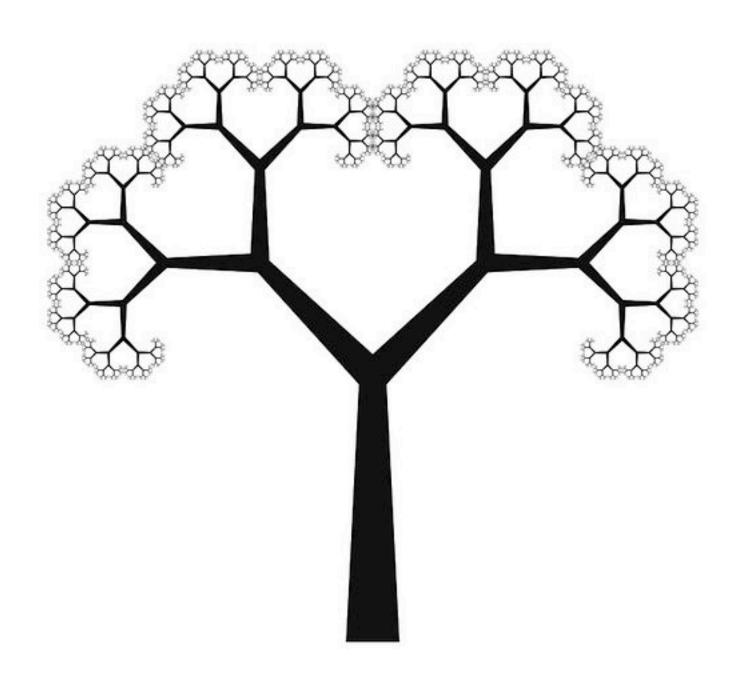
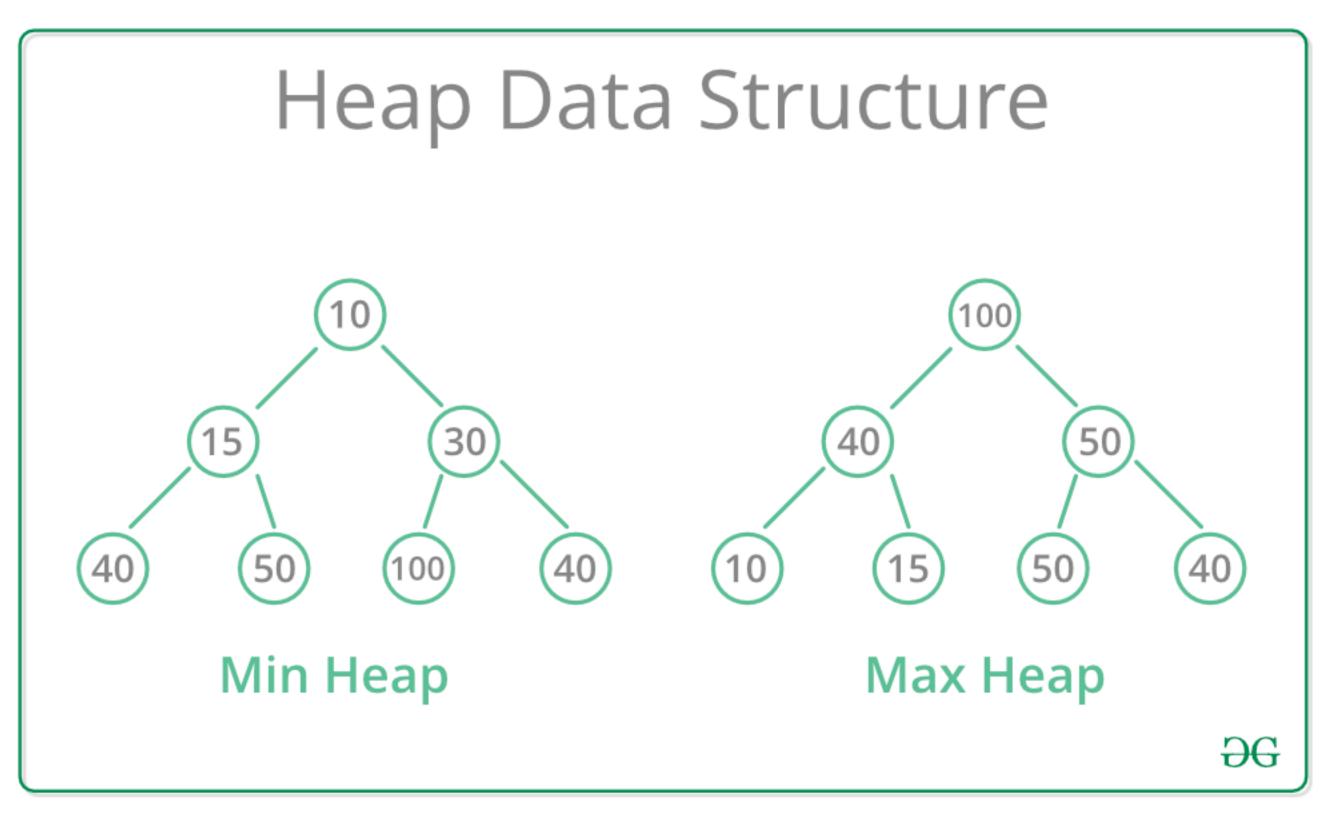
CS62 Class 15: Binary Trees & Heaps





Binary tree: \leq 2 children per node

Trees

Heap: ordered binary tree

Agenda

- Binary Trees
- Tree Traversals
- Binary Search
- Binary Heaps

Trees in Computer Science

- Abstract data types that store elements hierarchically rather than linearly.
- Examples of hierarchical structures:
 - Organization charts for
 - Companies (CEO at the top followed by CFO, CMO, COO, CTO, etc).
 - etc).

 - etc. Each folder can hold more folders.).

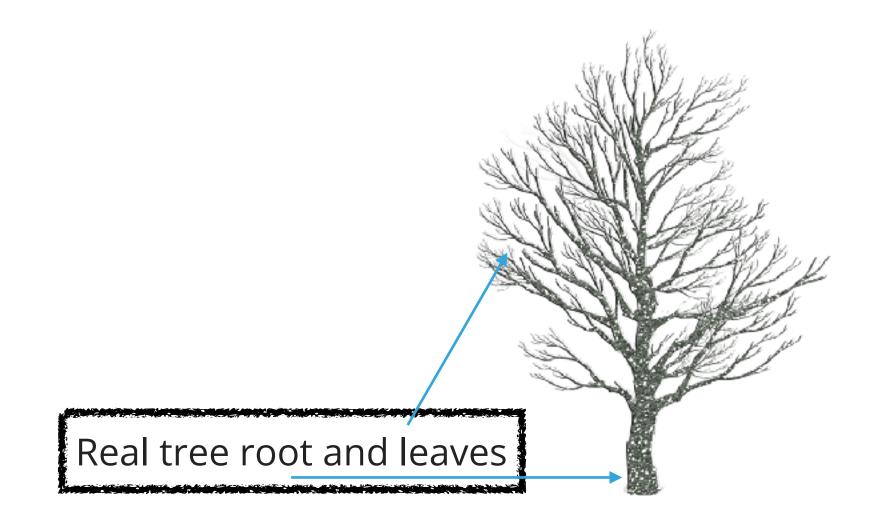
Universities (Board of Trustees at the top, followed by President, then by VPs,

• Sitemaps (home page links to About, Products, etc. They link to other pages).

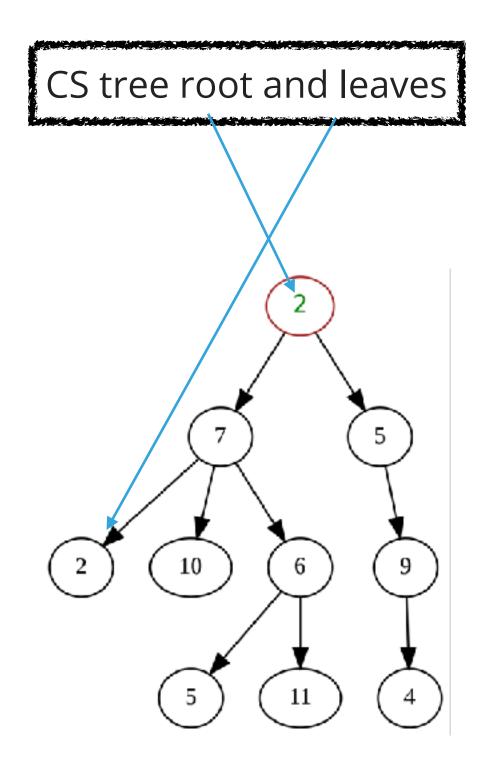
Computer file systems (user at top followed by Documents, Downloads, Music,

Trees in Computer Science

zero or more children (immediate descendants).

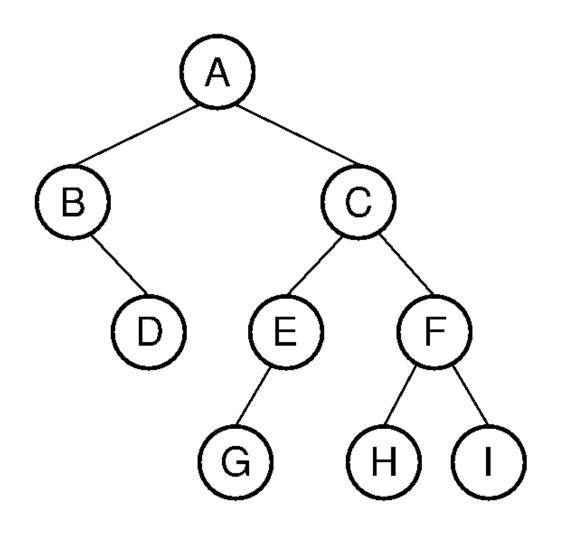


• Hierarchical: Each element in a tree has a **single** parent (immediate ancestor) and



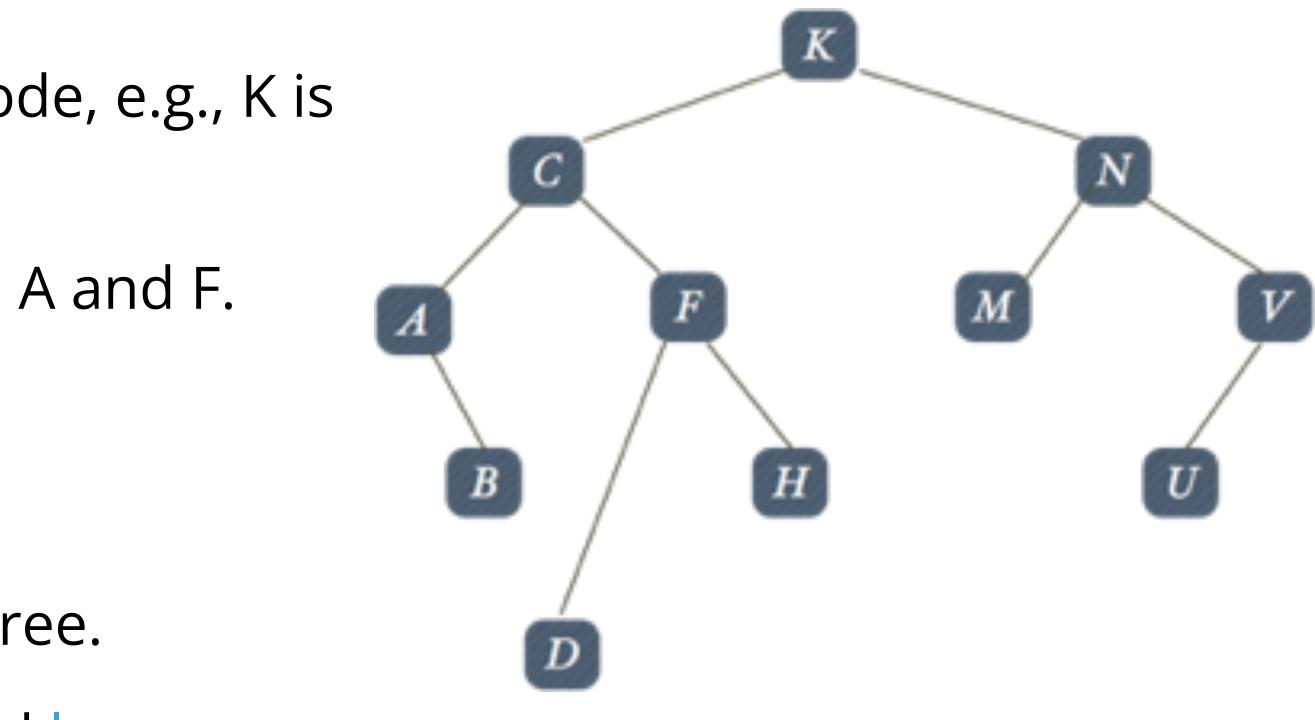
Definition of a tree

- A tree T is a set of nodes that store elements based on a parent-child relationship: • If T is non-empty, it has a node called the root of T, that has no parent.
 - - Here, the root is A.
 - Each node v, other than the root, has a unique parent node u. Every node with parent *u* is a child of *u*.
 - Here, E's parent is C and F has two children, H and I.



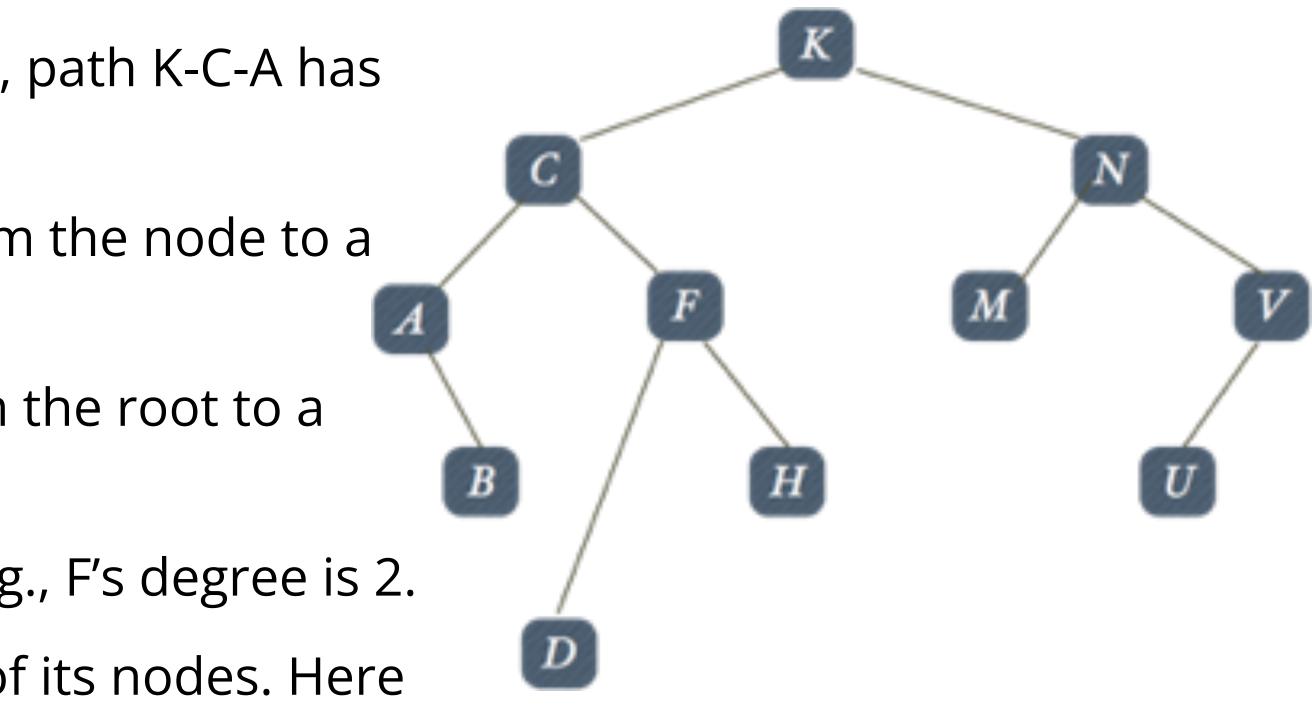
Tree Terminology

- Edge: a pair of nodes s.t. one is the parent of the other, e.g., (K,C).
- Parent node is directly above child node, e.g., K is parent of C and N.
- Sibling nodes have same parent, e.g., A and F.
- K is ancestor of B.
- B is descendant of K.
- Node plus all descendants gives subtree.
- Nodes without descendants are called leaves or external. The rest are called internal.



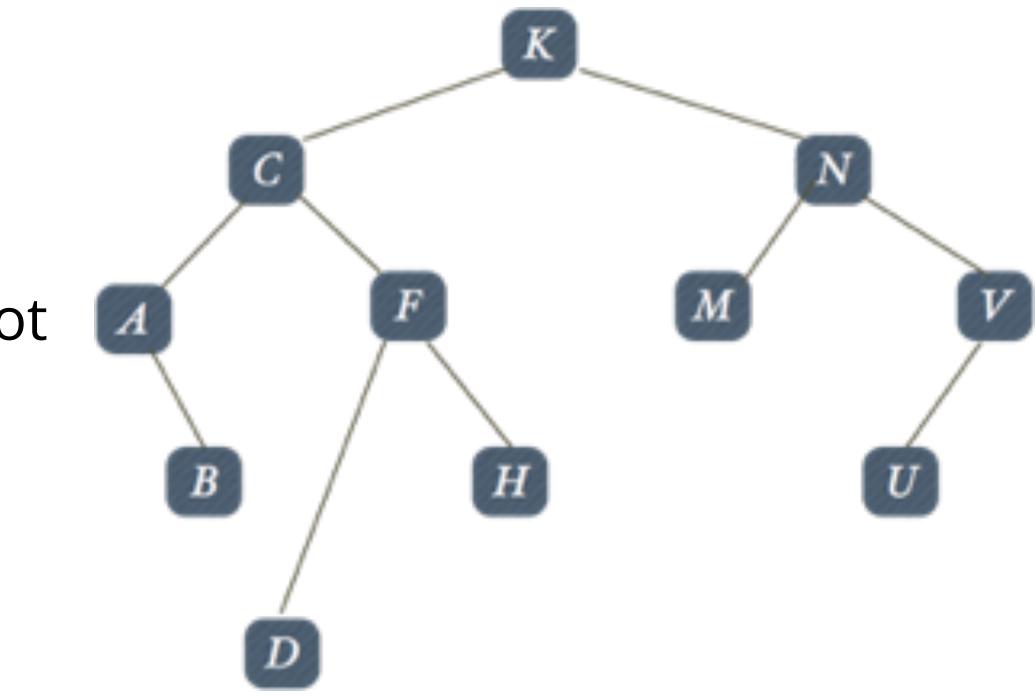
More Terminology

- Simple path: a series of distinct nodes s.t. there are edges between successive nodes, e.g., K-N-V-U.
- Path length: number of edges in path, e.g., path K-C-A has length 2.
- Height of node: length of longest path from the node to a leaf, e.g., N's height is 2 (for path N-V-U).
- Height of tree: length of longest path from the root to a leaf. Here 3.
- Degree of node: number of its children, e.g., F's degree is 2.
- Degree of tree (arity): max degree of any of its nodes. Here is 2.
- **Binary tree**: a tree with arity of 2, that is any node will have 0-2 children.



