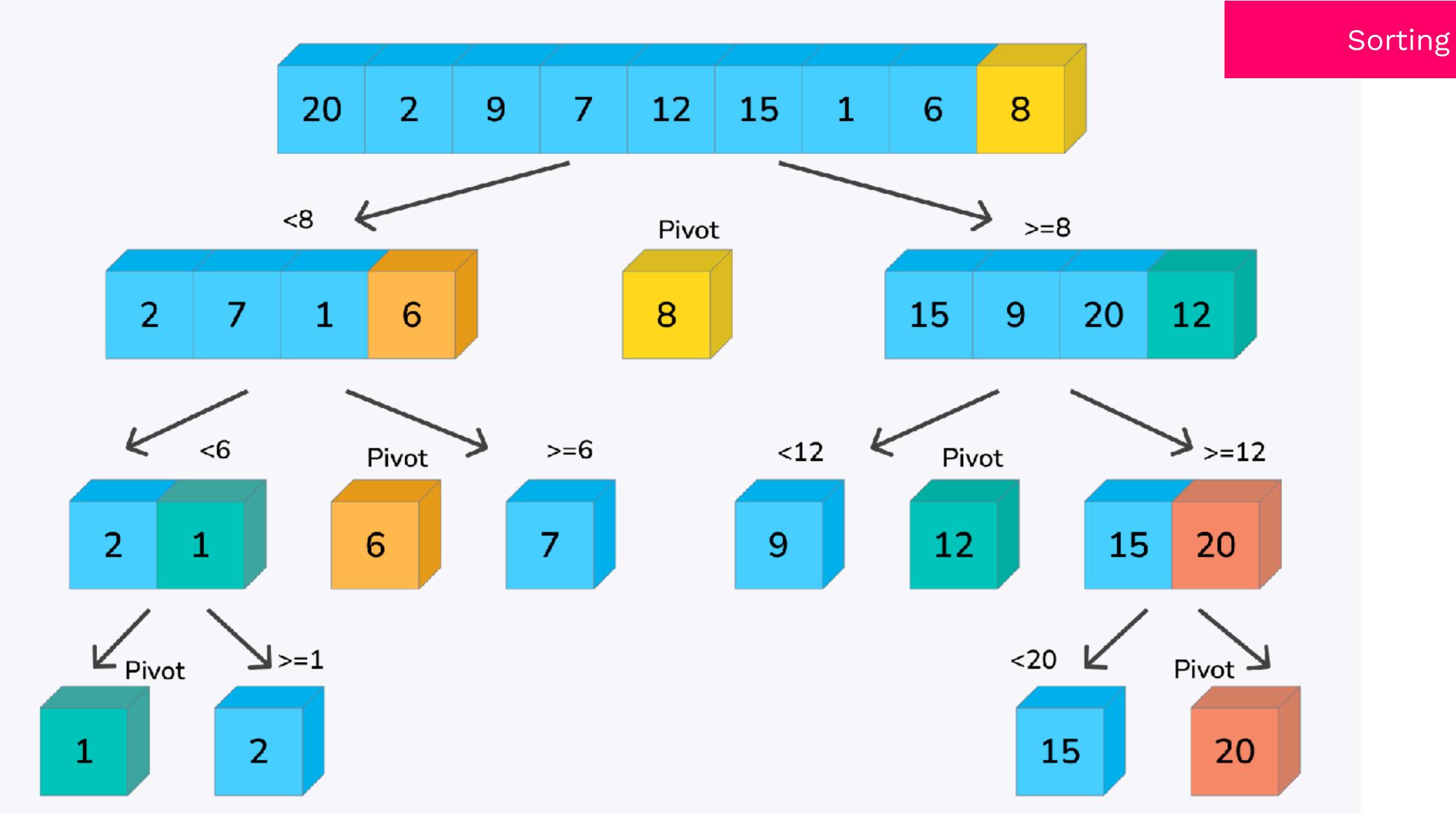
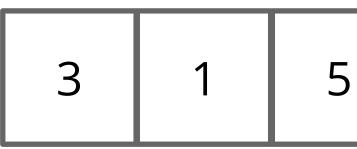
CS62 Class 14: Quicksort



Last week review

	ln place	Stable	Best	Average	Worst	Remarks
Selection	Х		$\Omega(n^2)$	$\Theta(n^2)$	$O(n^2)$	n exchanges
Insertion	Х	Х	$\Omega(n)$	$\Theta(n^2)$	$O(n^2)$	Use for small arrays or partially ordered
Merge sort		Х	$\Omega(n \log n)$	$\Theta(n \log n)$	$O(n \log n)$	Guaranteed performance; stable

Perform the first 2 steps of selection, insertion, and the merging of mergesort for the following array:

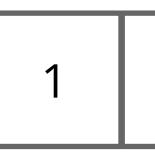


5 4	2
-----	---

Last week review

Selection sort: select smallest element and swap

3 1	5	4	2
-----	---	---	---



Insertion sort: insert next element into sorted left side subarray

3	1	5	4	2	
---	---	---	---	---	--



Merge sort: merge halves

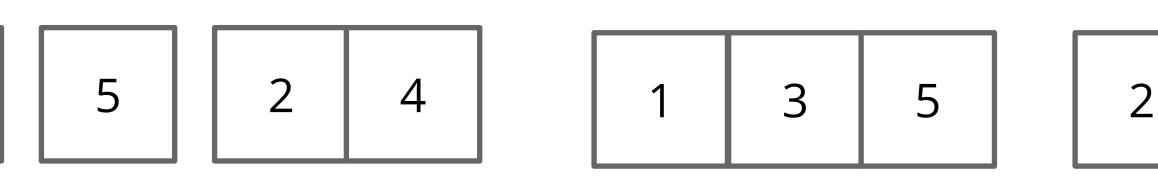
3 1 5 4 2 1 3

Single elements

Groups of 2 merged

3	5	4	2		1	2	5	4	3
---	---	---	---	--	---	---	---	---	---

3 5 4 2 1 2 3 5	4
-----------------	---



Group of 3 merged

Agenda

- Quicksort basics & demo
- Quicksort code
- Quicksort analysis

Quicksort basics

Quicksort live demo!

I need 5-10 volunteers who want to be sorted by height.

Quicksort = pivots & partitions

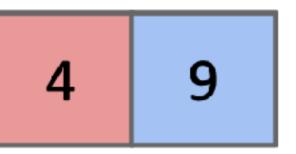
- that:
 - All entries to the left of x are <= x (smaller).
 - All entries to the right of x are $\geq x$ (bigger).
 - x is in the right place in the final, sorted array.
- Then we sort each subarray (to the left and to the right) recursively.

input (pivot = 6)

example of valid output

3	1	2	4	6	9	8	7
---	---	---	---	---	---	---	---

• The main idea behind Quicksort is we pick a **pivot, x,** to **partition** the array such

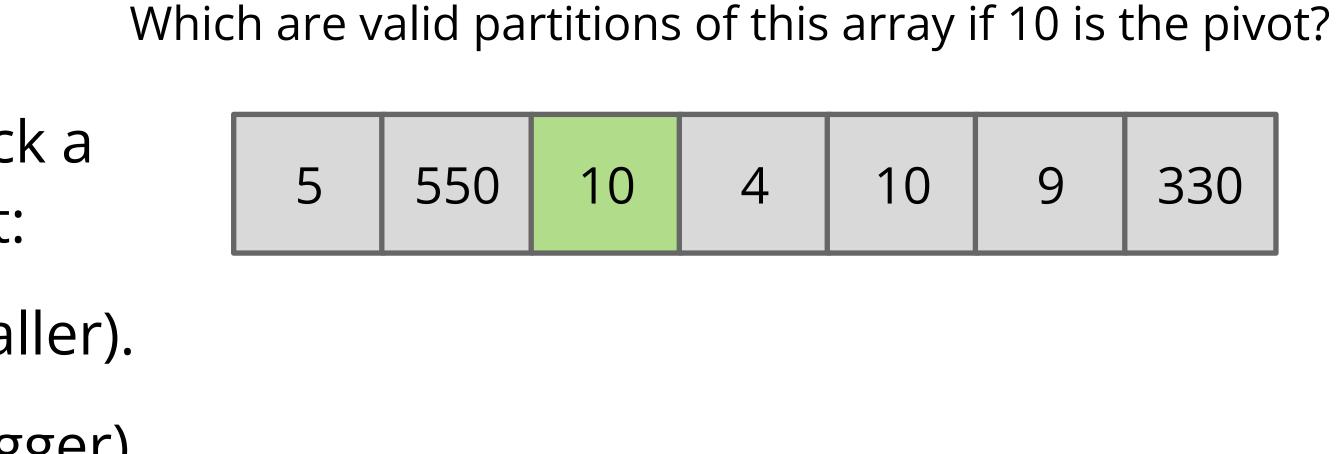


also example of valid output

Worksheet time!

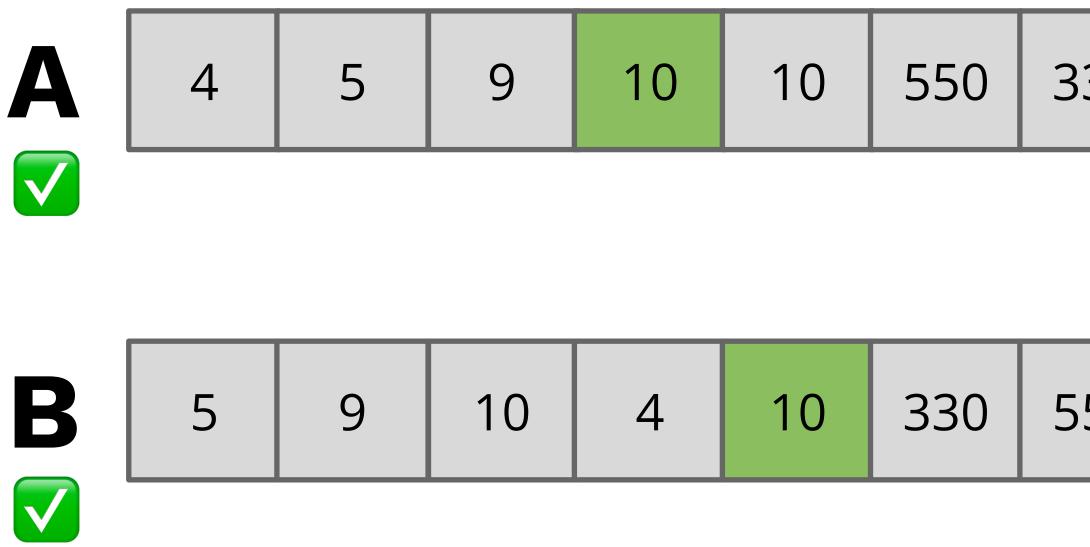
- The main idea behind Quicksort is we pick a **pivot, x,** to **partition** the array such that:
 - All entries to the left of x are <= x (smaller).
 - All entries to the right of x are $\geq x$ (bigger).
 - x is in the right place in the final, sorted array.

