max 

9. Insert P 

10.  Insert L 

11.  Insert E 

12.  Delete max

Given an empty binary heap that represents a priority queue, 
perform the following operations. Ideally draw the binary tree 
at each step, but compare with your neighbors what it looks 
like in the end, and what the 3 delete maxes return.



1. Insert P 

2. Insert Q 

3. Insert E 

4. Delete max 

5. Insert X 

6. Insert A 

7. Insert M 

8. Delete max 

9. Insert P 

10.  Insert L 

11.  Insert E 

12.  Delete max

• Look into MaxPQ class https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/MaxPQ.java.html

Worksheet answers

https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/MaxPQ.java.html


Heapsort



Basic plan for heap sort
• Given an array to be sorted, use a priority queue to develop a sorting method 

that works in two steps: 

• 1) Heap construction: build a binary heap with all  keys that need to be sorted. 

• 2) Sortdown: repeatedly remove and return the maximum key.  

• Basically, we sort an array by constructing a binary heap and continually 
removing the max (root). 

n



 Naïve heap constructionO(n log n)
• Insert n elements, one by one, swim up to their appropriate position. 

• Remember that insert() in a binary heap takes O(log n) time because swim takes O(log 
n) time) 

• We can do better!



 Heap constructionO(n)
• Recall sink(k): small nodes who are parents are sunken down to their proper place 

(switched with their larger child) 

• Key insight: After sink(k) completes, the subtree rooted at k is a heap. Basically, 
performing sink guarantees the subtree at node k is a valid binary heap because of the 
switches.



 Heap construction algorithmO(n)
• 1. Insert all nodes as is, in indices 1 to n (e.g., starting point is the first element is the root, 

the second element is the left child, the third is the right child, etc.). This is a binary tree 
definitely not in heap order. 

• 2. Sink each internal node, ignoring all the leaves (indices n/2+1,…,n). Remember the 
leaves will be placed in correct order since they are subtrees of the internal nodes.



Example: SORTEDEXAMPLE
n=11, so k=5 initially



Worksheet time!
• Run the first step of heapsort, heap 

construction, on the array [2,9,7,6,5,8]. What is 
the resultant binary heap?



Worksheet answer

2

9 7

6 5 8

Step one: just in array order

2

9 8

6 5 7

2. sink(3, 6)

1

2 3

3. sink(2, 6)

2

9 8

6 5 7

1

2 3

(no action needed)



Worksheet answer
4. sink(1,6)

9

2 8

6 5 7

1

2 3

part 1: swap 2 & 9 (9 > 8)

9

6 8

2 5 7

1

2 3

part 2: swap 6 & 2

Final heap!



Sortdown
• Now that we have an ordered binary heap, all that remains is to pull out the roots 

(each subsequent max element). 

• Recall: deleteMax() in binary heaps swaps the last element to be the new root and 
sinks that down. 

• Key insight: After each iteration of sortDown, the array consists of a heap-ordered 
subarray of k elements, followed by a sub-array of n-k elements in final order.

While the heap has > 1 element,

swap the root with the last element

sink the new root appropriately



Sortdown example

n = 11, so first we call swap 
(or “exch”) on (1, 11), then sink(1, 10) 

Swap X with E, sink down E -> T is new root 
return X

1

2 3

4 5 6 7

8 9 10 11

swap T with E, sink down E -> S is new root 
return T, X

swap S with E, sink down E -> R is new root 
return S, T, X 



swap R with M, sink M -> P is 
new root 

return R, S, T, X 

swap P with A, sink A -> O 
is new root 

return P, R, S, T, X 

swap O with E, sink E -> M 
is new root 

return O, P, R, S, T, X 

swap M with E, sink E -> L is 
new root 

return M, O, P, R, S, T, X 

swap L with A, sink A -> E is 
new root 

return L, M, O, P, R, S, T, X 

swap E with E, sink E (no 
action) -> E is new root 

return E, L, M, O, P, R, S, T, X 

swap E with A, sink A (A is just a 
single node, nothing to sink) 

return E, E, L, M, O, P, R, S, T, X 

because n = 1, we’re done 

return A, E, E, L, M, O, P, R, S, T, X 





Worksheet time!
• Given the heap you constructed before, run the 

second step of heapsort, sortdown, to sort the 
array [2,9,7,6,5,8].



Worksheet answer

9

6 8

2 5 7

1

2 3

4 5 6

Starting heap

1. swap(1,6) sink(1,5) means 
swap 9 & 7 and sink 7

8

6 7

2 5

2. swap(1,5) sink(1,4) means 
swap 8 & 5 and sink 5

7

6 5

2

Return: 9 Return: 8, 9



Worksheet answer

3. swap(1,4) sink(1,3) means 
swap 7 & 2 and sink 2

6

2 5

Return: 7, 8, 9

4. swap(1,3) sink(1,2) means 
swap 6 & 5 and sink 5 (no sinking needed)

5

2

Return: 6, 7, 8, 9

4. swap(1,2) sink(1,1) means 
swap 5 & 2 and sink 2 (no sinking needed, single node)

Return: 5, 6, 7, 8, 9

5. done! Return: 2, 5, 6, 7, 8, 9

2

5 6

7 8 9



Heapsort analysis



Heapsort analysis
• Heap construction (the fast version) makes  exchanges and  compares. 

• Sortdown and therefore the entire heapsort  exchanges and compares. 

• Each sink() is logn time, and we do n-1 sinks 

•  worst case. What about best case? Average case? 

• The same 

• In-place (no need to copy anything).  

• Not stable (we are swapping elements) 

O(n) O(n)

O(n log n)

O(n log n)



Heapsort analysis
• Review: 

• Mergesort: not in place, requires linear extra space. 

• Quicksort: quadratic time in worst case. 