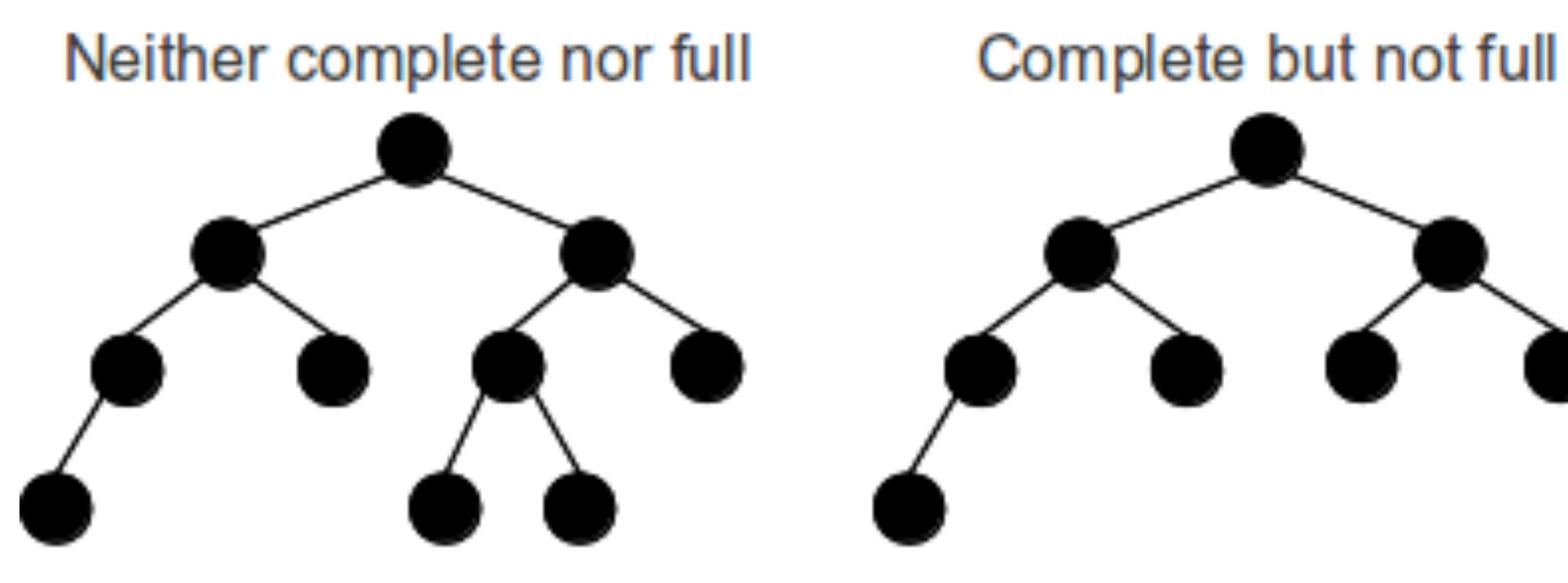
Even More Terminology

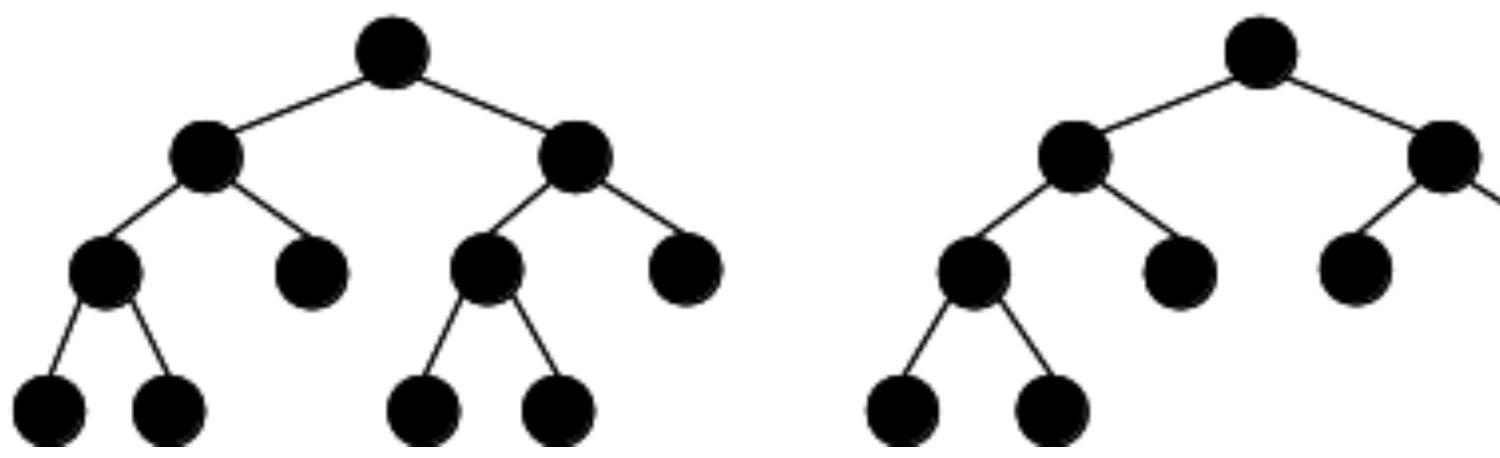
- Level/depth of node defined recursively:
 - Root is at level 0.
 - Level of any other node is equal to level of parent + 1.
 - It is also known as the length of path from root or number of ancestors excluding itself.
- Height of node defined recursively:
 - If leaf, height is 0.
 - Else, height is max height of child + 1.



Full and complete

- Full (or proper): a binary tree whose every node has 0 or 2 children.
- Complete: a binary tree with minimal height. Any holes in tree would appear at last level to the right, i.e., all nodes of last level are as left as possible.





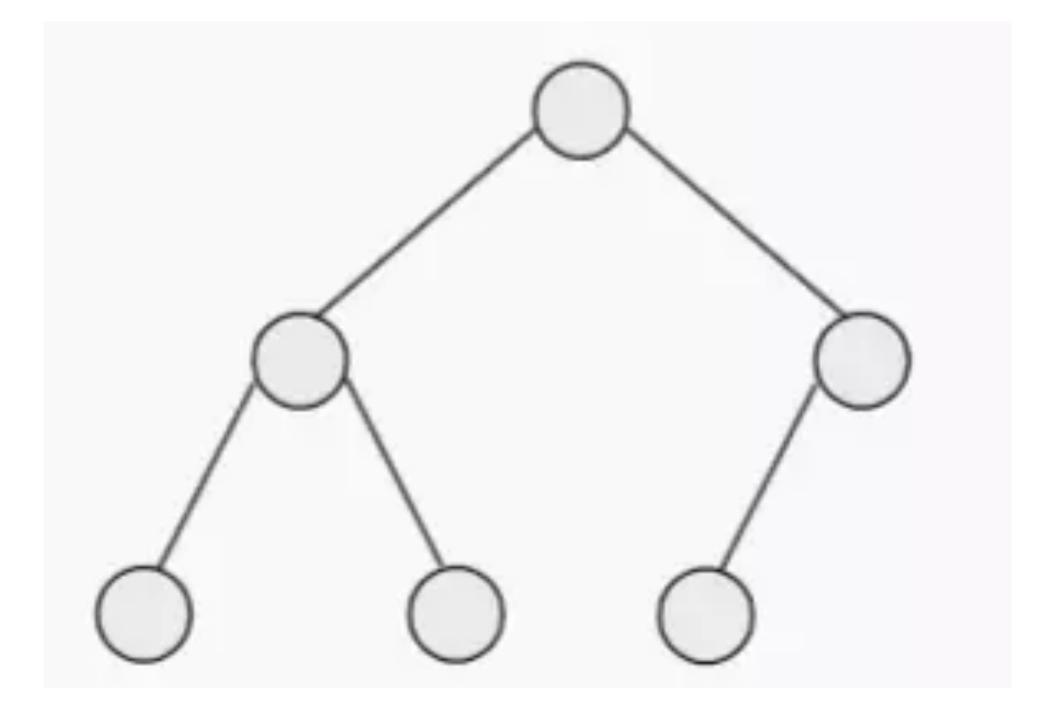
Full but not complete

Complete and full

http://code.cloudkaksha.org/binary-tree/types-binary-tree

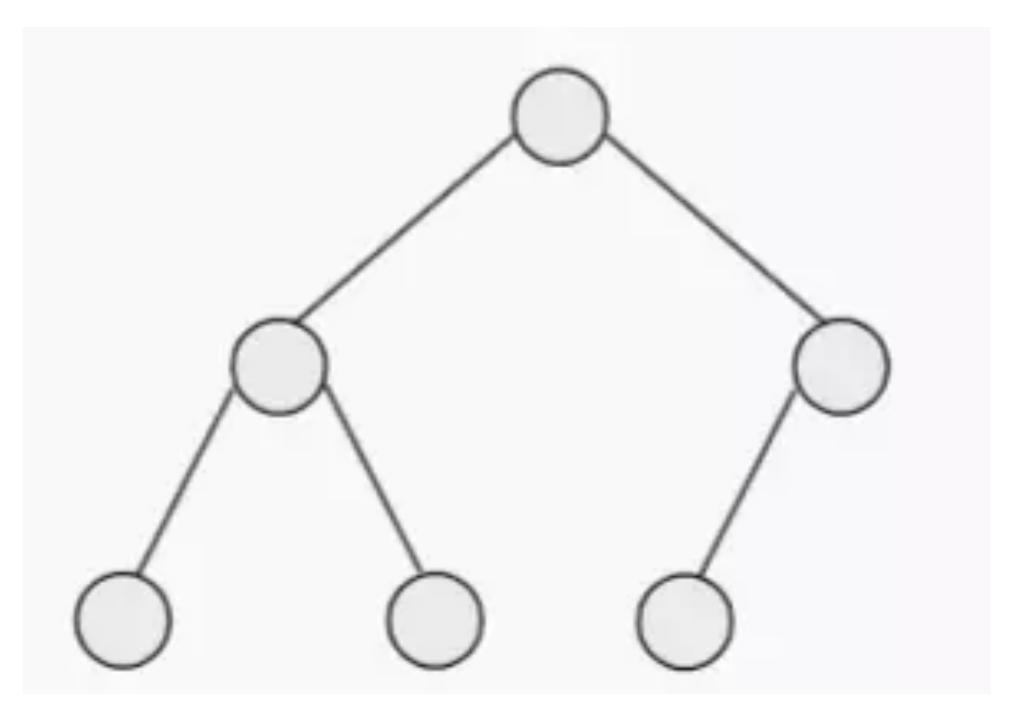
Practice Time: This tree is

- A: Full
- B: Complete
- C: Full and Complete
- D: Neither Full nor Complete



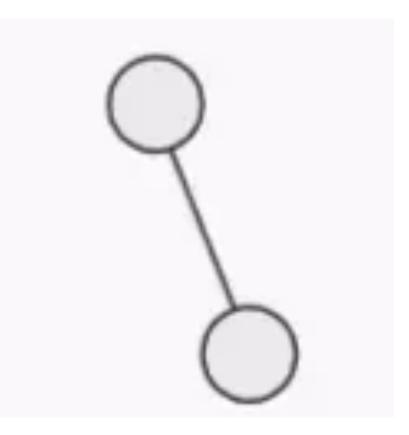
Answer

- A: Full
- B: Complete
- C: Full and Complete
- D: Neither Full nor Complete



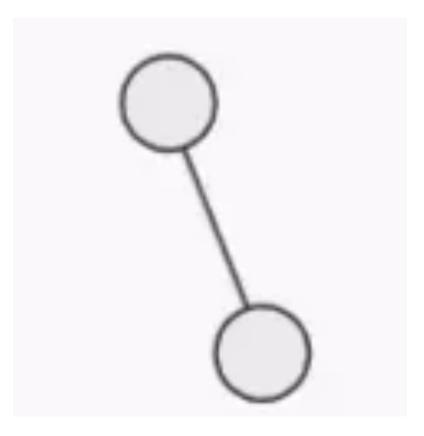
Practice Time: This tree is

- A: Full
- B: Complete
- C: Full and Complete
- D: Neither Full nor Complete



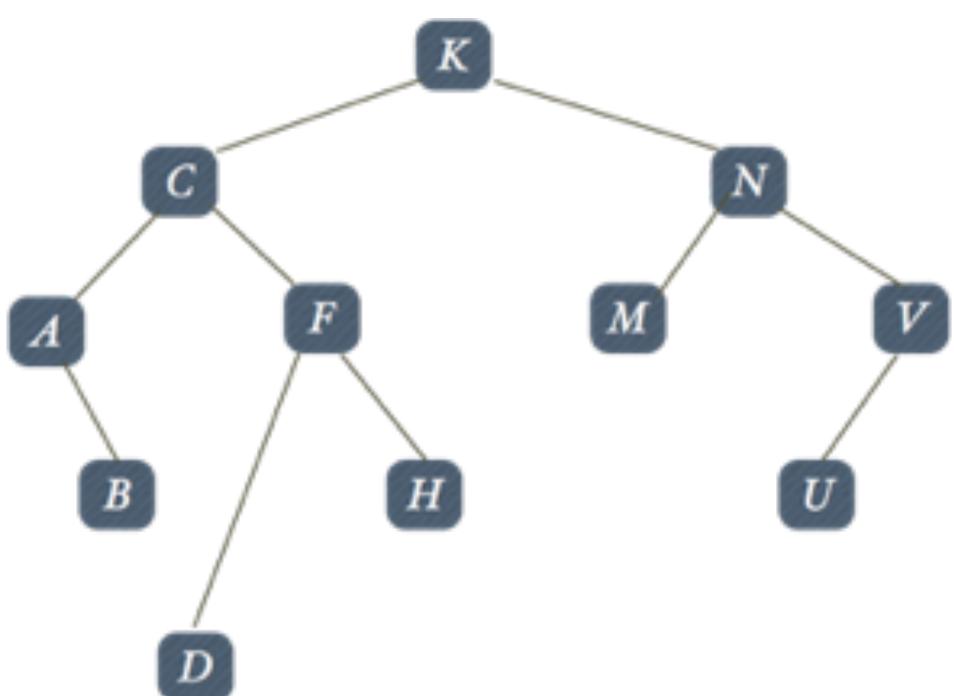
Answer

- A: Full
- B: Complete
- C: Full and Complete
- D: Neither Full nor Complete

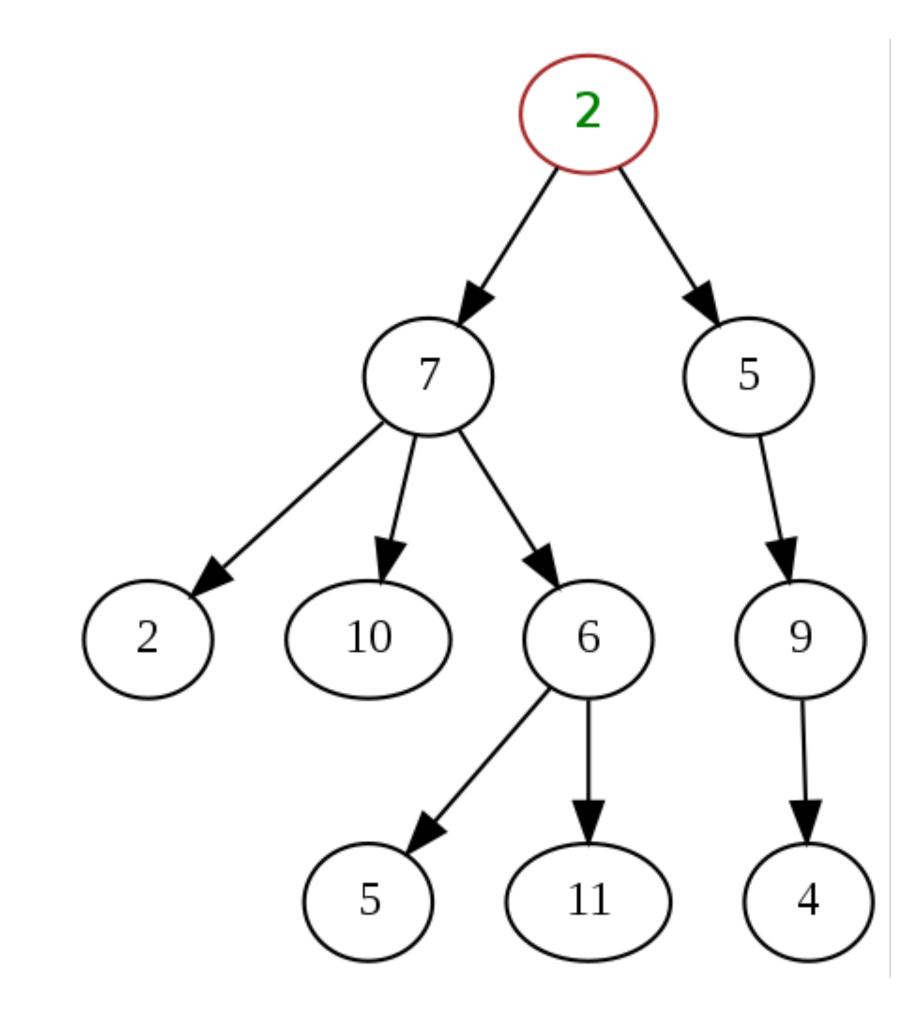


Counting in binary trees

- Lemma: if T is a binary tree, then at level k, T has $\leq 2^k$ nodes.
 - E.g., at level 2, at most 4 nodes (A, F, M, V)
- Theorem: If T has height h, then # of nodes n in T satisfy: $h + 1 \le n \le 2^{h+1} - 1$.
- Equivalently, if T has n nodes, then $log(n+1) - 1 \le h \le n - 1.$
 - Worst case: When h = n 1 or O(n), the tree looks like a left or right-leaning "stick".
 - Best case: When a tree is as compact as possible (e.g., complete) it has $O(\log n)$ height.



