CS62 Class 15: Binary Search Trees & Maps

A J
r . .
r . .
/ . »
B . . . g .
\ ;))))
. ya . e . S

[Binary Search Tree]

BST: For each node, its left child is smaller, and its right child is bigger

Agenda

* Maps/Dictionaries
* Binary Search Trees
* Derivation/motivation
* Definition
* Searching
* Insert

* Hibbard deletion

Maps (Dictionaries)

Dictionaries

» Dictionaries (Python) are known as Maps (Java).

S L - -

Value 1

 Also known as: symbol tables, maps, indices, (ka1 | -
associative arrays. -

» Key-value pair abstractions that support two Dictionnry | Kev2 | -
operations:

5 \ - =

Value 2

P4 - .

* Insert a key-value pair. SR

 Given a key, search for the corresponding value.

+ Keys must be unique

5 S

Value 3

Map Example

Maps are very handy tools for all sorts of tasks. Example: Counting words.

Map<String,
String[] text = {"sumomo", "mo

llmoll, llmomoll, lanH, ”uChi”};

Integer> m = new TreeMap<>();
||momo " ,

for (String s : text) {

int currentCount = m.getOrDefault(s,0);

sUumaomo

mao

" momo

Nno

m.put(s, currentCount + 1);
m = {}
text = ["sumomo", "mo", "momo", “mo", "momo", " "uchi"]

for s in text:

if s in m.keys():

m[s] += 1
else:
ml[s]

Python equivalent

uchi

Basic dictionary API

* public class Dictionary <Key extends Comparable<Key>, Value>
» Dictionary(): create an empty dictionary. By convention, values are not null.
- void put(Key key, Value val): insert key-value pair.

» Overwrites old value with new value if key already exists.

» Value get(Key key): return value associated with key.
« Returns null if key not present. (That's why values can't be null.)
« boolean contains(Key key):is there a value associated with key?
+ Iterable keys(): all the keys in the dictionary.
- vold delete(Key key): delete key and associated value.
* boolean 1sEmpty():is the dictionary empty?

» 1nt si1ize(): number of key-value pairs.

Binary Search Trees:
Motivation

How can we efficiently implement a map?

* Searching is another fundamental problem of computer science: how can we find
things quickly and efficiently?

* Our maps/dictionaries should support very fast search operations for key retrieval.
* How are they represented “under the hood"? What's the data structure?

* We already know binary search, which is an algorithm on the data structure of
arrays.

How can data structures support fast searching?

Consider the humble singly linked list (or even ArrayList!)

This is horrible for fast searching, because we need to iterate through the whole list:

O OO O O

Optimization: Change the Entry Point

Fundamental Problem: Slow search, even though it's in order.

* Move pointer to middle.

®0-0 00 0@

Optimization: Change the Entry Point, Flip Links

Fundamental Problem: Slow search, even though it's in order.

» Move pointer to middle and flip left links. Halved search time!

|
@@ 0 6 6o

Optimization: Change the Entry Point, Flip Links

Fundamental Problem: Slow search, even though it's in order.

 How do we do even better?
» Dream big! |

@@ 0 06 6o

Optimization: Change Entry Point, Flip Links, Allow Big
Jumps

Fundamental Problem: Slow search, even though it's in order.

 How do we do better?

@ /\@/\@}@

G
O £
@ﬁ\@ OO

Binary Search Trees:
Definition

Binary Search Trees

A binary search tree is a rooted binary tree that is symmetrically ordered.

Symmetric order property of BSTs. For every node X in the tree:

 Every key in the left subtree is less than X's key.
» Every key in the right subtree is greater than X's key.

* Q: What kind of traversal of the tree returns the nodes in sorted order? (pre-
order, in-order, post-order, or level-order)?

*Note that our specific implementation of BST
d O g takes key-value pairs, but we'll just show the keys d e bt
for most visual examples
A A
bag flat bus ears

Binary Search Tree Binary Tree, but not a Binary Search Tree

Binary Search Trees

A: An in-order (left, root, right) traversal of the nodes returns the nodes in sorted
order.

Given keys p and Q:
» Exactly one of p<gand g<p are true.

» p<qgandg<rimplyp<r.

One consequence of these rules: No duplicate keys allowed!