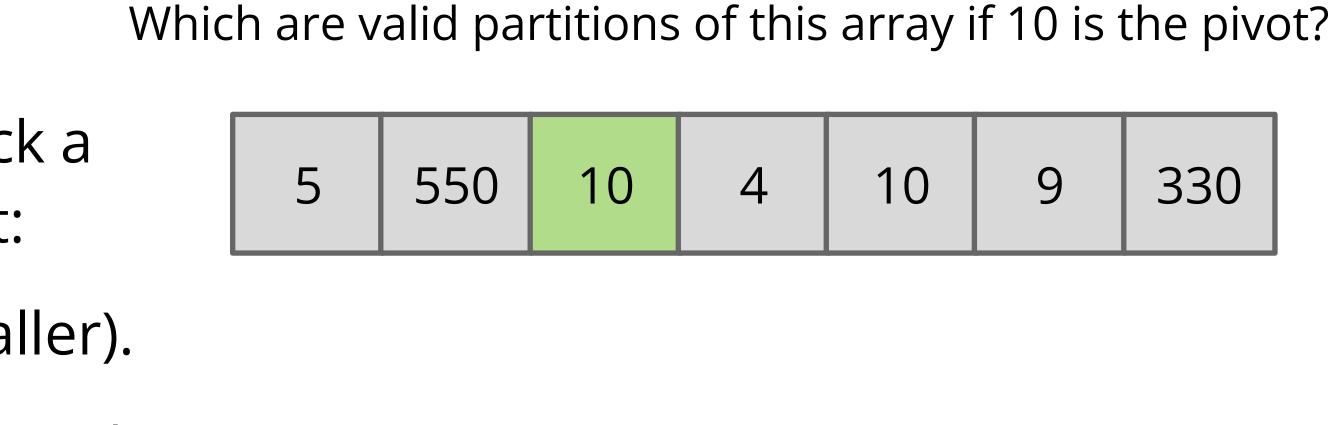
A	4	5	9	10	10	550	330	С	4	5	9	10	10	330	
B	5	9	10	4	10	330	550	D	5	9	10	4	10	550	



Worksheet Answers

- The main idea behind Quicksort is we pick a **pivot, x,** to **partition** the array such that:
 - All entries to the left of x are <= x (smaller).
 - All entries to the right of x are $\geq x$ (bigger).
 - x is in the right place in the final, sorted array.