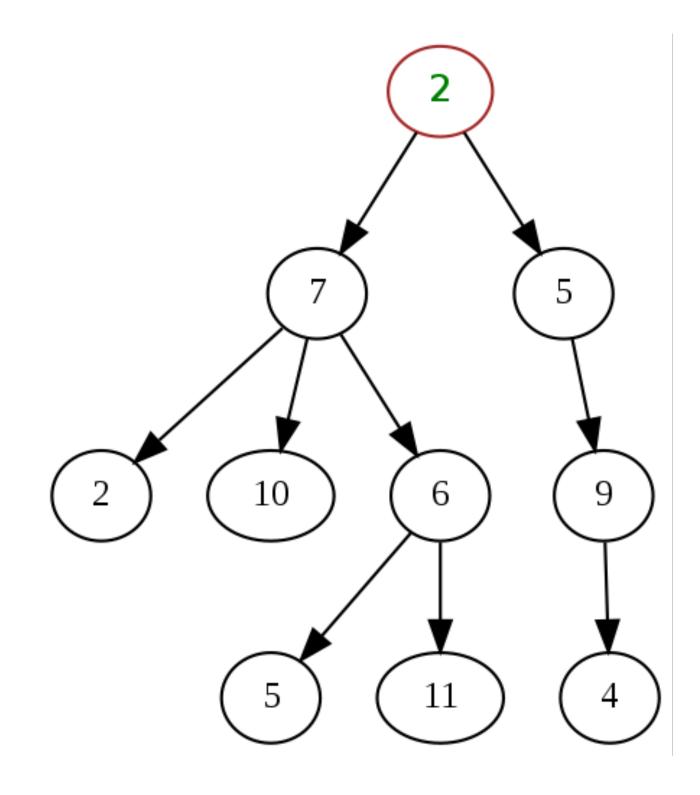
Follow the instructions in the worksheet about the following tree:



Worksheet answers

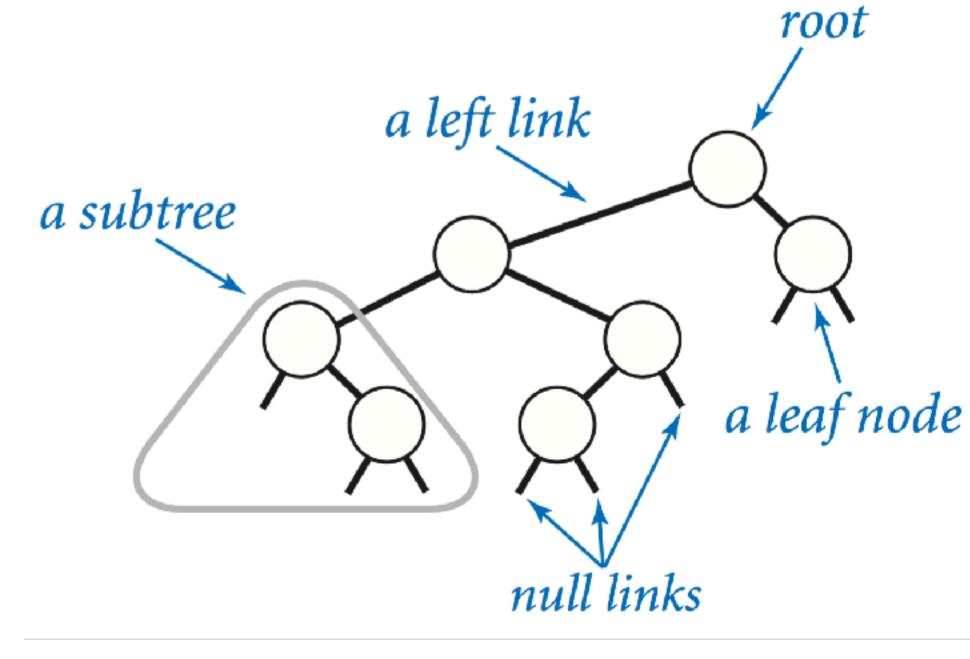
- Root: 2
 Descendants of 7: 2, 10, 6, 5, 11
- Leaves: 2 (in black), 10, 5, 11, 4
- Internal nodes: 7, 5, 6, 9
- Siblings of 10: 2, 6
- Parent of 6: 7
- Children of 2 (in red): 7, 5
- Ancestors of 10: 7 and 2 (in red)

- Length of path 2 to 4: 3
- Height of 7: 2
- Height of tree: 3
- Degree of 7: 3
- Arity/Degree of tree: 3
- Level/depth of 11: 3



Basic idea behind a simple Binary Tree implementation

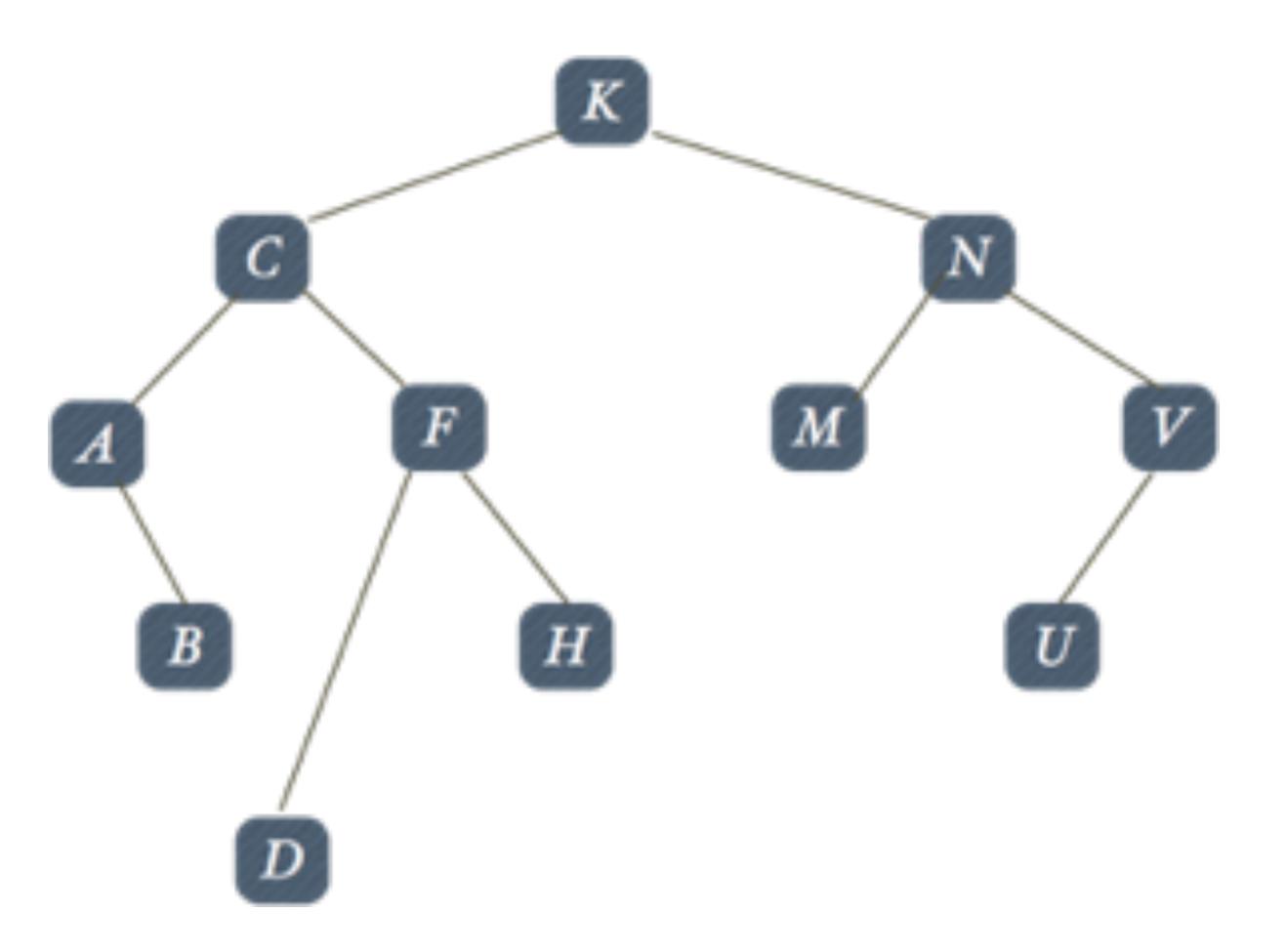
```
public class BinaryTree<E> {
   private Node root;
   /**
    * A node subclass which contains various recursive methods
    *
    * @param <E> The type of the contents of nodes
    */
   private class Node {
       private E element;
       private Node left;
       private Node right;
       /**
        * Node constructor with subtrees
        *
        * @param left the left node child
        * @param right the right node child
        * @param E
                       the element contained in the node
        */
       public Node(Node left, Node right, E element) {
           this.left = left;
           this.right = right;
           this.element = item;
```



Tree traversal

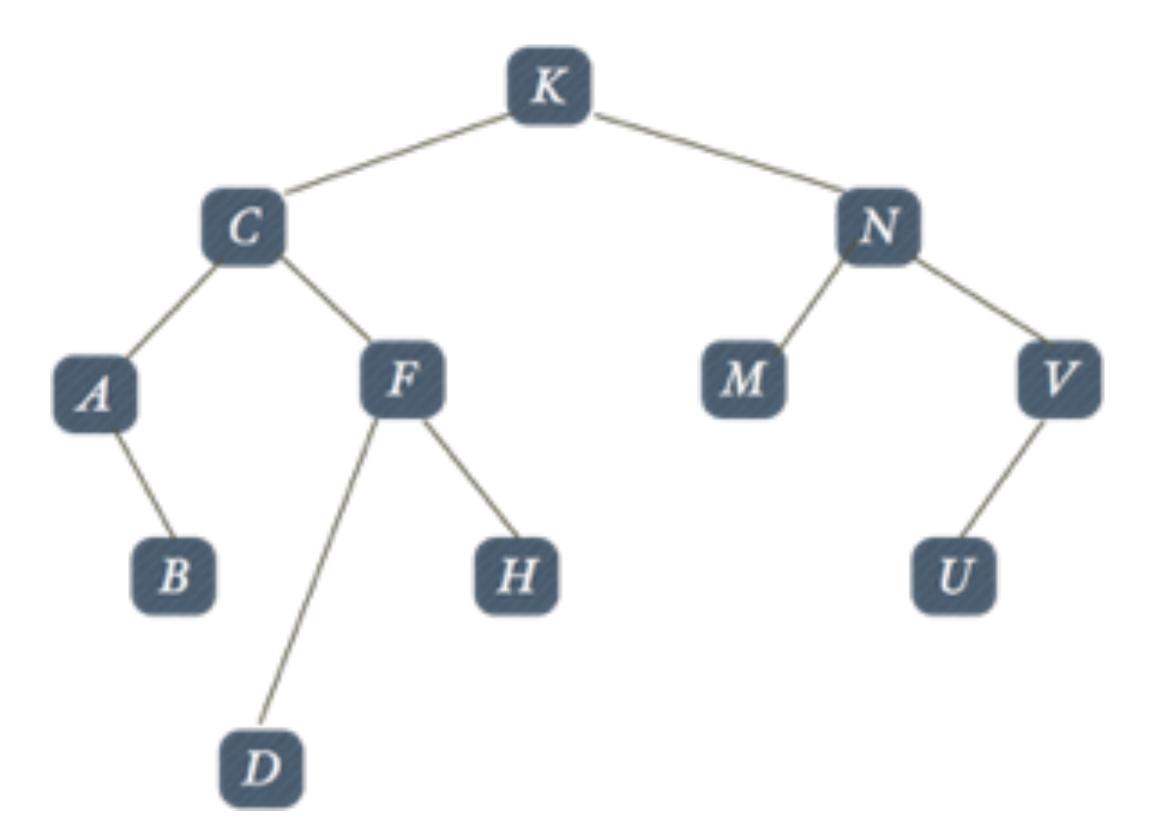
Pre-order traversal

- Preorder(Tree)
 - Mark root as visited
 - Preorder(Left Subtree)
 - Preorder(Right Subtree)
- KCABFDHNMVU



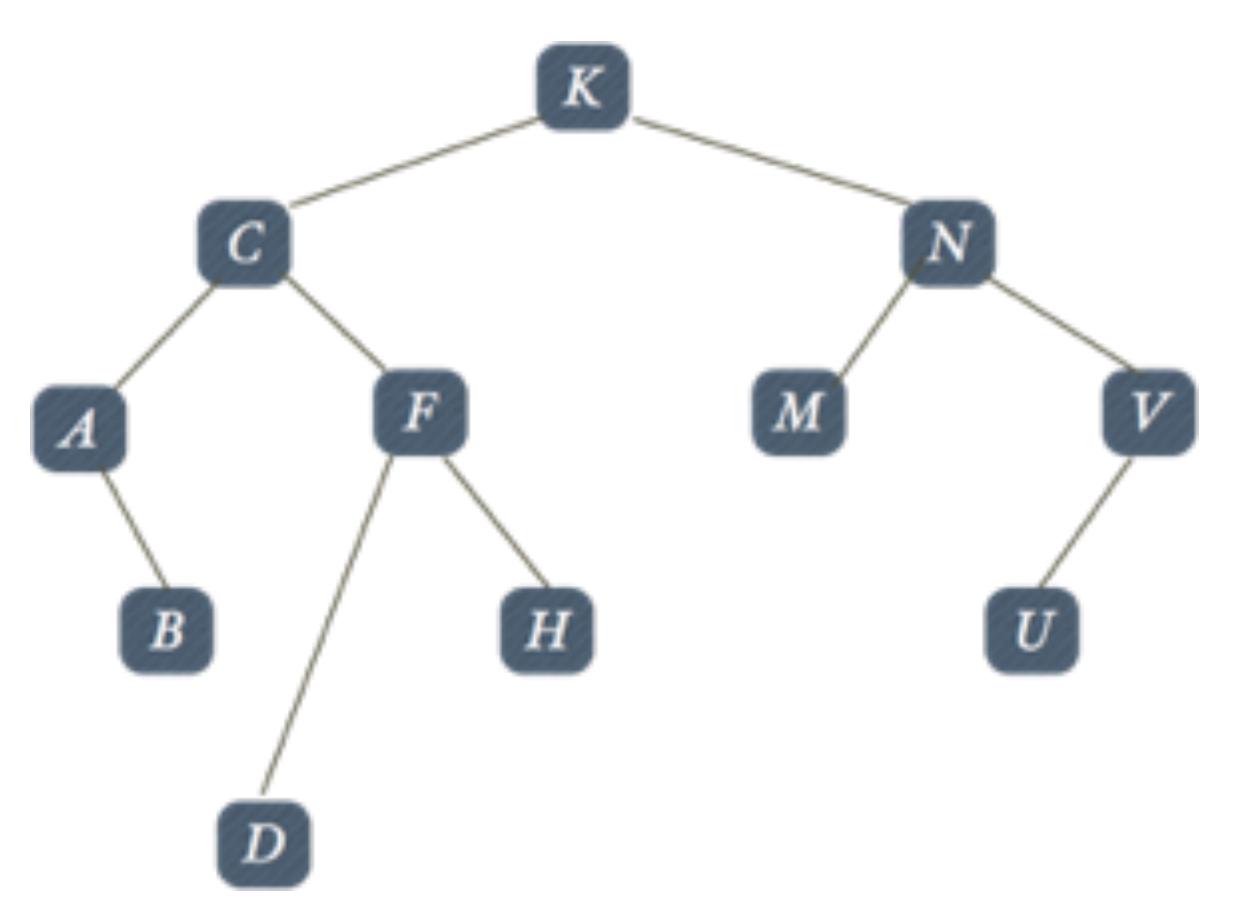
In-order traversal

- Inorder(Tree)
 - Inorder(Left Subtree)
 - Mark root as visited
 - Inorder(Right Subtree)
- A B C D F H K M N U V



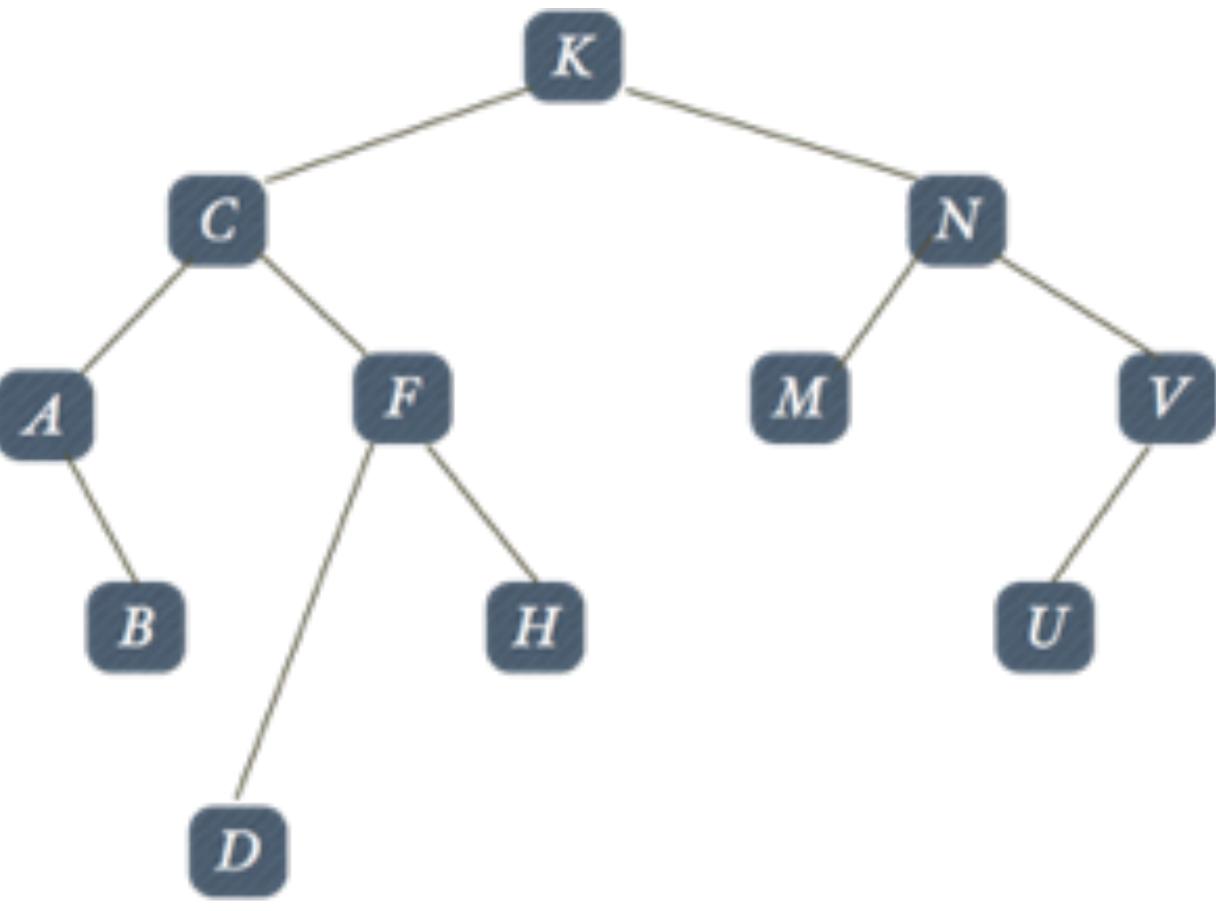
Post-order traversal

- Postorder(Tree)
 - Postorder(Left Subtree)
 - Postorder(Right Subtree)
 - Mark root as visited
- BADHFCMUVNK