+ Keeps things simple. Most real world implementations follow this rule.

Differences between heaps and BSTs

Used to implement

Heap

Priority queues

BST

Dictionaries

Supported operations

Insert, delete max

insert, search, delete, ordered
operations

What is inserted

Keys

Key-value pairs

Underlying data structure

(Resizing) array

Linked nodes

Tree shape

Complete binary tree

Depends on data

Ordering of keys

Heap-ordered

Symmetrically-ordered

Duplicate keys allowed?

Yes

No

O N O U1 B W N =

10
11
12
13
14
15

BST and Node implementation

public class BST<Key extends Comparable<Key>, Value> {

private Node root; // Root of BST

private class Node {

private Key key; // Sorted by key
private Value val; // Assoclated value

private Node Lleft,

right; // Roots of left and right subtrees

private int size; // Number of nodes 1n subtree rooted at

this node

public Node(Key key, Value val, int size) {
this.key = key;
this.val = val;

this.slze

size;

In addition to the “obvious stuft” (key-value pairs),
we're also keeping track of the size of the subtree
at each node

BSTs: a recursive data structure

Base case: Node is null

Otherwise, a BST is a node and the BST made from its Nodes

dog
" *Note that our specific implementation of BST
b a g ﬂ at takes key-value pairs, but we’ll just show the keys
for most visual examples
alf cat elf glut
[4 4 [4 4 y X [|

null null null null null null null null

Binary Search Trees:
Searching

Finding a searchKey in a BST

dog
It searchKey equals Node.key, return.

» If searchKey < Node.key, search Node.left. bag
» If searchKey > Node.key, search Node.right.

Search - recursive implementation

public Value get(Key key) { //recursive implementation
return get(root, key);

private Value get(Node x, Key key) {
if (x == null) return null; Ifwe've reached a child, the key doesn’t exist
int cmp = key.compareTo(x.key);
if (cmp < @) return get(x.left, Key); Recursively search left (smaller)
else if (cmp > @) return get(x.right, key); Recursivelysearch right (bigger)
else return x.val:; We found the node

Worksheet time!

» Find 4 and 9 in the following BST. Draw the
route the search takes.

Worksheet answers

« 4:8->3->6->4 ¢ 9:8->10 -> null

o o
O/ RO o >
O & ® O ® ®
D O G D O

Search - iterative implementation

public Value get(Key key) {
Node X = root;
while (x !'= null) {
int cmp = key.compareTo(x.key);
1t (cmp < 0)
X = X.left;
else 1f (cmp > 0)
X = X.right;
else 1f (cmp == 0)
return x.val;

¥

return null;

Question

What is the runtime to complete a search on a “bushy” BST in the worst case, where

N is the number of nodes? N
“bushiness” is an intuitive concept
A.O(log N) that we haven't defined.
B.O(N) .
C.O(N log N)
D.O(N?2)

= .

BST Search

What is the runtime to complete a search on a “bushy” BST in the worst case, where
N is the number of nodes?

A.O(log N) : Height of the tree is ~log,(N) .

Worst case search is O(h), where
his the height of the tree

What does a BST look like . .
that has O(n)
=" W W O I

BSTs

Bushy BSTs are extremely fast.

» At 1 microsecond per operation, can find something from a tree of size 10300000 jn
one second.

Much (perhaps most?) computation is dedicated towards finding things in response
to queries.

* |It's a good thing that we can do such queries almost for free.

BSTs: Insertion

Inserting a New Key into a BST

Example:
insert “eyes"
Search for key. bag
- If found, replace value at node.
 Create new node.

» Set appropriate link.
* Number of compares is equal to the depth of the node + 1.

Worksheet time!

» Fill in the blanks to implement insert.