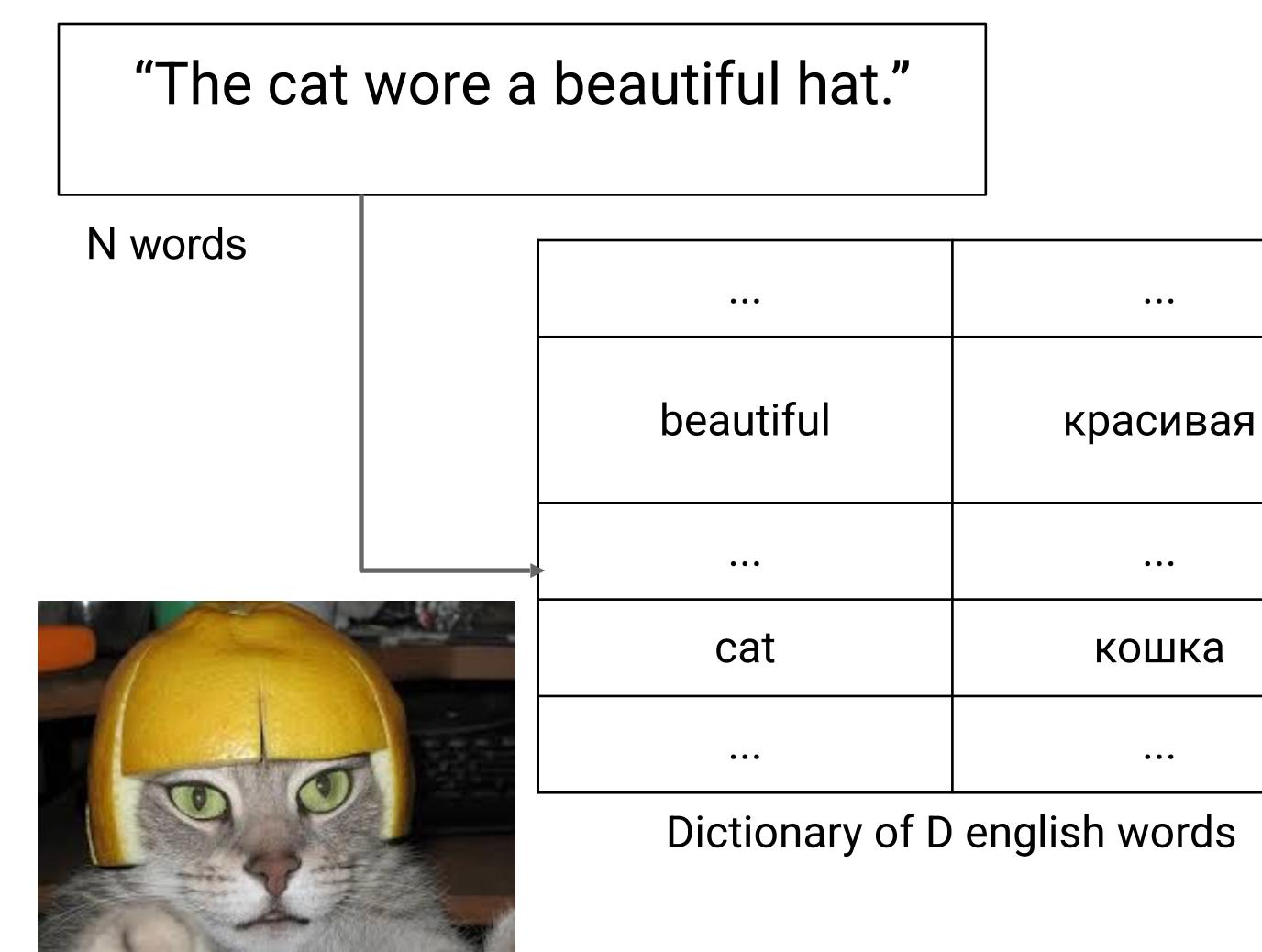




30		4	5	9	10	10	330	
550	D	5	9	10	4	10	550	

Context for Quicksort's Invention (Source)

1960: Tony Hoare was working on a crude automated translation program for Russian and English.



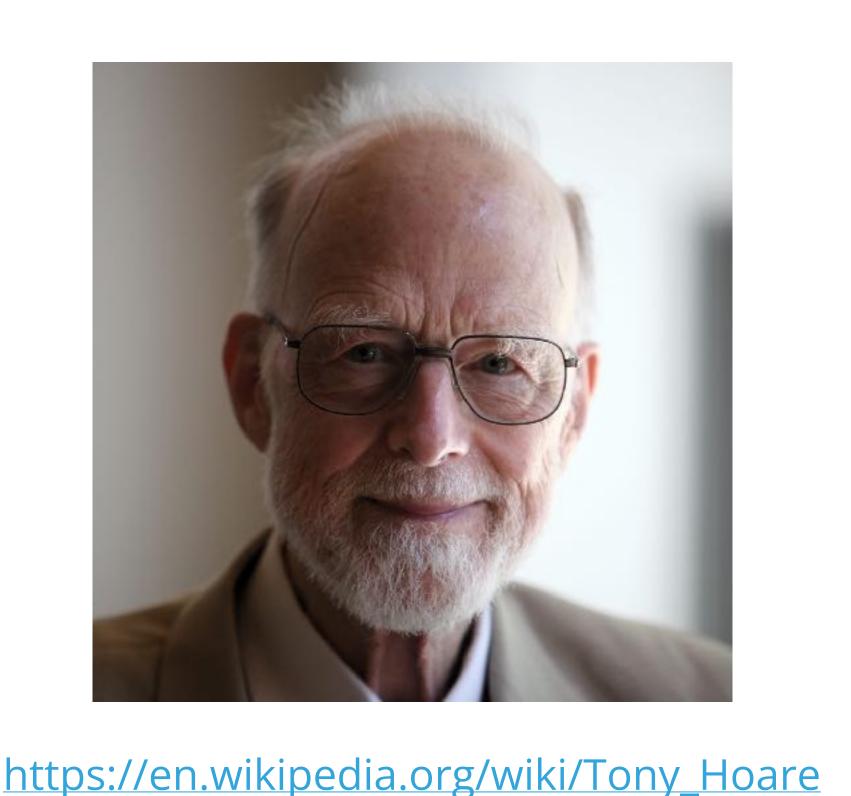
How would you do this?

- (Binary) Search for each word.
 - Find "the" in log D time.
 - Find "cat" in log D time...
- Total time: N log D