Level-order traversal

- at level 0.
- K C N A F M V B D H U



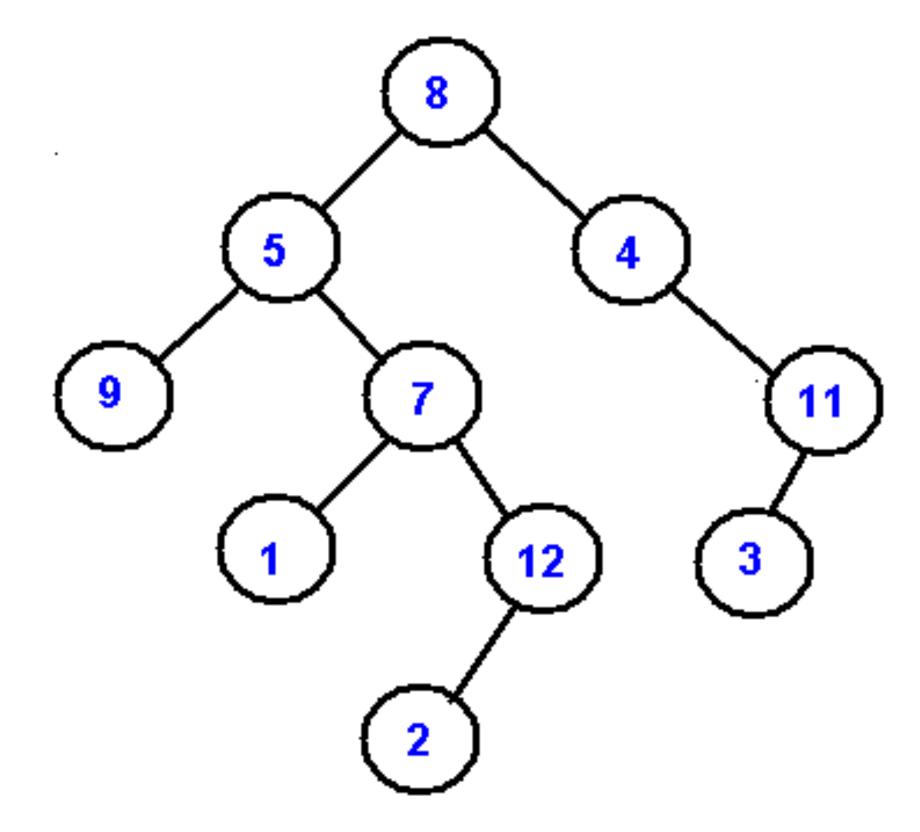
• From left to right, mark nodes of level *i* as visited before nodes in level i + 1. Start

• List the nodes in pre-order, in-order, post-order, and level order:



Worksheet answers

- List the nodes in pre-order, in-order, post-order, and level order:
- Pre-order: 8, 5, 9, 7, 1, 12, 2, 4, 11, 3
- In-order: 9, 5, 1, 7, 2, 12, 8, 4, 3, 11
- Post-order: 9, 1, 2, 12, 7, 5, 3, 11, 4, 8
- Level-order: 8, 5, 4, 9, 7, 11, 1, 12, 3, 2



Binary search

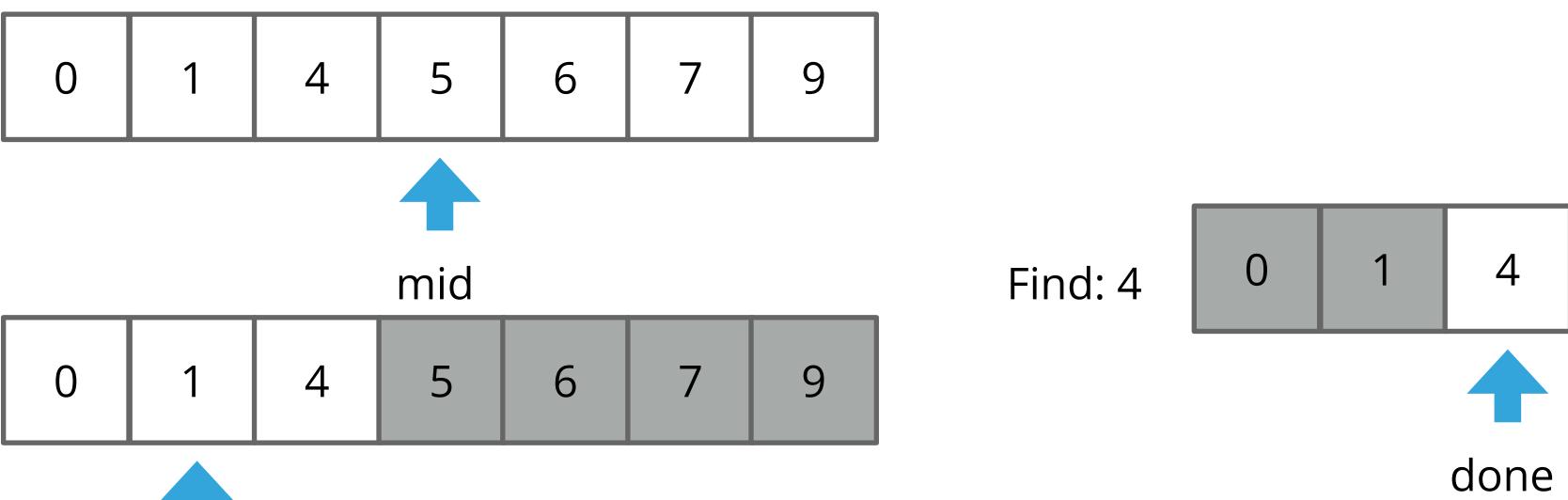
- Goal: Given a sorted array and an item, find index of the item in the array.
- Basic mechanism: Compare item against middle entry.
 - If too small, repeat in left half.
 - If too large, repeat in right half.
 - If equal, you are done.

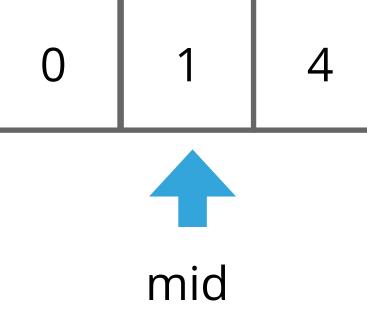
n, find index of the item in the array. inst middle entry.

Binary search example

- Goal: Given a sorted array and an item, find index of the item in the array. •
- Basic mechanism: Compare item against middle entry.
 - If too small, repeat in left half.
 - If too large, repeat in right half.
 - If equal, you are done.

Find: 4





Binary search implementation - iterative

- First binary search published in 1946 but first bug-free in 1962.
- Bug in Java's Arrays.binarySearch() discovered in 2006 https://ai.googleblog.com/ <u>2006/06/extra-extra-read-all-about-it-nearly.html</u> (the calculation of the mid point) public static <Item extends Comparable<Item>> int binarySearch(Item[] a, Item item) { int lo = 0, hi = a.length-1; while (lo <= hi) {</pre> int mid = lo + (hi - lo) / 2;if (item.compareTo(a[mid])<0)</pre> hi = mid - 1;else if (item.compareTo(a[mid])>0) lo = mid + 1;else return mid; } return -1;

• Uses at most $1 + \log n$ compares to search in a sorted array of size n, that is it is $O(\log n)$.

Binary search implementation - recursive

```
private static <Item extends Comparable<Item>> int binarySearch(Item[] a, int lo,
int hi, Item item) {
   if (lo < hi) {
         int mid = lo + (hi - lo) / 2;
         if (item.compareTo(a[mid])<0)</pre>
              return binarySearch(a, lo, mid - 1, item);
         else if (item.compareTo(a[mid])>0)
              return binarySearch(a, mid+1, hi, item);
         else return mid; }
   return -1;
}
public static <Item extends Comparable<Item>> int binarySearch(Item[] a, Item item)
{
   return binarySearch(a, 0, a.length-1, item);
```

• Uses at most $1 + \log n$ compares to search in a sorted array of size n, that is it is $O(\log n)$.

Heap-ordered binary trees

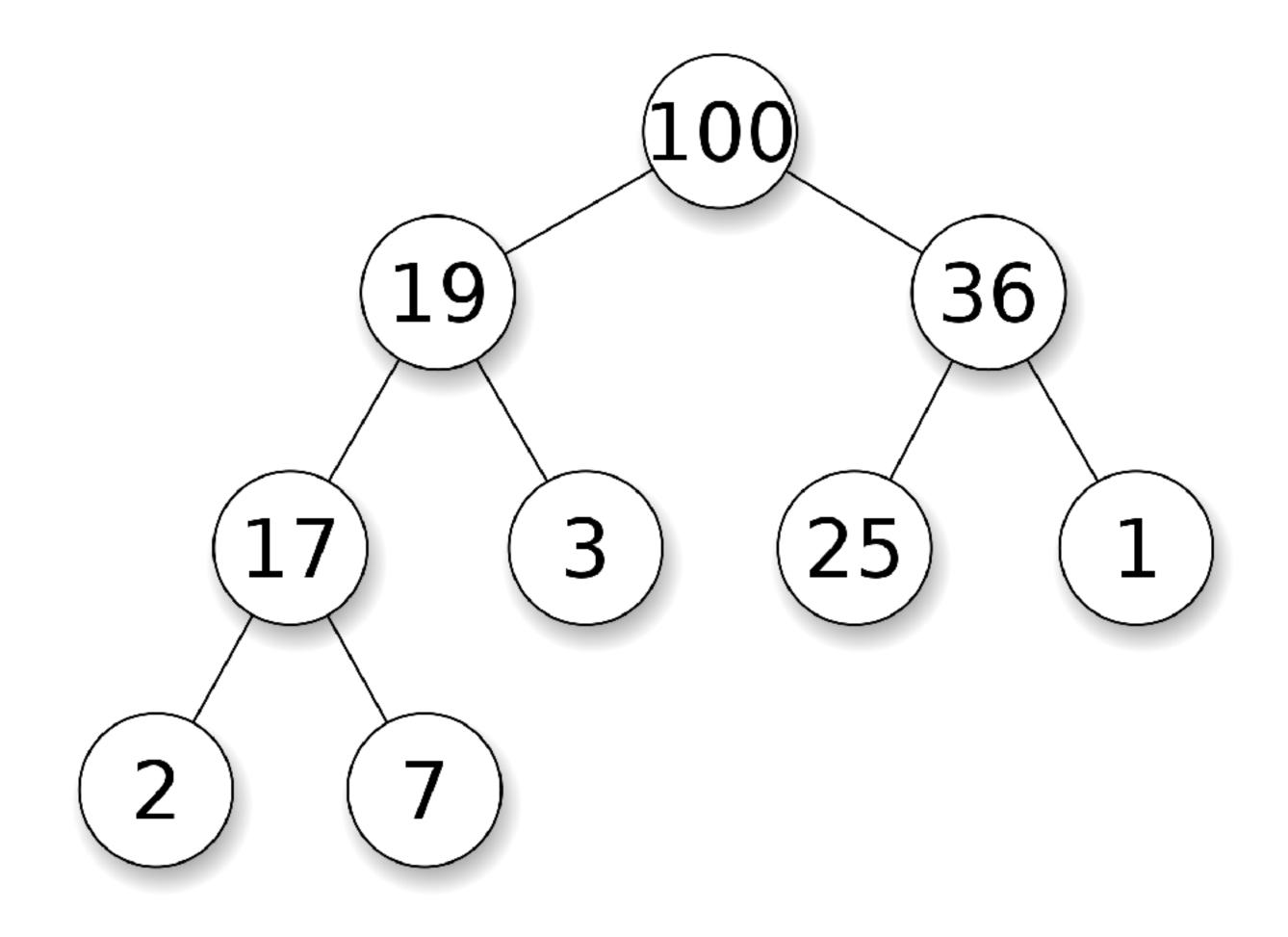
- keys in that node's two children (if any).
- or equal to the key in that node's parent (if any).
- No assumption of which child is smaller.
- Moving up from any node, we get a non-decreasing sequence of keys.
- Moving down from any node we get a non-increasing sequence of keys.

• A binary tree is heap-ordered if the key in each node is larger than or equal to the

• Equivalently, the key in each node of a heap-ordered binary tree is smaller than

Heap-ordered binary trees

• The largest key in a heap-ordered binary tree is found at the root!



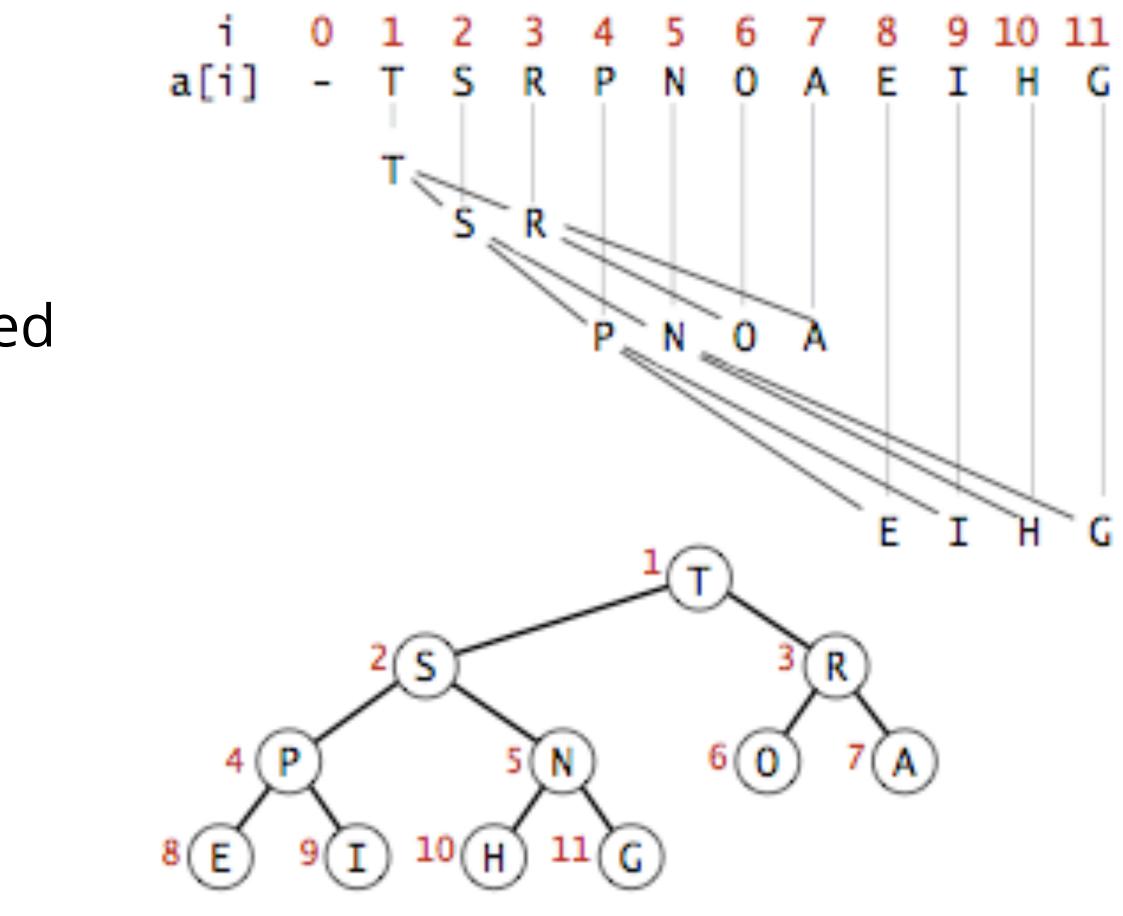
Binary heap representation

- left subtree, one for right subtree).
- If our binary tree is *complete* (minimal height), we can use instead an array.
 - Compact arrays vs explicit links means memory savings!

• We could use a linked representation like we use for binary trees (this, this.left, this.right), but we would need three links for every node (one for parent, one for

Array representation of heaps

- Nothing is placed at index 0 (for arithmetic convenience). •
- Root is placed at index 1.
- Rest of nodes are placed in level order.
- No unnecessary indices and no wasted space because it's complete.