//insert creates new node or updates existing node
public void insert(Key key, Value val) { //recursive implementation
root = insert(root, key, val);

// helper (@returns root of subtree at x)

// note Node constructor is Node(key, value, size)

private Node insert(Node x, Key key, Value val) {
//base case: if empty, return a new node of size 1

int ¢cmp = key.compareTo(x.key);
if (cmp < 0)

X. left = //recursive call

else if (cmp > 0)

X.right = //recursive call

else

//update existing node’s value

X.S5ize = ; //update size

return X;

//insert creates new node or updates existing node

public void insert(Key key, Value val) { //recursive implementation

root = insert(root, key, val);

// helper (@returns root of subtree at x)
// note Node constructor is Node(key, value, size)

private Node insert(Node x, Key key, Value val) {

//base case: if empty, return a new node of size 1
if (x == null)

return new Node(key, val, 1)

int cmp = key.compareTo(x.key);

if (¢cmp < 0)
insert(x.left, key, val)
X. left = //recursive call

else if (cmp > 0)
insert(x.right, key, val)

X.right = //recursive call
else

x-val = vat //update existing node's value We have a recursive definition of size;
X.5ize = . //update size the size of a subtree is that is not null
return x: size(x.left) + size(x.right) + 1 is 1 (itself) + the size of its

left and right subtrees

A l g() Il th M S ROBERT SEDGEWICK | KEVIN WAYNE

3.2 BINARY SEARCH TREE DEMO

Algorithms

ROBERT SEDGEWICK | KEvVIN WAYNE

http://algs4.cs.princeton.edu

BSTs mathematical analysis

» |f n distinct keys are inserted into a BST in random order, the expected number of
compares of search/insert is O(log n).

» |f n distinct keys are inserted into a BST in random order, the expected height of
tree is O(logn). [Reed, 2003].

» Worst case height is n but highly unlikely.
» Keys would have to come (reversely) sorted!

 All ordered operations in a dictionary implemented with a BST depend on the
height of the BST. You can assume the BST is reasonably “bushy” (log(n) time).

BSTs: Hibbard Deletion

Deleting from a BST

dog
3 Cases:

» Deletion key has no children. fIat

+ Deletion key has one child.

 Deletion key has two children. a|f - glut

Case 1: Deleting from a BST: Key with no Children

dog
:

eyes

Deletion key has no children (“glut”):

* Just sever the parent’s link.

» What happens to “glut” node?

Case 1: Deleting from a BST: Key with no Children
dog

Deletion key has no children (“glut”):

» Just sever the parent’s link. bag

» What happens to “glut” node?

» Garbage collected. 3| cat elf

Case 2: Deleting from a BST: Key with one Child

dog
Example: delete(“flat”):
Goal:
- Maintain symmetric order (BST property). alf cat elf
» Flat's child elf is still larger than dog.
- Safe to just move that child into flat’s spot. ;
» Why? Because of the BST property. When inserting elf in the

BST originally, it had to have gone to the right of the dog.

Thus: Move flat's parent’s pointer to flat's child.

Case 2: Deleting from a BST: Key with one Child

Example: delete(“flat”): -

ﬂat
Thus: Move flat's parent’s pointer to flat's

child.

 Flat will be garbage collected (along with

e _ eyes
its instance variables).

» Even though flat still links to elf, we can't
access it because nothing points to it.

Hard Challenge

Delete k. How do you choose the new root?
e
LA i
afld

Case 3: Deleting from a BST: Deletion with two Children
(Hibbard)

Example: delete(“dog”)

Goal: fIat

* Find a new root node.

» Must be > than everything in left subtree. alt - glut
* Must be < than everything right subtree.

eyes
Would bag work?

No: We can keep alf as its left child, but where does cat go? Replacing
flat with cat requires too many movements/adjustments and the cases get really messy quickly

dog

Case 3: Deleting from a BST: Deletion with two Children
(Hibbard)

Example: delete(“dog")

Goal: fIat

* Find a new root node.

» Must be > than everything in left subtree. alf - glut
» Must be < than everything right subtree.

1 i 1 i 7 e ES
Choose either predecessor (“cat”) or successor (“elt”).

* Predecessor = largest key in left subtree

» Successor = smallest key in right subtree

» Delete “cat” or “elf”, and stick a new copy of that node in the root position:
» This deletion guaranteed to be either case 1 or 2.
+ By deleting “cat” or “elt”, we replace that node with its subtree

* This strategy is sometimes known as “Hibbard deletion”.

dog

dog
Choose predecessor example

Example: delete("dog")
» cat has replaced dog

» cat's subtree (null) is in the place of

dog
Choose successor example

elf
Example: delete("dog")
- elf has replaced dog

» elf's subtree (eyes) is in the place of

Hard Challenge (Hopefully Now Easy)

Delete k.
What are the predecessor/successor?

e
LA P
| e [

Hard Challenge (Hopefully Now Easy)

Delete k. Two solutions: Either promote g or m to be in the root.