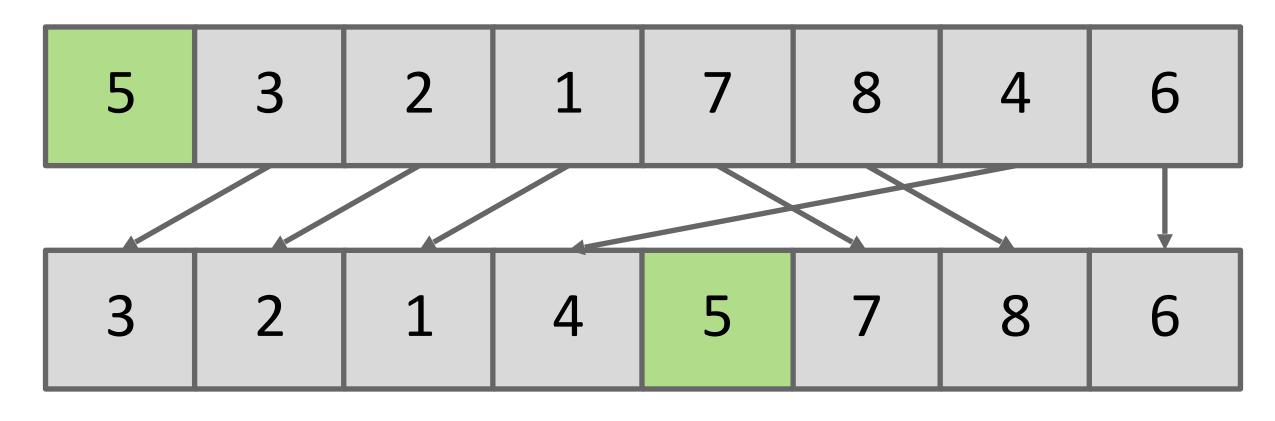
"Кошка носил красивая шапка."

Context for Quicksort's invention

- However, we had hardware limitations at the time.
 - Dictionary stored on long piece of tape
 - Sentence is an array in RAM.
 - Search of tape takes very long (requires physical movement!).
 - D >> N.
- Better: **Sort the sentence** and scan dictionary tape once. Takes N $\log N + D$ time.
 - But Tony had to figure out how to sort an array...
 - Came up with Quicksort but did not know how to implement it.
 - Learned Algol 60 and recursion and implemented it.
 - Won the 1980 Turing Award (also invented the concept of null and regretted it).



Partition Sort, a.k.a. Quicksort



Observations:

Note: this element order is slightly different than our implementation

- 5 is "in its place." Exactly where it'd be if the array were sorted.
- Can sort two halves separately, e.g. through recursive use of partitioning.

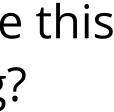
3	2	1	4	5
---	---	---	---	---

2	1	3	4	5
---	---	---	---	---

Q: How would we use this operation for sorting?

5 7	8	6
-----	---	---

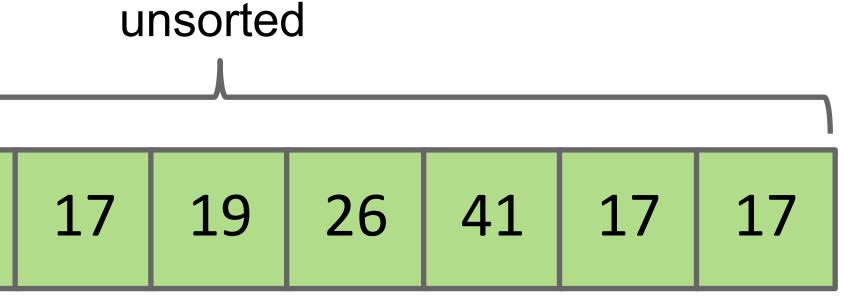
5 6	7	8
-----	---	---



Quick sorting N items:

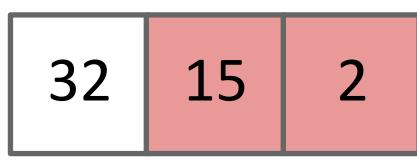
- Partition on leftmost item.
- Quicksort left half.
- Quicksort right half.

Input:



Quick sorting N items:

- Partition on leftmost item (32).
- Quicksort left half.
- Quicksort right half.



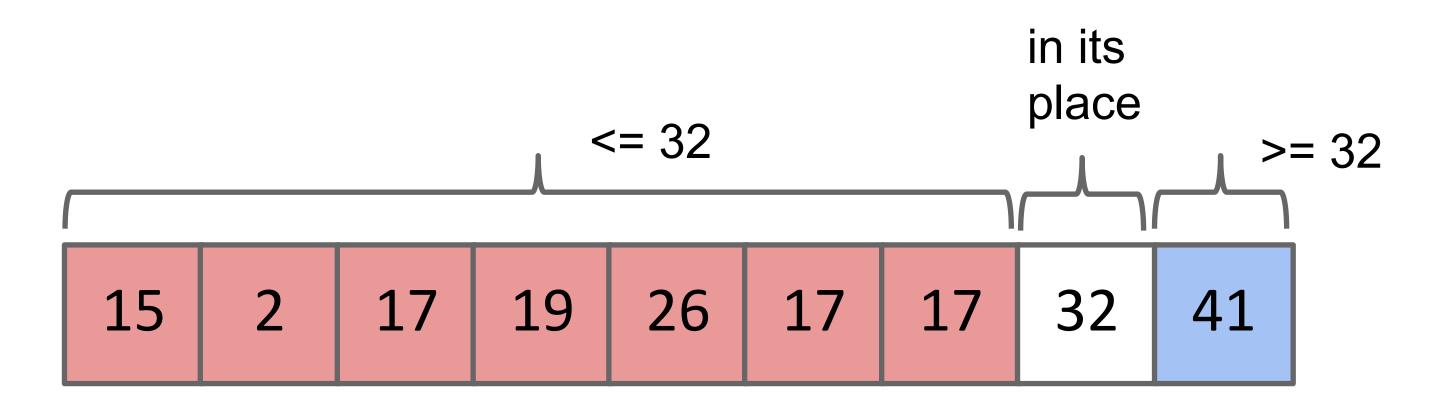
partition(32)

17 19 26 41 17 17

Quick sorting N items:

- Partition on leftmost item (32).
- Quicksort left half.
- Quicksort right half.