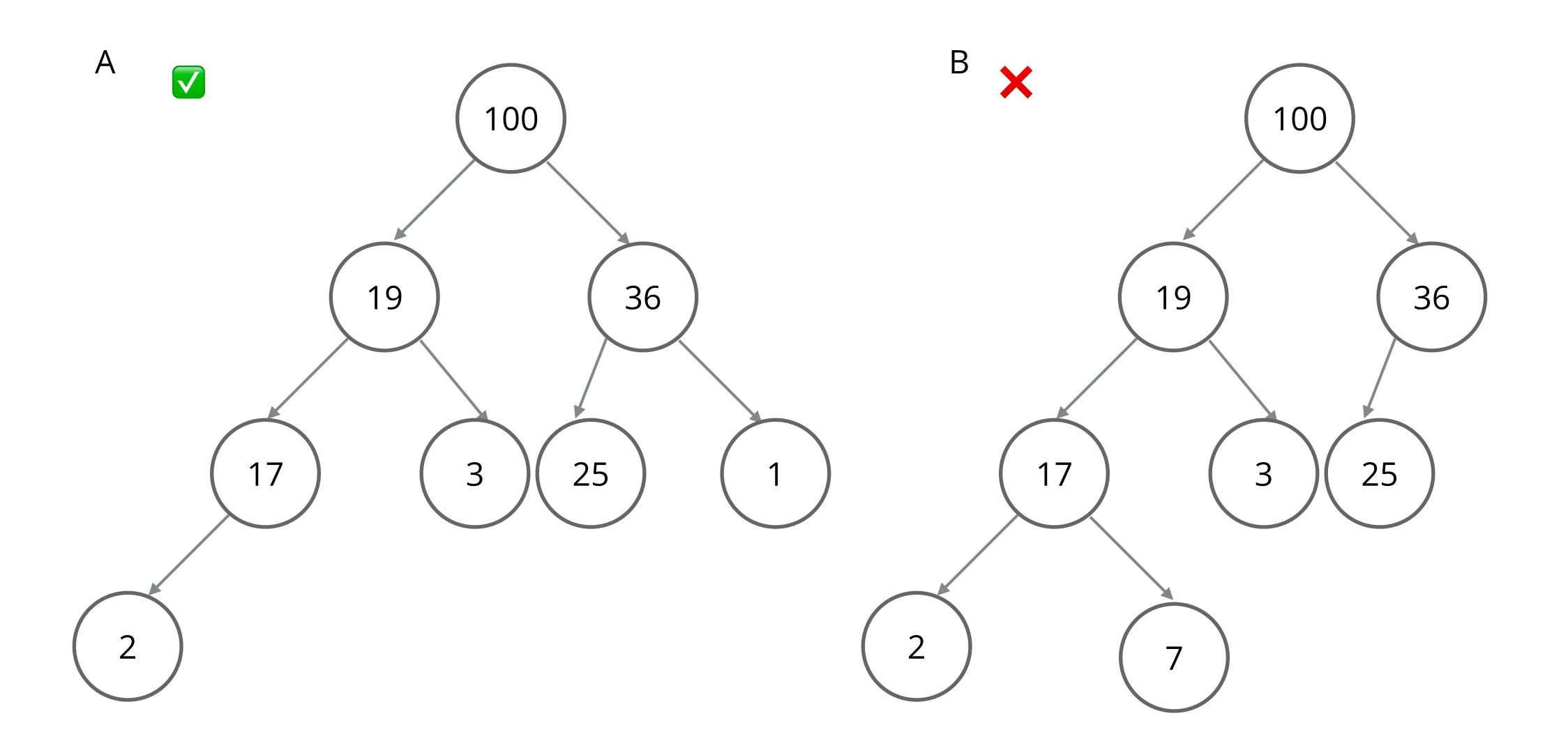


Heap representations

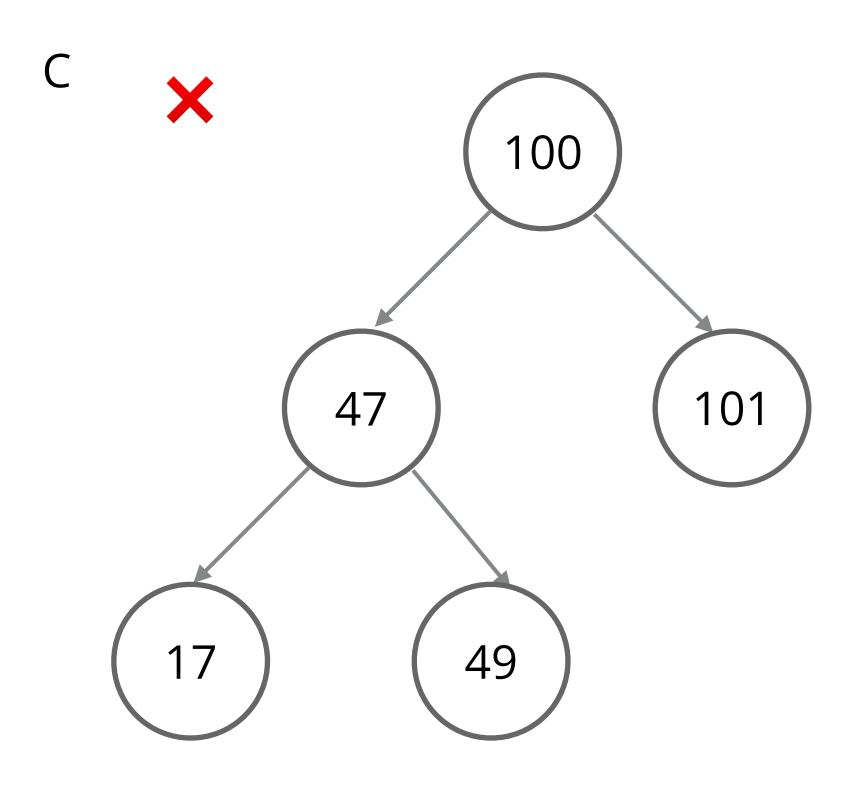
Binary heaps

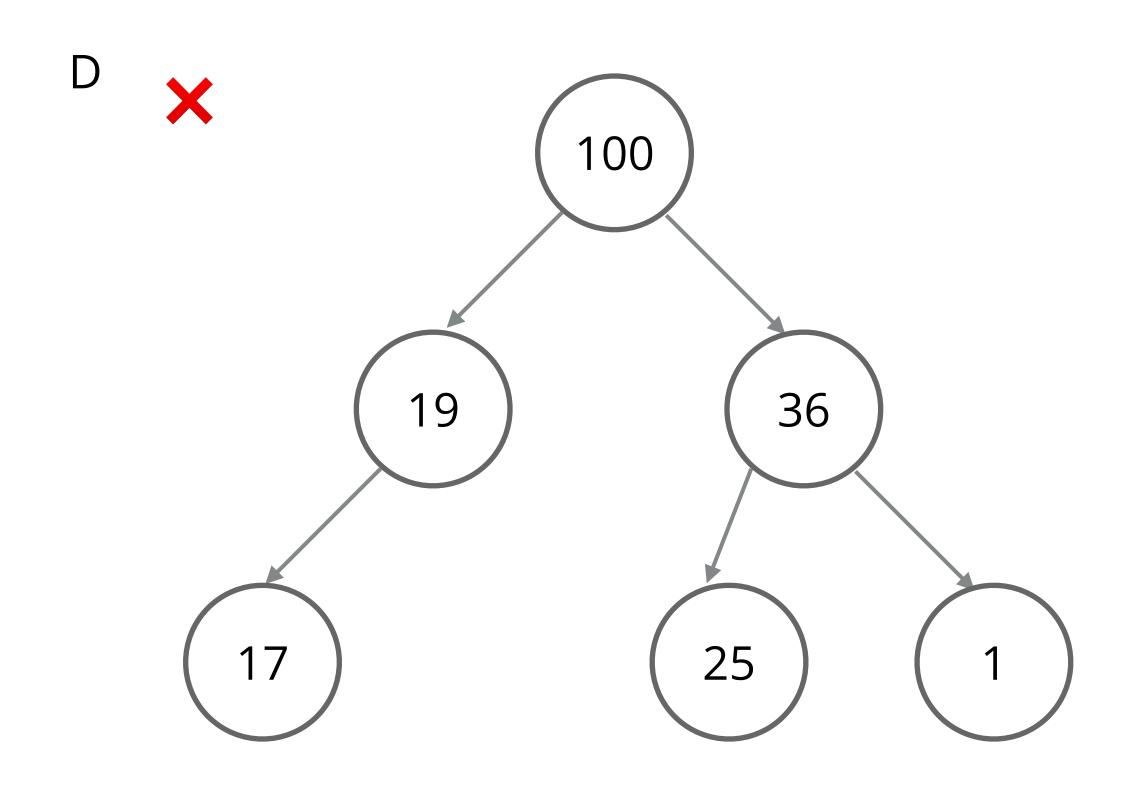
- Binary heap: the array representation of a complete heap-ordered binary tree.
 - Items are stored in an array such that each key is guaranteed to be larger (or equal to) than the keys at two other specific positions (children).
- Max-heap but there are min-heaps (root is smallest), too.

Practice: Which are the following are valid binary heaps?



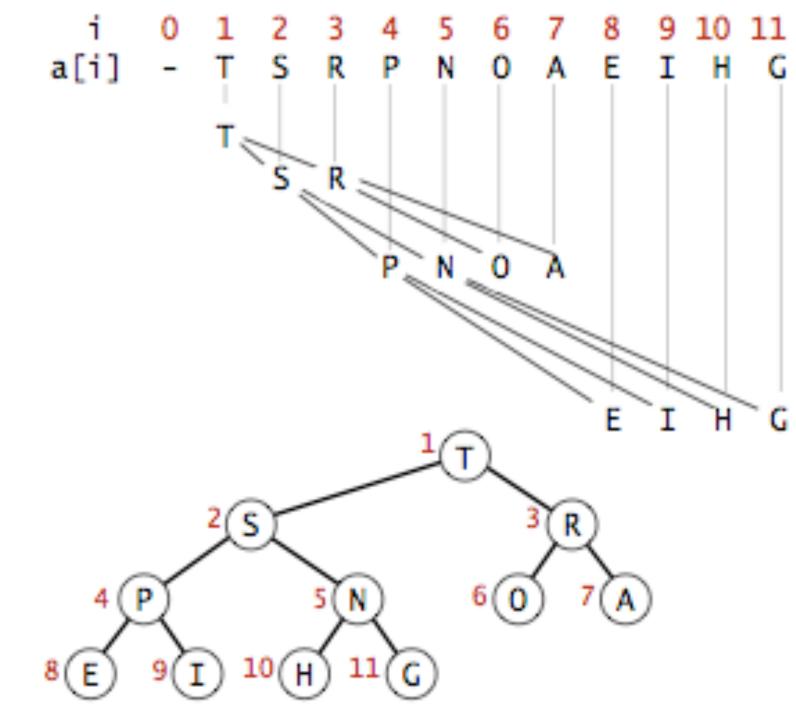
Practice: Which are the following are valid binary heaps?





Reuniting immediate family members

- For every node at index k, its parent is at index |k/2|.
- Its two children are at indices 2k and 2k + 1.
- indices.



Heap representations

• We can travel up and down the heap by using this simple arithmetic on array

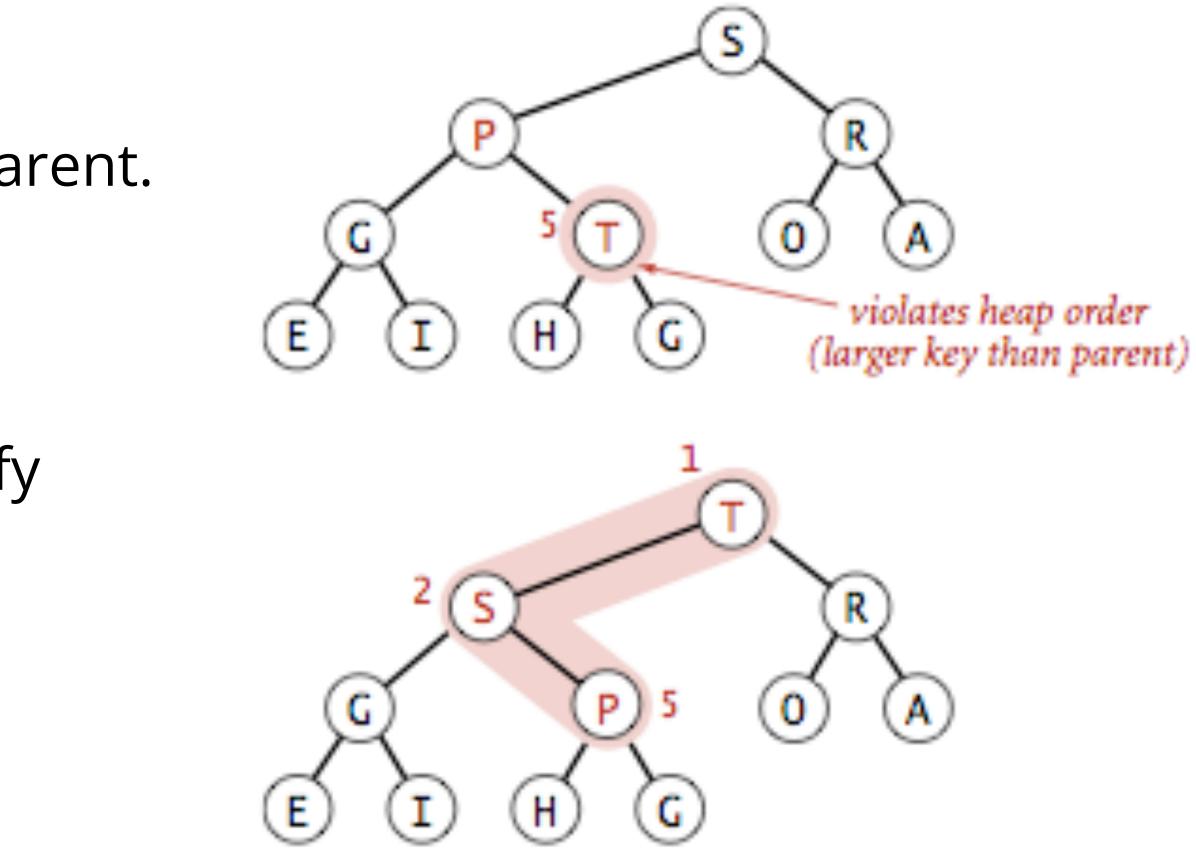
Example: P is at 4, so its parent (S) is at 2 A is at 7, so its parent (S) is at 2 (round down)

> Example: R is at 3, so its children are at 6 and 7 (O & A).

Maintaining heap order

- Scenario: a key becomes larger than i ordered property.
- To eliminate the violation:
 - Exchange key in child with key in parent.
 - Repeat until heap order restored.
- This is called swimming, percolating, promoting up, or bottom up reheapify

Scenario: a key becomes larger than its parent therefore it violates the heap-



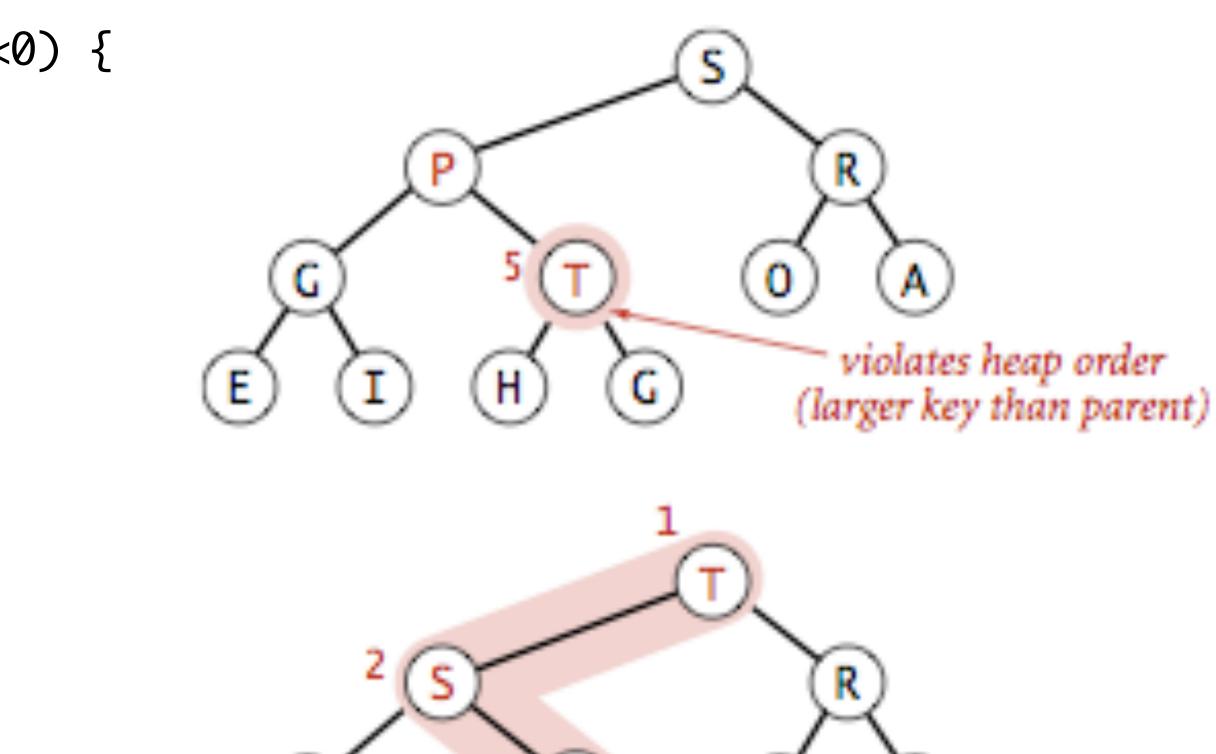
Swim/promote/percolate up: code

```
private void swim(int k) {
   while (k > 1 && a[k/2].compareTo(a[k])<0) {</pre>
      E \text{ temp} = a[k];
      a[k] = a[k/2];
                       exchange with parent
      a[k/2] = temp;
      k = k/2; change index to be parent's
   }
}
```

End conditions:

k == 1: it's already at the root

a[k/2] > a[k]: node is smaller than parent



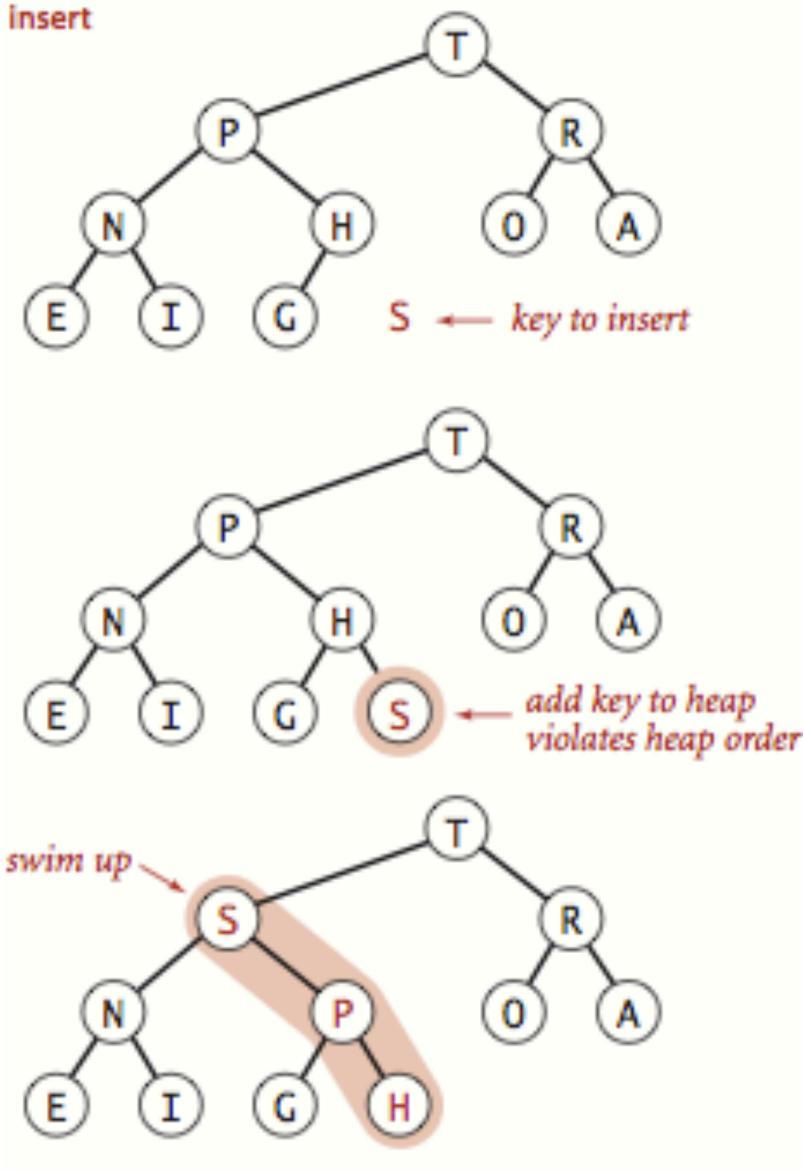
E) (H) (G)

Binary heap: insertion

- Insert: Add node at end in bottom level, then swim it up.
- Cost: At most $\log n + 1$ compares.