• Heapsort is optimal both for time and space in terms of Big-O, but: 

• Inner loop is longer than quicksort because of sink. 

• Poor use of cache because it accesses memory in non-sequential manner, 
jumping around the heap/array (more in CS105). 

• In general, quicksort is preferred when it comes to speed, and mergesort is 
preferred when it comes to stability.



Sorting: we’re done!
Which 

Sort
In 

place
Stable Best Average Worst Memory Remarks

Selection X      exchanges

Insertion X X
Fastest if almost 
sorted or small

Merge X
Guaranteed 

performance; stable

Quick X
            probabilistic 

guarantee; fastest in 
practice

Heap X
Guaranteed 

performance; in place

Ω(n2) Θ(n2) O(n2) n

O(n2)Ω(n)

Ω(n log n) Θ(n log n) O(n log n)

O(n2)
n log n

Ω(n log n)

Θ(n2)

Θ(n log n)

Θ(1)

Θ(1)

Θ(n)

Θ(log n)

Ω(n log n) Θ(n log n) O(n log n) Θ(1)



Lecture 16 wrap-up
• HW6: On Disk sort due 11:59pm tonight 

• The next lecture, dictionaries, will be the last thing on Checkpoint 2

Resources
• Reading from textbook: 2.5 (336-344) 

• Heapsort visualization: https://algostructure.com/sorting/heapsort.php  

• More visualization to compare the n and nlogn create heap approaches: https://
visualgo.net/en/heap  

• Practice problems behind this slide

https://algostructure.com/sorting/heapsort.php
https://visualgo.net/en/heap
https://visualgo.net/en/heap


Practice Problem 1
• Suppose that the sequence 16, 18, 9, 15, *, 18, *, *, 9, *, 20, *, 25, *, *, *, 17, 21, 5, 

*, *, *, 21, *, 5 (where a number means insert and an asterisk means delete the 
maximum) is applied to an initially empty priority queue. Give the sequence of 
numbers returned by the delete maximum operations.



ANSWER 1
• Suppose that the sequence 16, 18, 9, 15, *, 18, *, *, 9, *, 20, *, 25, *, *, *, 17, 21, 5, 

*, *, *, 21, *, 5 (where a number means insert and an asterisk means delete the 
maximum) is applied to an initially empty priority queue. Give the sequence of 
numbers returned by the delete maximum operations. 

• 18, 18, 16, 15, 20, 25, 9, 9, 21, 17, 5, 21



Code for priority queue option 1: Unordered array
public class UnorderedArrayMaxPQ<Key extends Comparable<Key>> {
    private Key[] pq;      // elements
    private int n;         // number of elements

    // set inititial size of heap to hold size elements
    public UnorderedArrayMaxPQ(int capacity) {
        pq = (Key[]) new Comparable[capacity];
        n = 0;
    }

    public boolean isEmpty()   { return n == 0; }
    public int size()          { return n;      }
    public void insert(Key x)  { pq[n++] = x;   }

    public Key delMax() {
        int max = 0;
        for (int i = 1; i < n; i++){
            if (pq[max].compareTo(pq[i]) < 0) {
                 max = i;
            }
        } 
        Key temp = pq[max];
        pq[max] = pq[n-1];
        pq[n-1] = temp;

        return pq[--n];
    }
}



Practice problem 2
1. Insert P 

2. Insert Q 

3. Insert E 

4. Delete max 

5. Insert X 

6. Insert A 

7. Insert M 

8. Delete max 

9. Insert P 

10.  Insert L 

11.  Insert E 

12.  Delete max

Given an empty array of capacity 10, perform the following 
operations in a priority queue based on an unordered array 
(lazy approach):



Answer 2



Priority queue option 2: Ordered array
public class OrderedArrayMaxPQ<Key extends Comparable<Key>> {
    private Key[] pq;          // elements
    private int n;             // number of elements

    // set inititial size of heap to hold size elements
    public OrderedArrayMaxPQ(int capacity) {
        pq = (Key[]) (new Comparable[capacity]);
        n = 0;
    }

    public boolean isEmpty() { return n == 0;  }
    public int size()        { return n;       } 
    public Key delMax()      { return pq[--n]; }

    public void insert(Key key) {
        int i = n-1;
        while (i >= 0 && key.compareTo(pq[i]) < 0) {
            pq[i+1] = pq[i];
            i--;
        }
        pq[i+1] = key;
        n++;
    }
}



Practice Problem 3
1. Insert P 

2. Insert Q 

3. Insert E 

4. Delete max 

5. Insert X 

6. Insert A 

7. Insert M 

8. Delete max 

9. Insert P 

10.  Insert L 

11.  Insert E 

12.  Delete max

Given an empty array of capacity 10, perform the following 
operations in a priority queue based on an ordered array 
(eager approach):



Answer 3



Practice Problem 4: Heapsort
• Given the array [93,36,1,46,91,92,29,60,67,6,45,11,28], apply heap sort. Visualize 

what the heap will initially look like (apply the O(n) heap construction algorithm) 
and visualize it during sortdown as well.



ANSWER 4
• Given the array [93,36,1,46,91,92,29,60,67,6,45,11,28], apply heap sort. Visualize 

what the heap will initially look like (apply the O(n) heap construction algorithm) 
and visualize it during sortdown as well.  

• Heap construction step:



ANSWER 4: sortdown
• Extract max (93) 

• Extract max (92)



ANSWER 4
• Extract max (91) 

• Extract max (67)



ANSWER 4
• Extract max (60) 

• Extract max (46)



ANSWER 4
• Extract max (45) 

• Extract max (36)



ANSWER 4
• Extract max (29) 

• Extract max (28)



ANSWER 4
• Extract max (11) 

• Extract max (6) 

• Extract max (1)