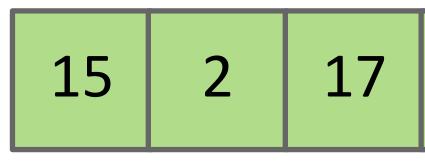
Input:



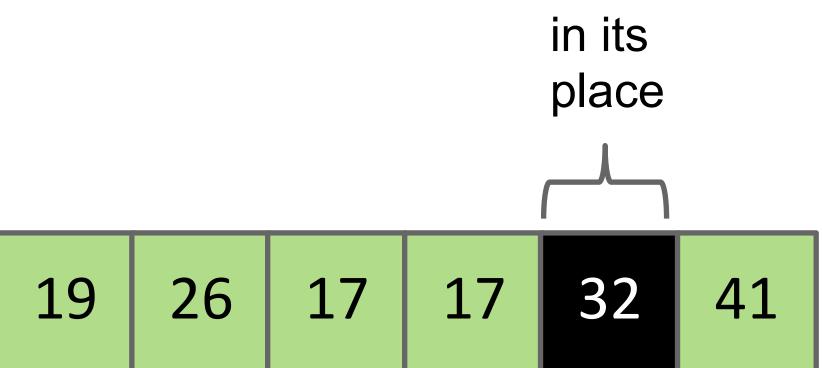
partition(32)

Quick sorting N items:

- Partition on leftmost item (32) (done).
- Quicksort left half.
- Quicksort right half.

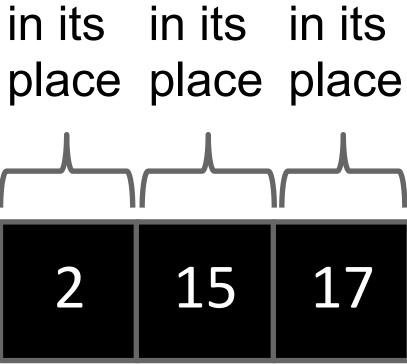


partition(32)