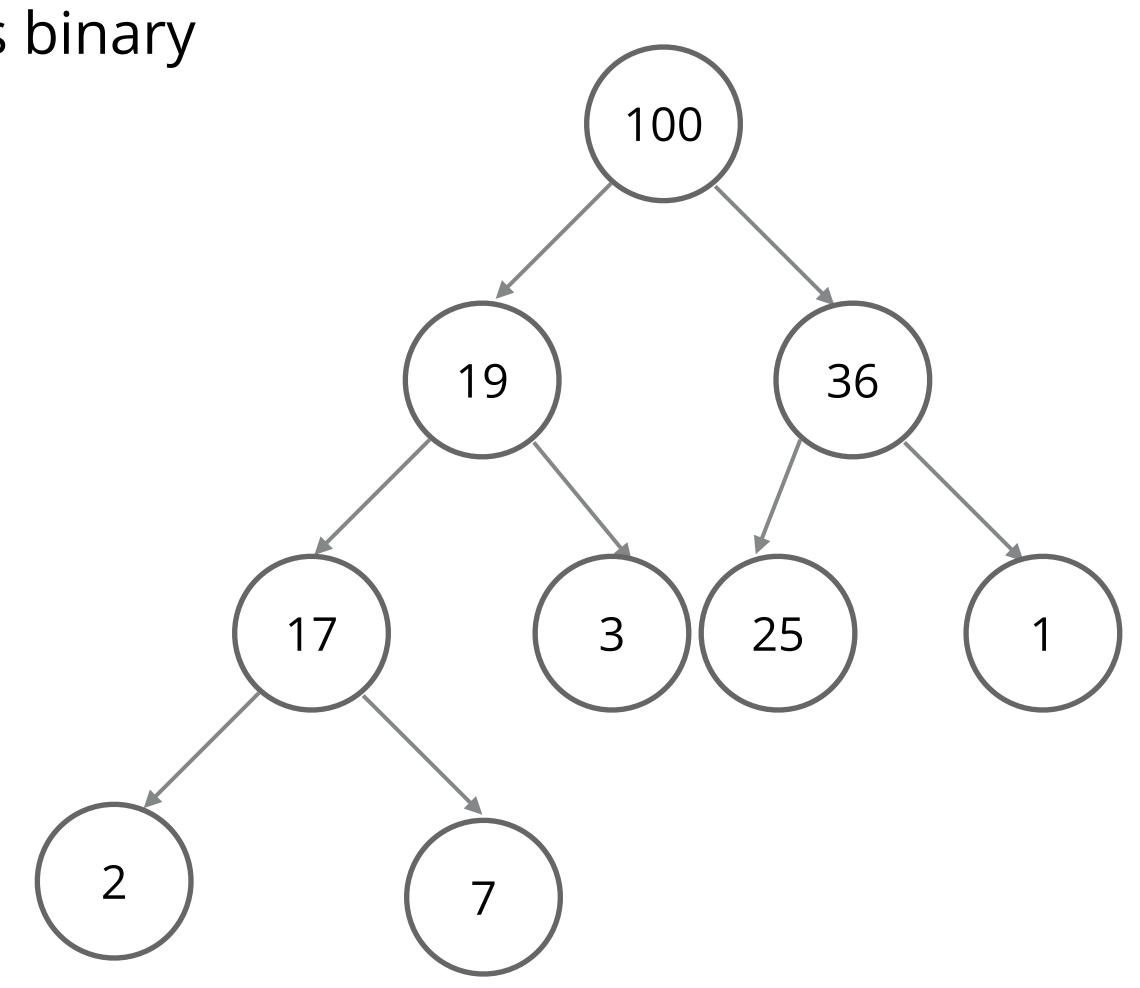
```
public void insert(E x) {
  a[++n] = x;
   swim(n);
```

n is current size of array

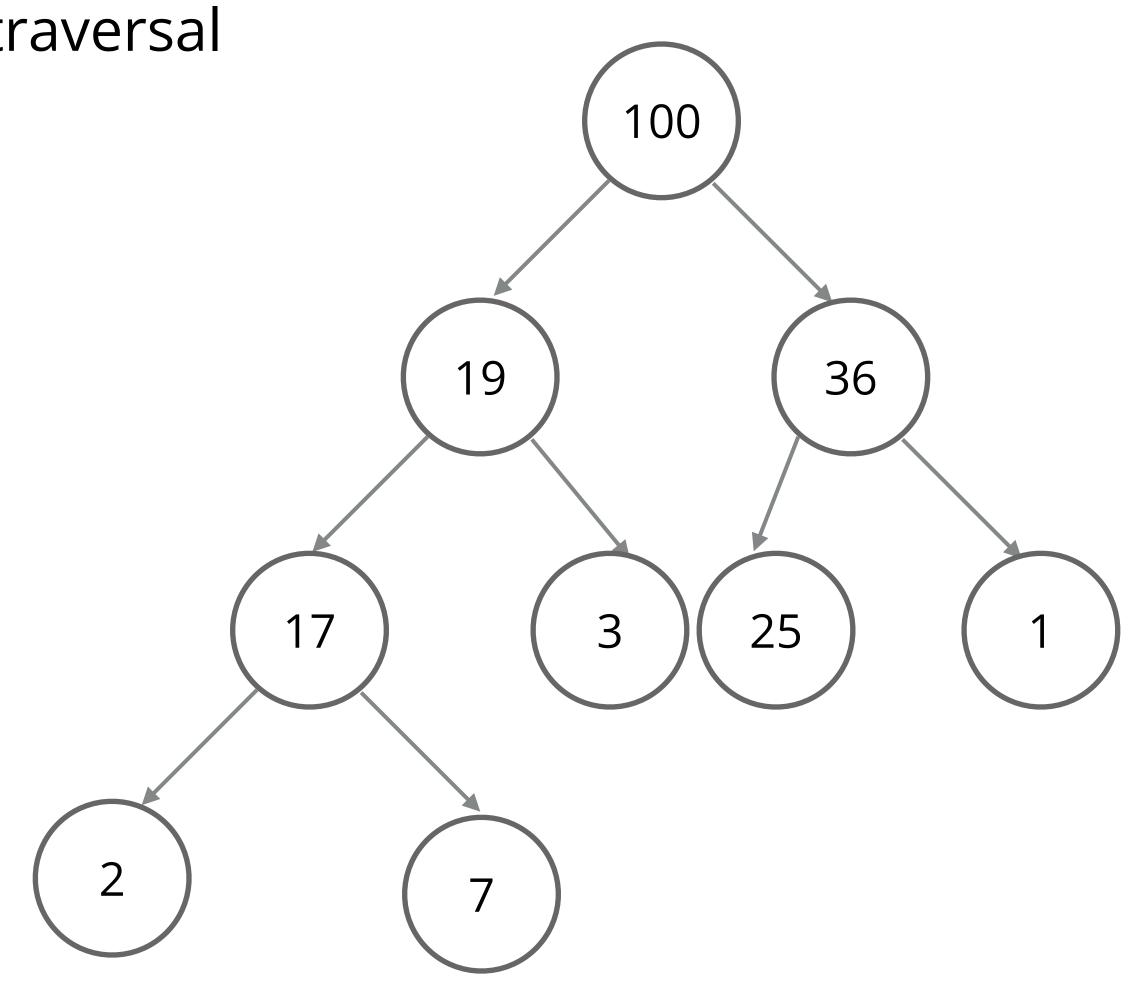


Worksheet time!

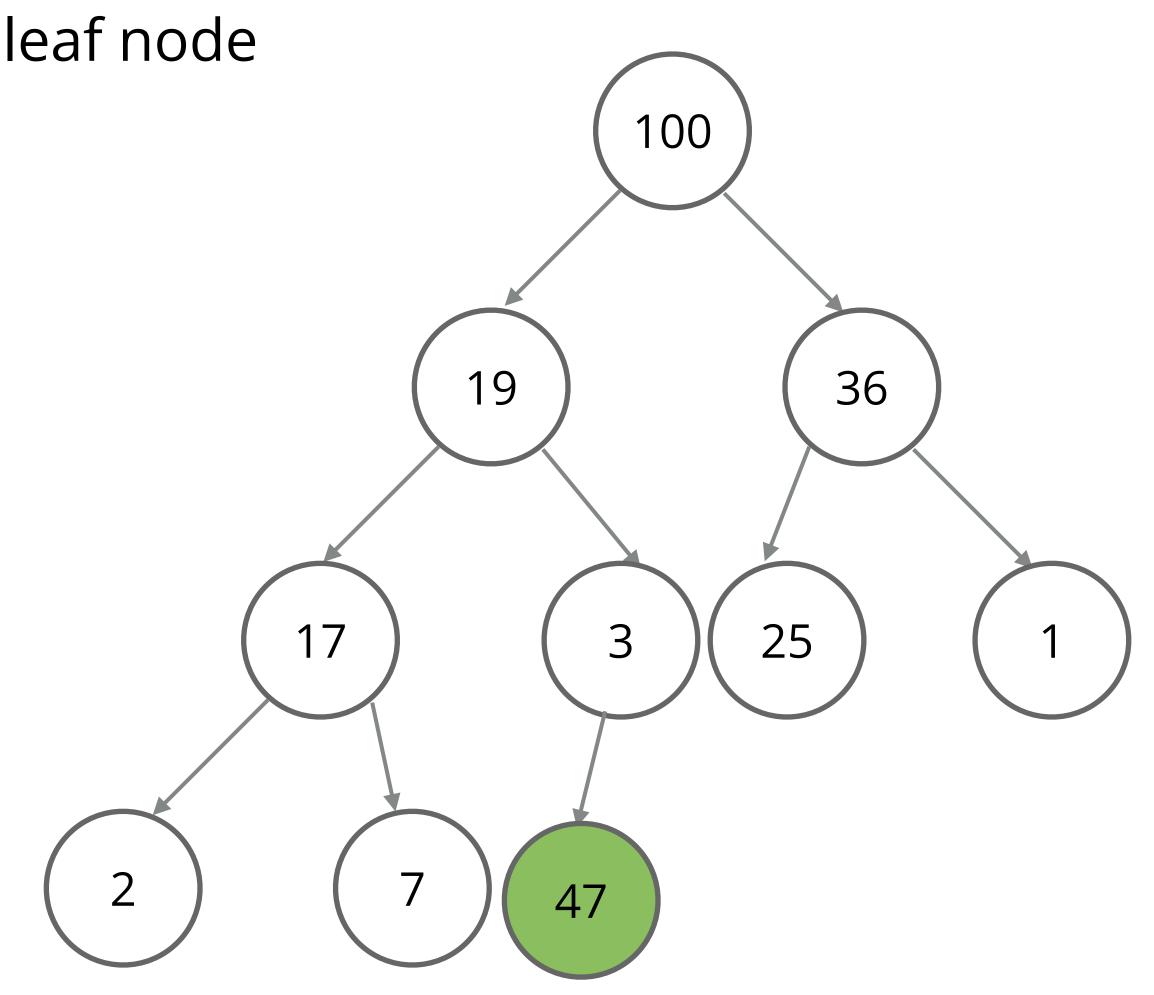
- Write the array representation of this binary heap.
- Insert 47 in this binary heap.

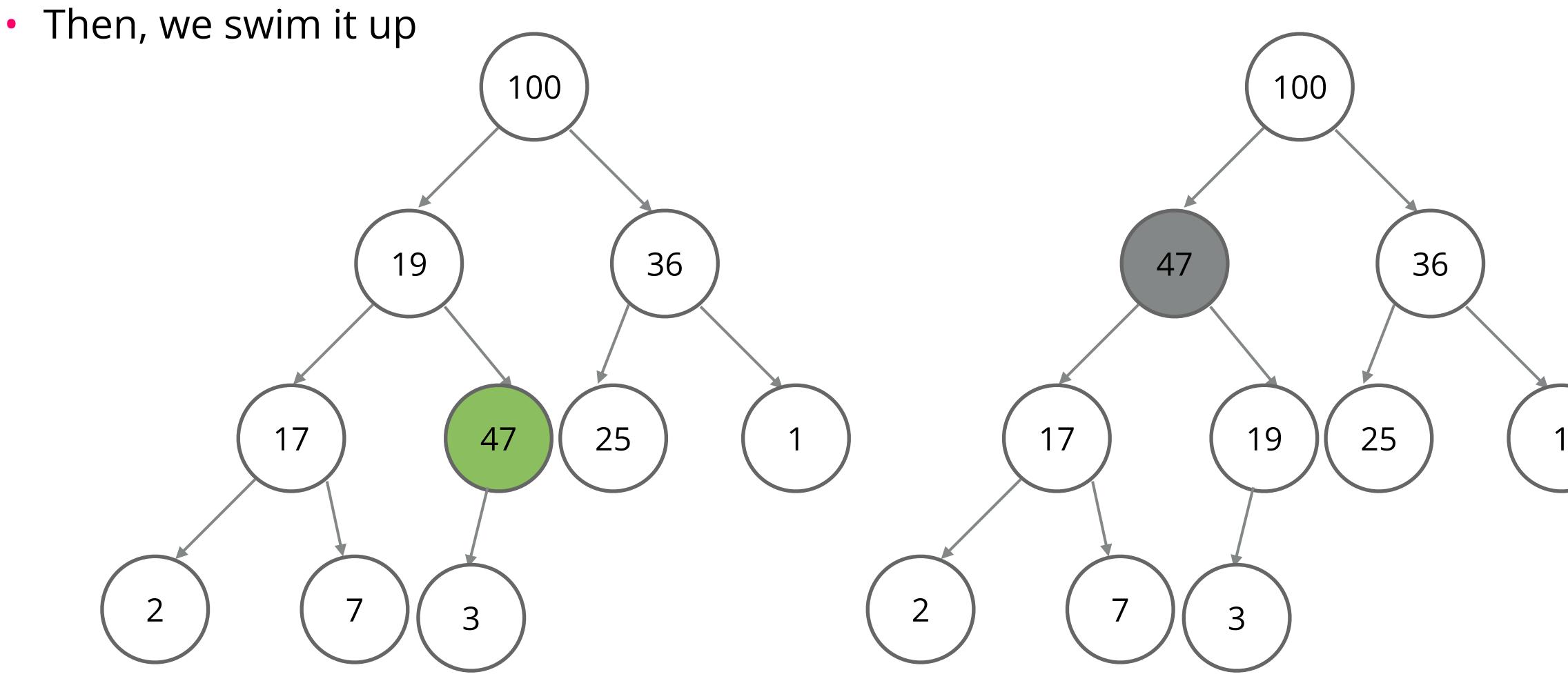


- Array representation is just in-order traversal with root first
- [-, 100, 19, 36, 17, 3, 25, 1, 2, 7]
 1 2 3 4 5 6 7 8 9



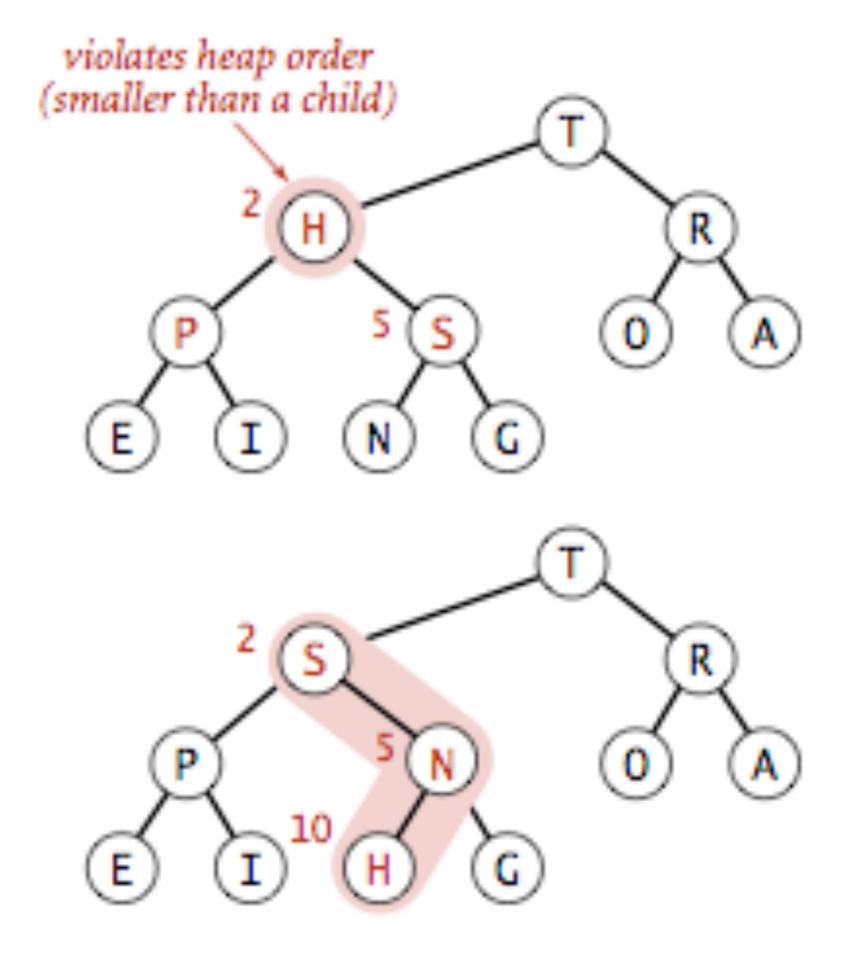
• First, 47 needs to go to the left-most leaf node (left child of 3)





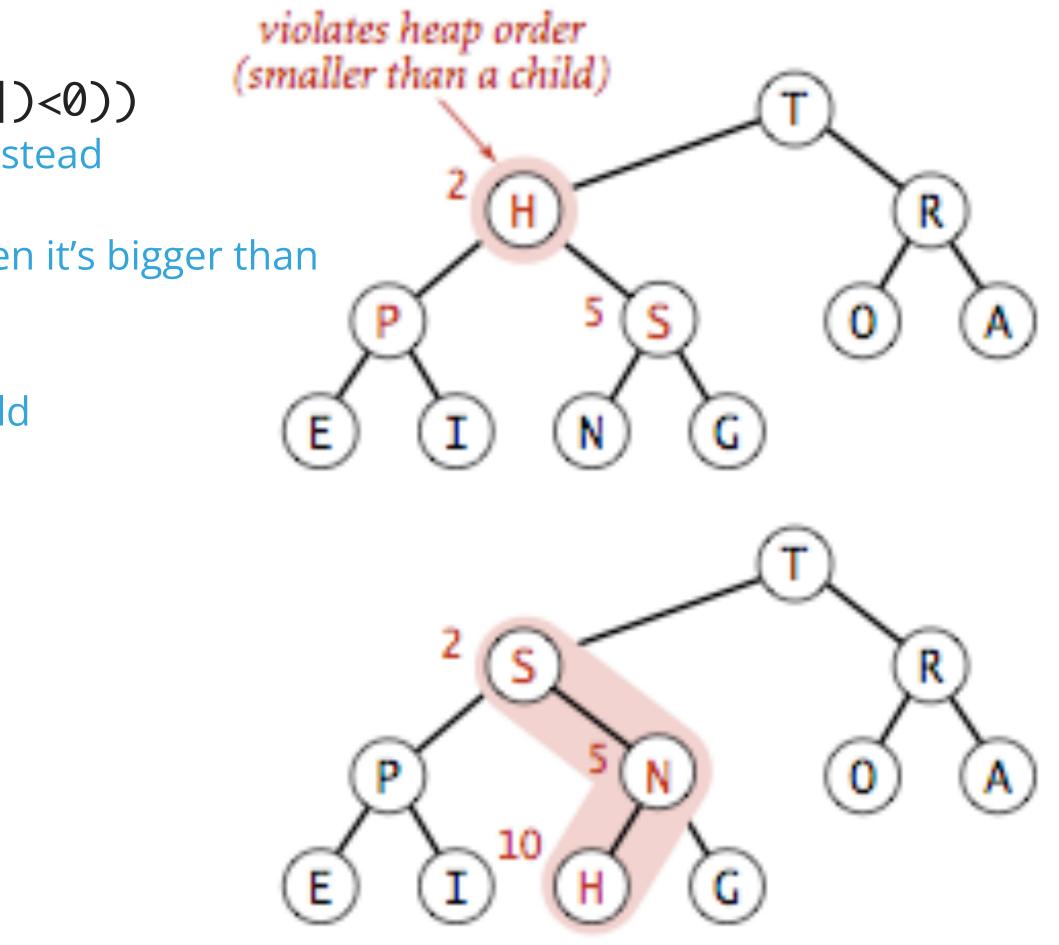
Sink/demote/top down heapify

- Scenario: a key becomes smaller than one (or both) of its children's keys.
- To eliminate the violation:
 - Exchange key in parent with key in **larger** child.
 - Repeat until heap order is restored.