 Below, solution for g is shown.

e
LA P
| e [

Hard Challenge (Hopefully Now Easy)

Two solutions: Either promote g or m to be in the root.

 Below, solution for g is shown.
e
b i
afld

Worksheet time!

* Delete 21 in this tree. Choose the successor.

Worksheet answer

» 70 is the successor, and its subtree (/1) moves into 70’s place

9

Hibbard deletion

public void delete(Key key) { //recursive implementation
root = delete(root, key);

//helper (@returns root of new subtree at x)
private Node delete(Node x, Key key) {
if (x == null) return null;
//search part
int cmp = key.compareTo(x.key);
if (cmp < 0) x.left = delete(x.left, key);
else if (cmp > 0) x.right = delete(x.right, key);
//found the node, now the 3 cases
else {
if (x.right == null) return x.left; //1 & 2 — no or single child
if (x.left == null) return x.right;
Node temp = x; //3. replace with successor
X = min(temp.right); //changes root to new successor — min key of right subtree
X.right = deleteMin(temp.right); //new root right is old root's right side minus successor
X.left = temp.left; //new root left is old root's left
}
X.size = size(x.left) + size(x.right) + 1; //recalculate size given size of subtrees plus self
// decrements size because subtree (x.left / x.right) was probably set to null
return Xx;

Hibbard’s deletion

+ Unsatisfactory solution. If we were to perform many insertions and deletions the BST ends up being
not symmetric and skewed to the left.

. Extremely complicated analysis, but average cost of deletion ends up being 1/n. Let's simplify
things by saying it stays O(log n).

* No one has proven that alternating between the predecessor and successor will fix this.

» Hibbard devised the algorithm in 1962. Still no algorithm for efficient deletion in Binary Search
Trees!

« Qverall, BSTs can have O(n) worst-case for search, insert, and delete. We want to do better for
dictionaries/maps (and will learn how to in future lectures!)

Lecture 15 wrap-up

* Lab tonight on implementing more BSTs
+ HW8: Hex-a-Pawn (on binary trees) due next Tues 11:59pm

* Checkpoint 2 11/3 - | suggest going back through all the lecture slides and
doing the practice problems for additional checkpoint review!!

Resources
* Reading from textbook: Chapters 3.2 (Pages 396-414);

* BST visualization:

* Practice problems behind this slide

https://algs4.cs.princeton.edu/32bst/
https://algs4.cs.princeton.edu/32bst/
https://visualgo.net/en/bst

Problem 1

Draw the BST that results when you insert the keys 5, 1,19, 25,17, 5, 19, 20, 9, 15, 14 in that order.

Problem 2

* Inserting the keys in the order AX CS ER H into an initially empty BST gives a worst-case tree where
every node has one null link (one child), except one at the bottom that has two null links (it's a leaf).
Give five other orderings of these keys that produce worst-case trees.

Problem 3

Give five orderings of the keys AX CS E R H that when inserted into an initially empty binary search
tree, produce best-case trees.

ANSWER 1

* Draw the BST that results when you insert the keys 5, 1,19, 25,17, 5,19, 20, 9, 15, 14 in that order.

» -2 indicates that this node has been updated to the second value associated with that key.

20

ANSWER 2

* Inserting the keys in the order AX CS ER H into an initially empty BST gives a worst-case tree where
every node has one null link (one child), except one at the bottom that has two null links (it's a leaf).
Give five other orderings of these keys that produce worst-case trees.

- ACEHRSX
- XSRHECA

- XASCREI

- XASCRHE
+ AXCSEHR

ANSWER 3

* Inserting the keys in the order AX CS ER H into an initially empty BST gives a worst-case tree where
every node has one null link (one child), except one at the bottom that has two null links (it's a leaf).
Give five other orderings of these keys that produce worst-case trees.

- HCSAERX
- HCAESRX
- HCEASRX
- HSRXCAE

- HSXRCAE