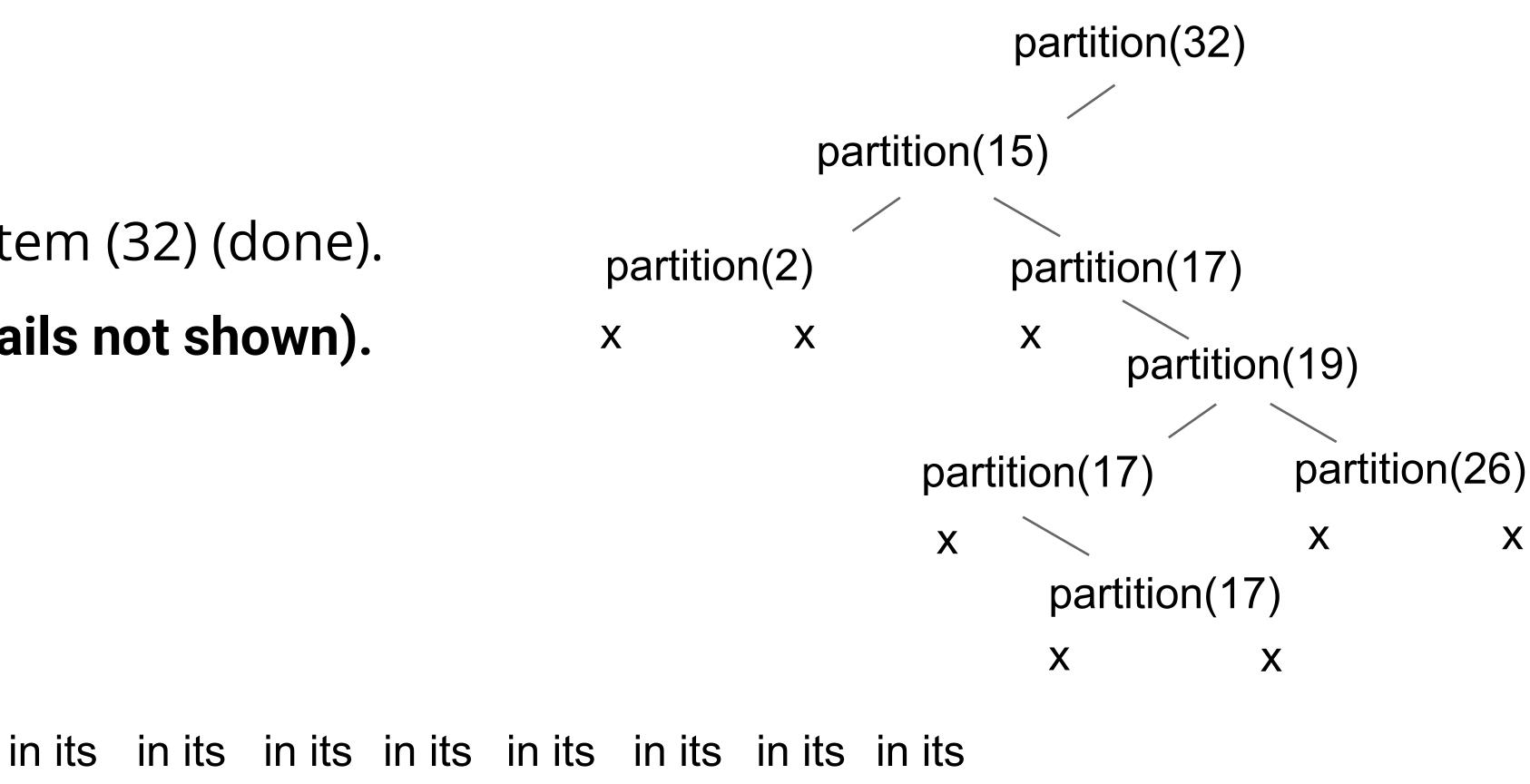


Quick sorting N items:

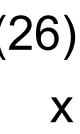
- Partition on leftmost item (32) (done).
- Quicksort left half (details not shown).
- Quicksort right half.



Input:



place place place place place place place place



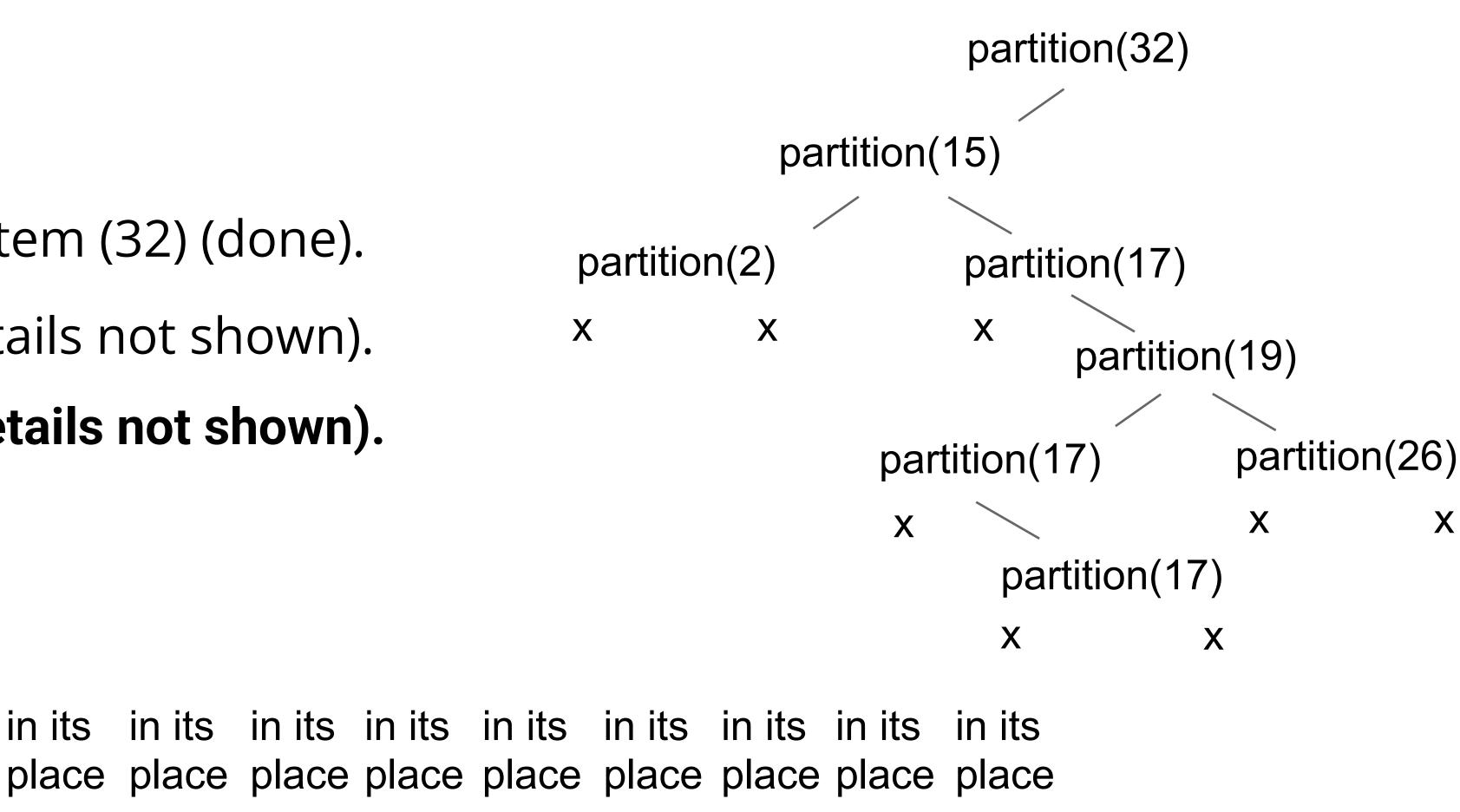
Quick sorting N items:

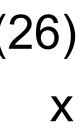
- Partition on leftmost item (32) (done).
- Quicksort left half (details not shown).
- Quicksort right half (details not shown).