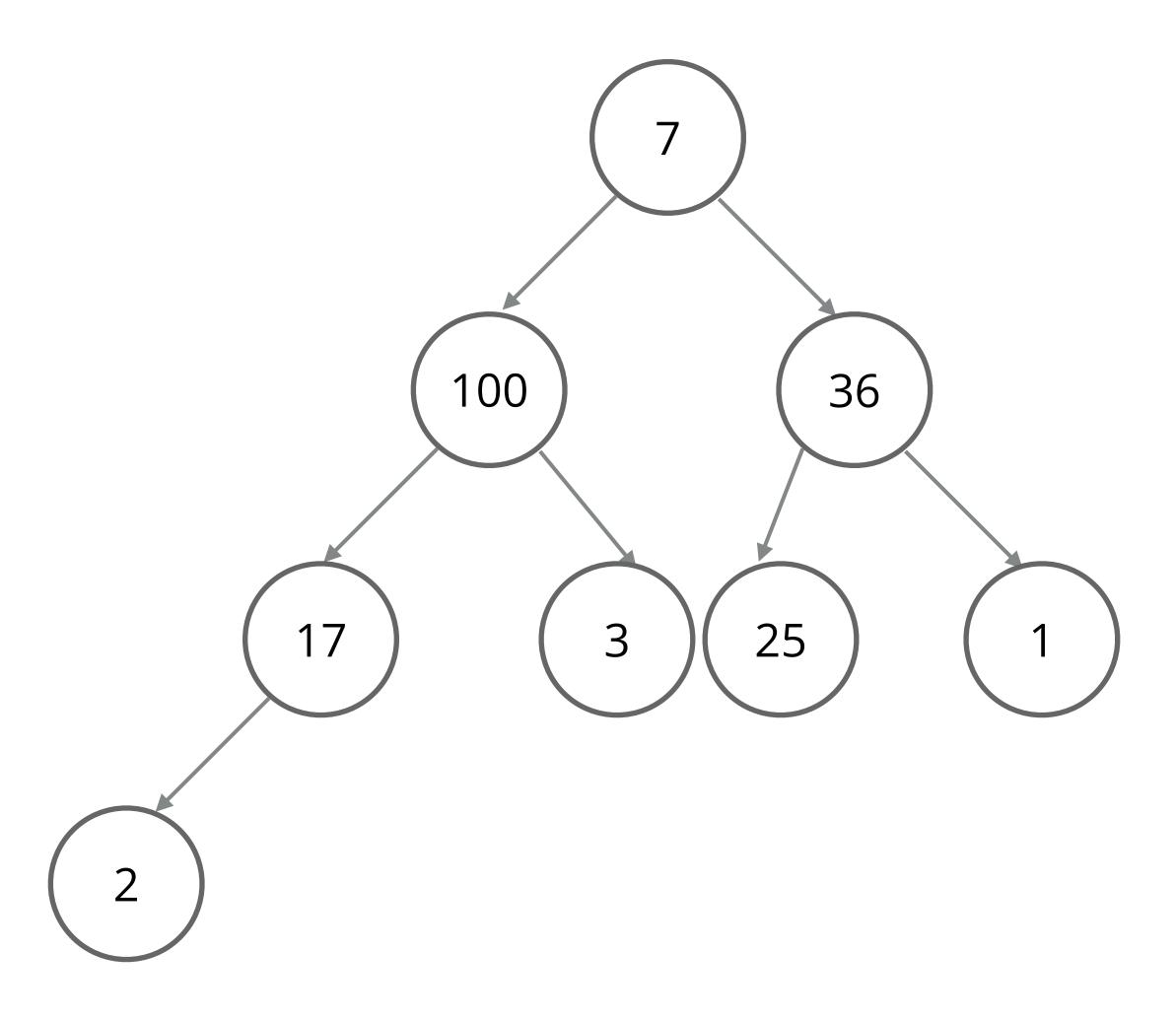


Sink/demote/top down heapify code

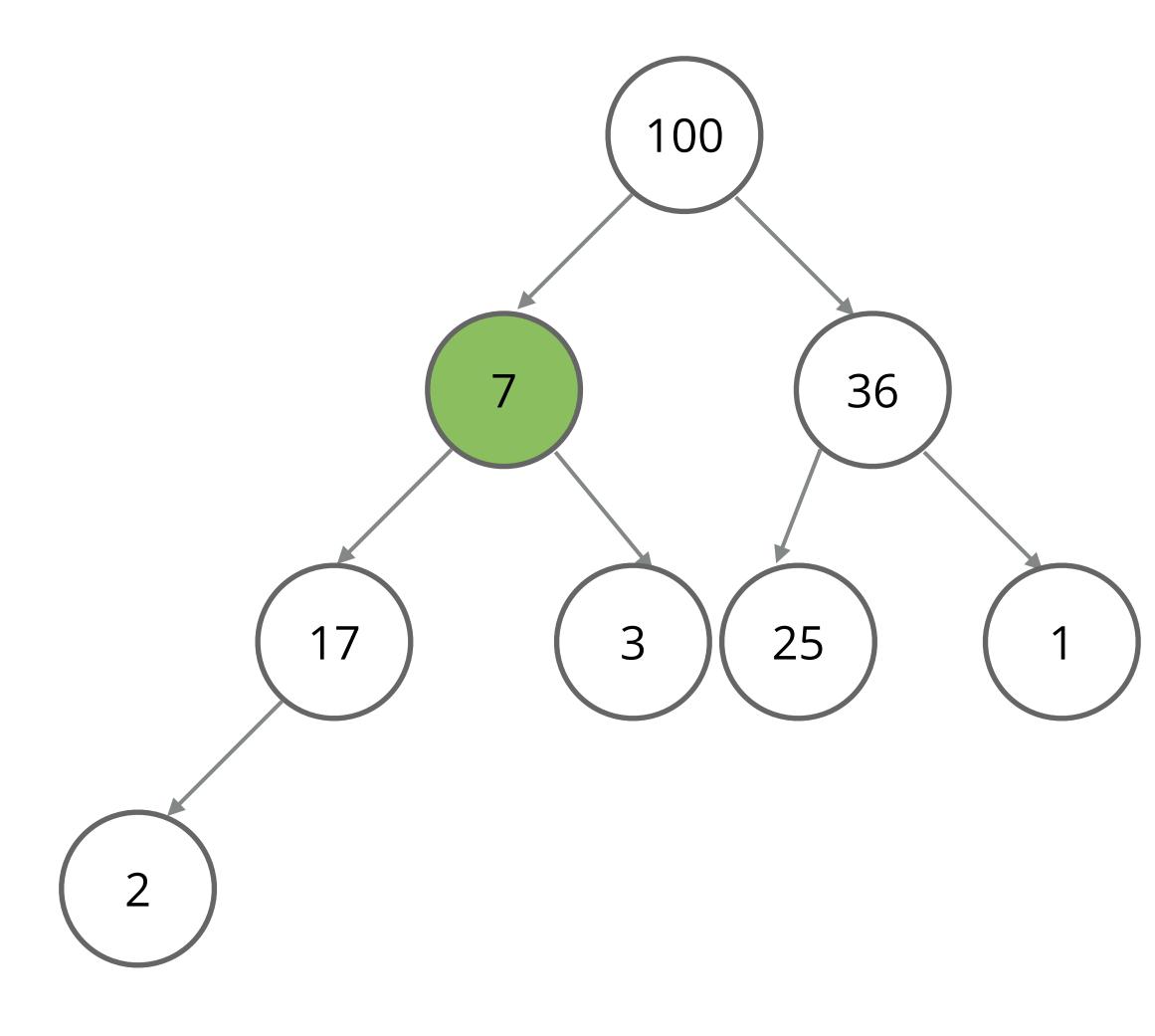
```
private void sink(int k) {
    while (2*k <= n) { while the left child exists</pre>
         int j = 2*k; j is left child
         if (j < n && a[j].compareTo(a[j+1])<0))</pre>
                        look at j+1 (right child) instead
              j++;
         if (a[k].compareTo(a[j])>=0))
                                  stop swapping when it's bigger than
              break;
                                  or equal to child
         E \text{ temp} = a[k];
         a[k] = a[j];
                          swap node with correct child
         a[j] = temp;
         k = j;
```



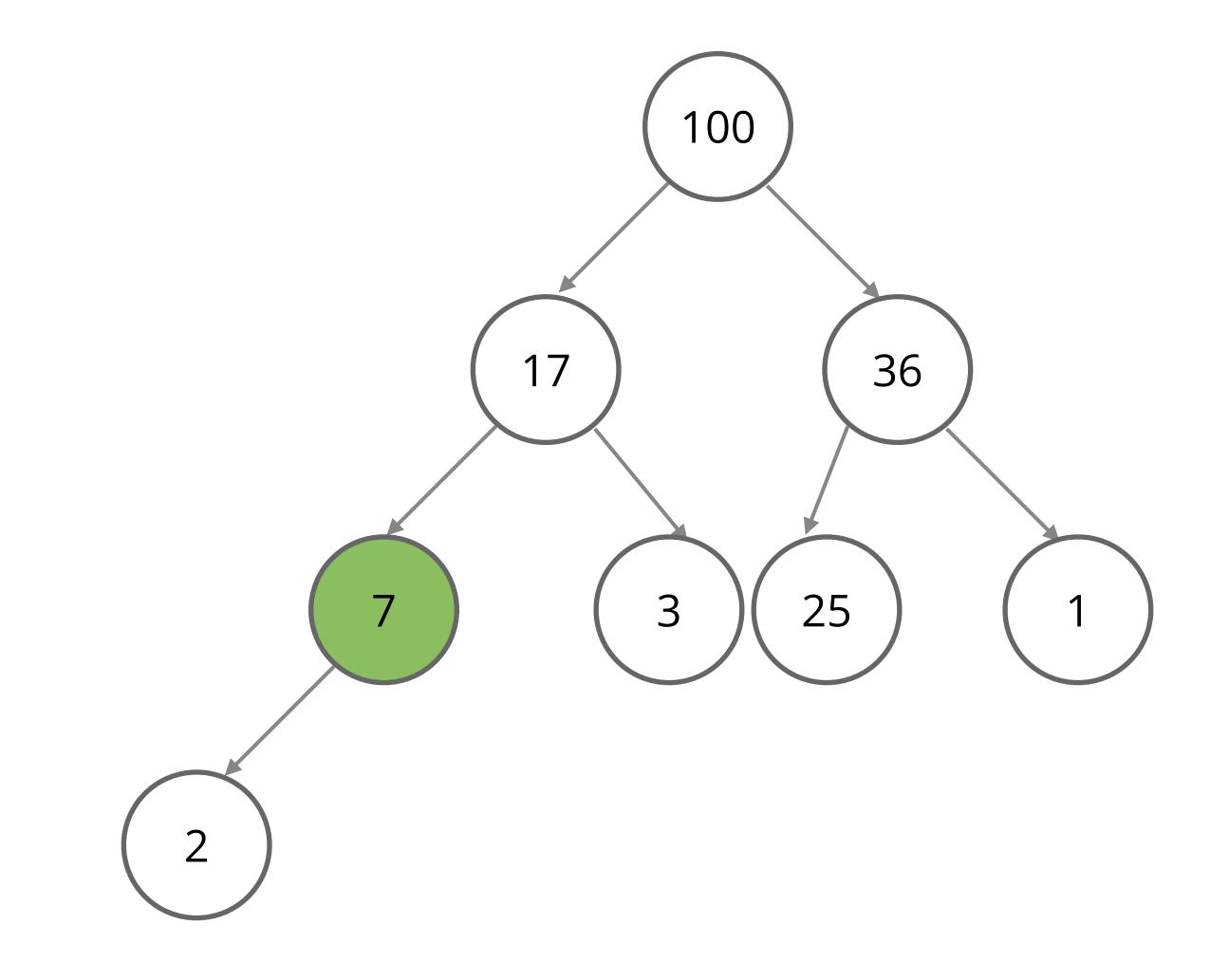
• Sink 7 to its appropriate place in this binary heap.



• First, swap with 100.

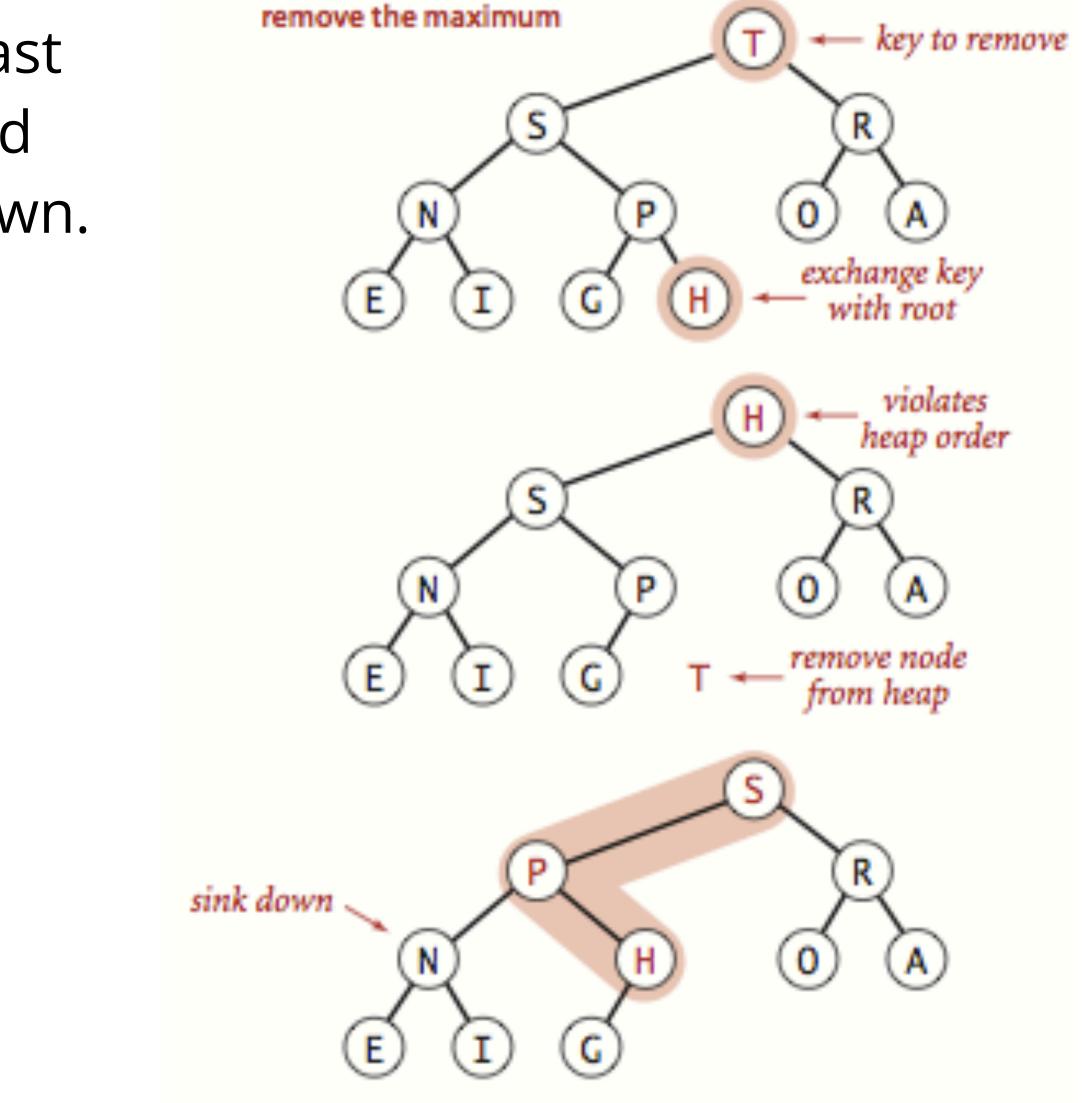


Then, swap with 17. That's it, since 7 > 2.



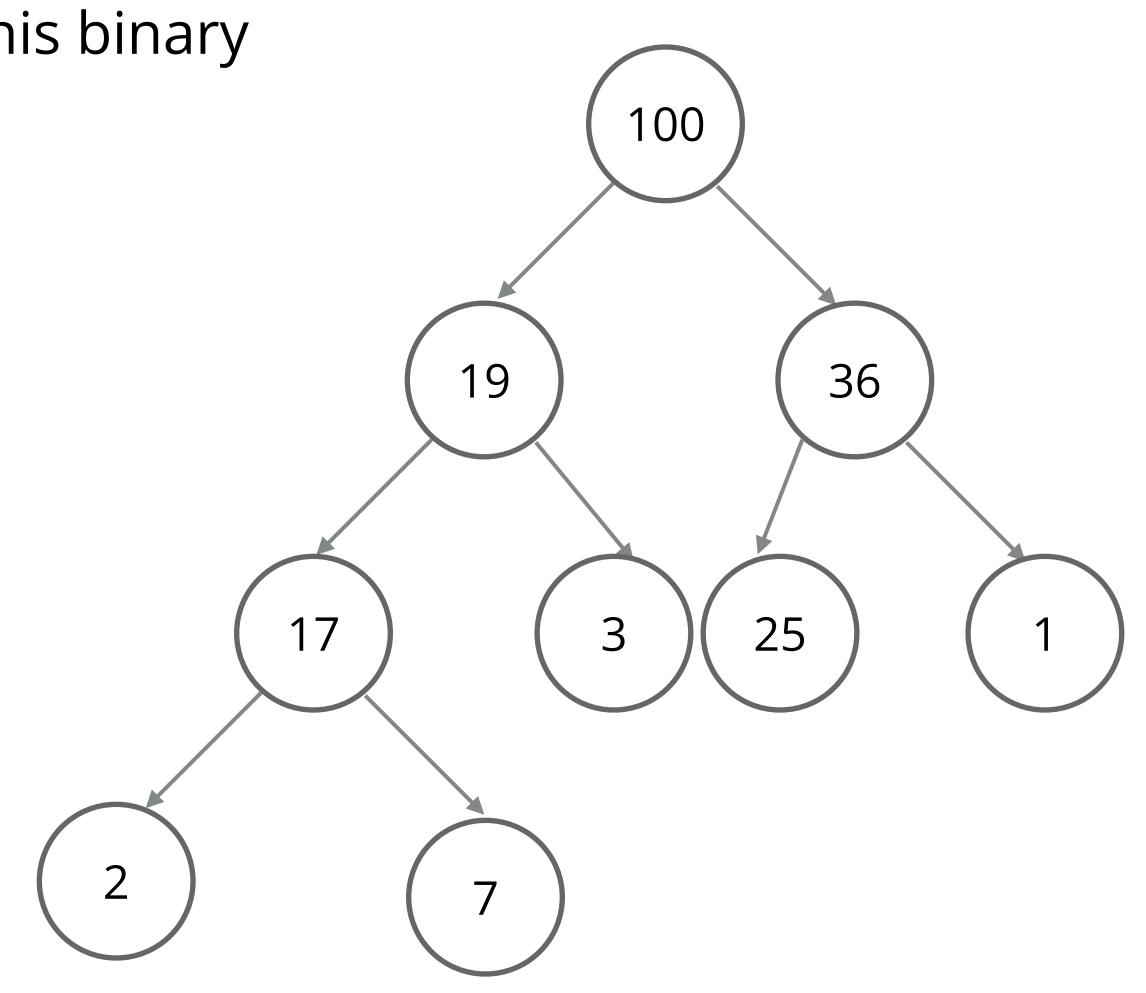
Binary heap: return (and delete) the maximum

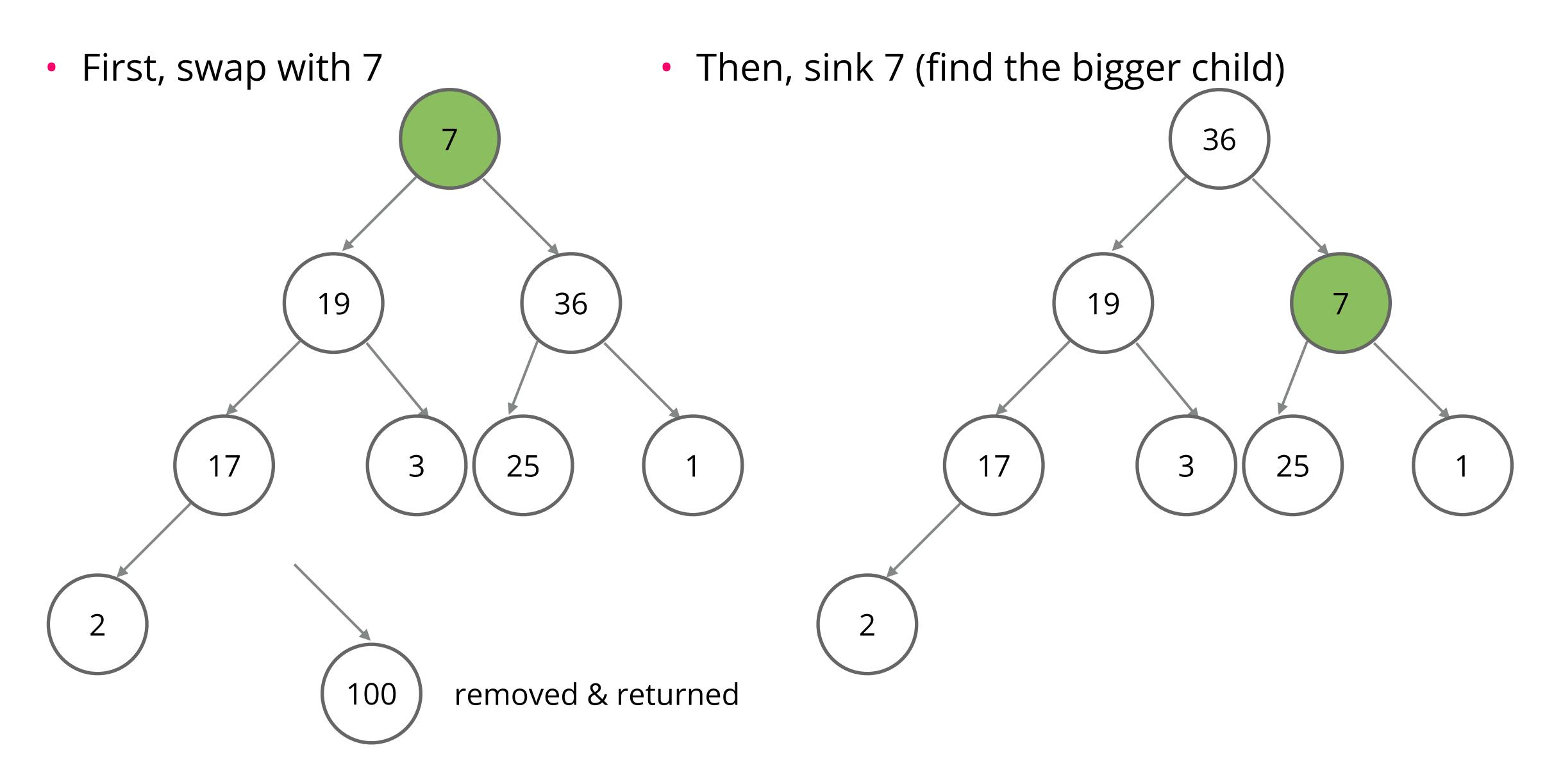
- Delete max: Swap the root with the last node (the rightmost child). Return and delete the root. Sink the new root down.
- Cost: At most $2 \log n$ compares.



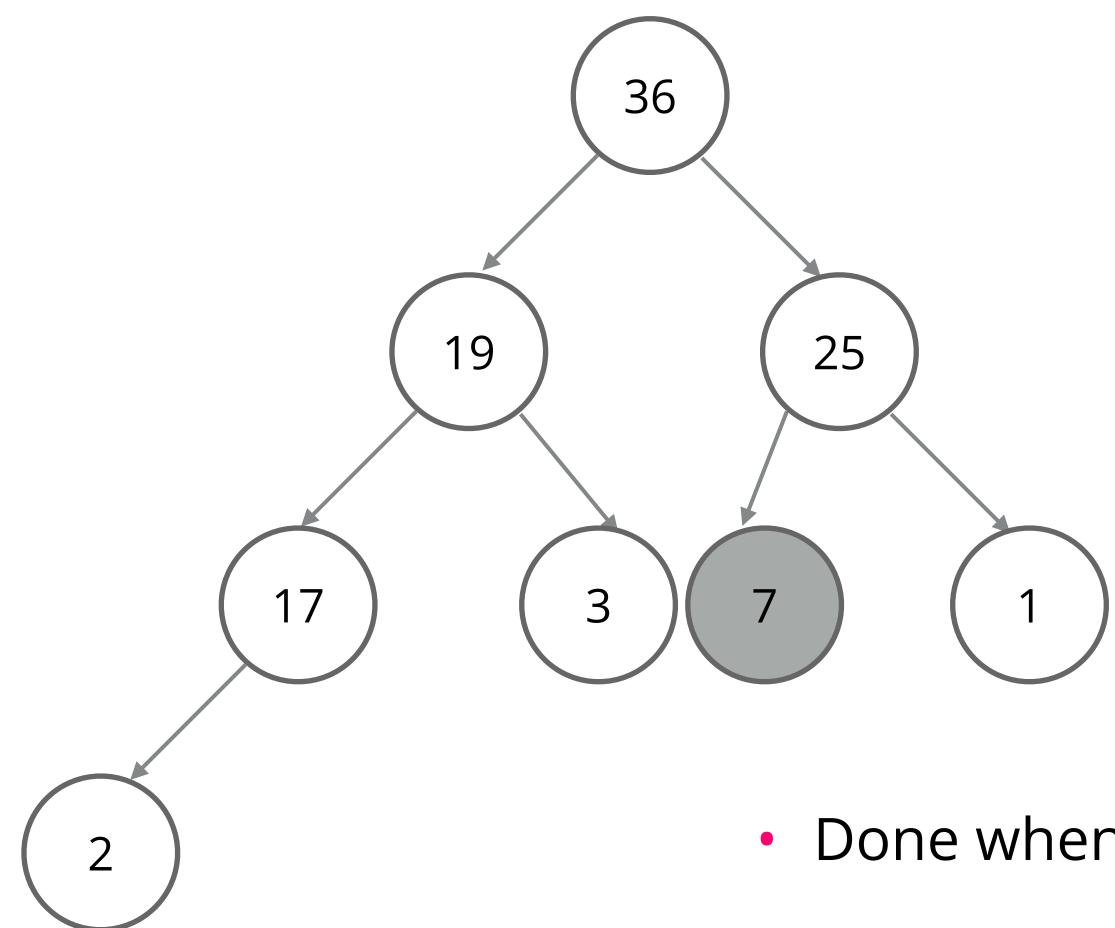
Worksheet time!

 Delete and return the maximum of this binary heap.





Then, sink 7 (find the bigger child)



Done when 7 has no more bigger children

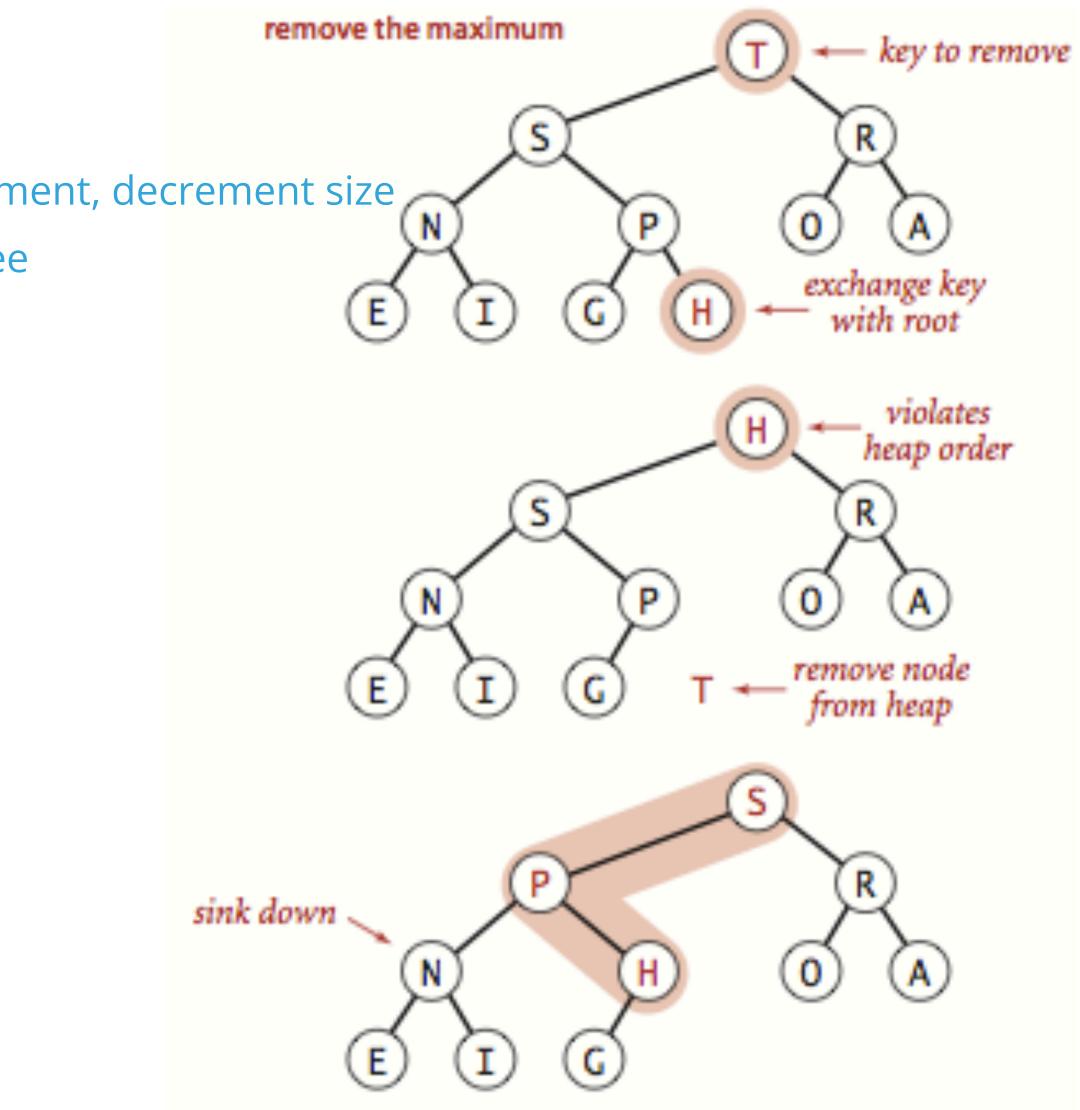
Worksheet time!

- Implement public E deleteMax().
- Assume precondition (n > 0) is true.
- Hint: you can do it in 4 lines of code.
- 1. find max
- 2.??
- 3.??
- 4. return max



public E deleteMax() {
 E max = a[1]; max is always the root
 a[1] = a[n--]; swap root with the last element, decrement size
 sink(1); sink the last element to update tree
 return max;

}



Binary heap operation run times

- Insertion is $O(\log n)$ (because insert at the end, swim up to proper place).
- Delete max is O(log n) (because swap last node to root, and then sink down to proper place).
- Space efficiency is O(n) (because of array representation).

Algorithms

Algorithms

**

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

2.4 BINARY HEAP DEMO

Lecture 15 wrap-up

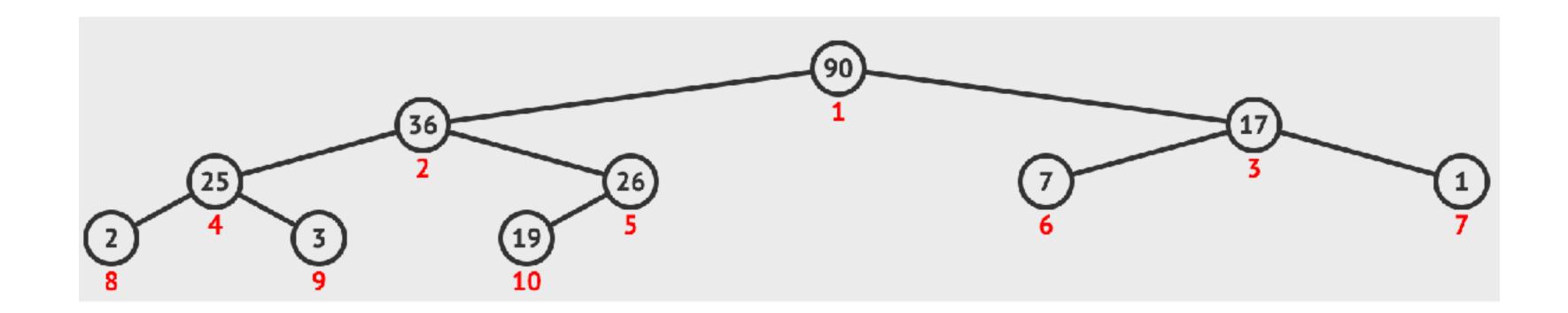
- No exit ticket, mid semester feedback form instead
 - <u>https://forms.gle/3EwT3ZL9zvCV14kQ6</u>
- HW5: Compression part 2 due in 3 hours
- HW6: On Disk sort due 11:59pm next Tues (after spring break)
- Have a great spring break!!!!

Resources

- Reading from textbook: Chapter 2.4 (Pages 308-327)
- Heap visualizations: Insert and ExtractMax: <u>https://visualgo.net/en/heap</u>
- Online textbook website <u>https://algs4.cs.princeton.edu/24pq/</u>
- Practice problems behind this slide

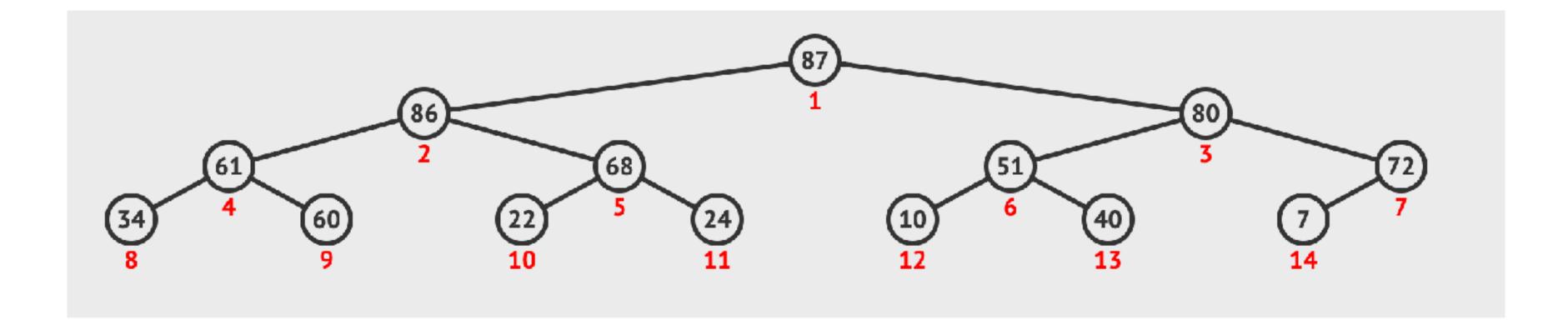
Practice Problem 1

- Given the tree below, list the nodes in order of visit in a:
 - pre-order traversal
 - in-order traversal
 - post-order traversal
 - level-order traversal



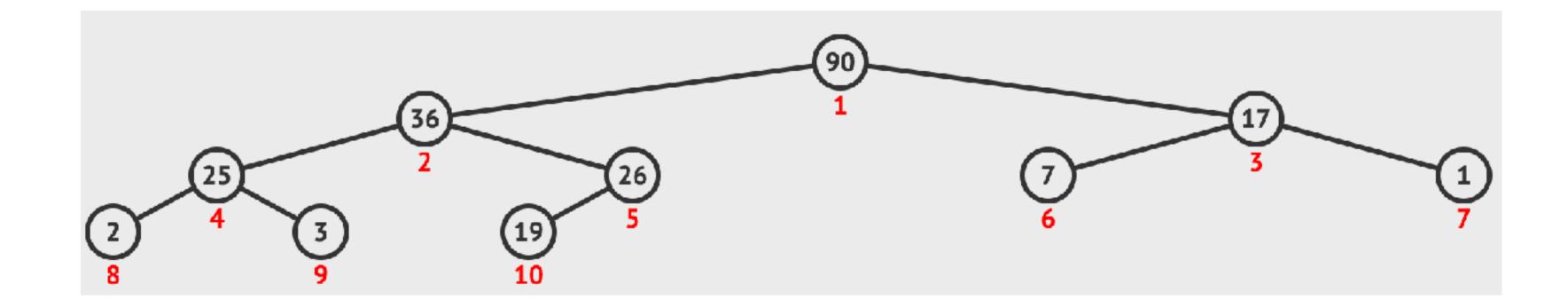
Practice Problem 2

• Given the binary heap below, delete and return the max.



ANSWER 1

- pre-order: 90, 36, 25, 2, 3, 26, 19, 17, 7, 1
- in-order: 2, 25, 3, 36, 19, 26, 90, 7, 17, 1
- post-order: 2, 3, 25, 19, 26, 36, 7, 1, 17, 90
- level-order: 90, 36, 17, 25, 26, 7, 1, 2, 3, 19



7, 1 , 1 7, 90 3, 19

ANSWER 2

• Given the binary heap below, delete and return the max.