If you don't fully trust the recursion, see these extra slides for a complete demo.

17 15 2

Input:





Quicksort code

Quicksort Code

```
//helper method that sorts subarray from lo to hi
    if (lo < hi) {
        int pivot = partition(a, lo, hi);
        quickSort(a, lo, pivot - 1);
        quickSort(a, pivot + 1, hi);
```

```
/*
* Rearranges the array in ascending order, using the natural order.
* @param a array to be sorted
*/
public static <E extends Comparable<E>> void quickSort(E[] a) {
   quickSort(a, 0, a.length - 1);
```

private static <E extends Comparable<E>> void quickSort(E[] a, int lo, int hi) {

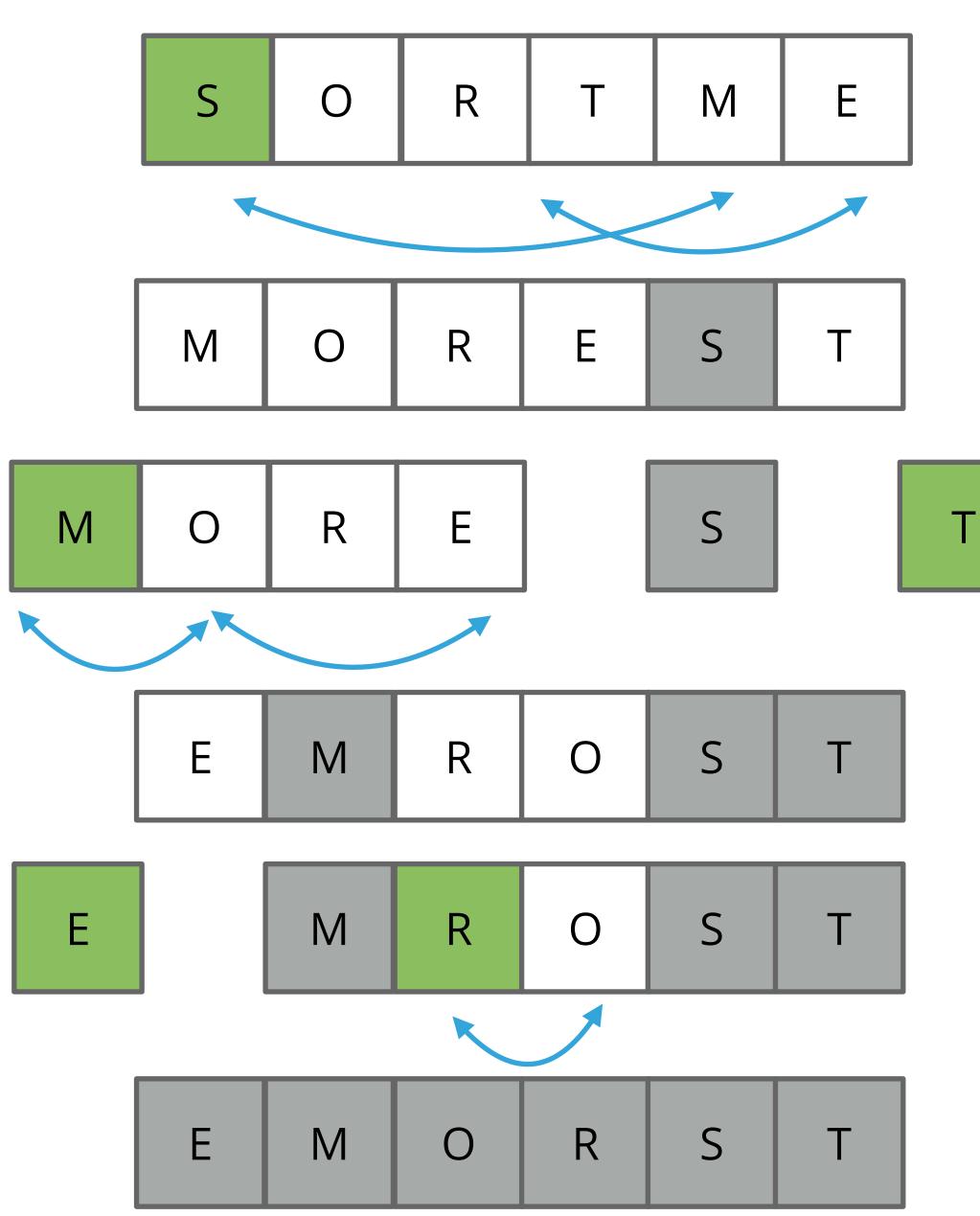
```
private static <E extends Comparable<E>> int partition(E[] a, int lo, int hi) {
    E pivot = a[lo]; // Choose leftmost element as pivot
   int i = lo + 1; // Start from the next element
   int j = hi;
   while (true) {
        // Move right until we find an element >= pivot
       while (i <= j && a[i].compareTo(pivot) <= 0) {</pre>
            i++;
        // Move left until we find an element < pivot</pre>
       while (j >= i && a[j].compareTo(pivot) > 0) {
           j--;
       // If pointers cross, break
        if (i > j) {
            break;
        // Swap elements to ensure correct partitioning
        E temp = a[i];
        a[i] = a[j];
        a[j] = temp;
    // Swap pivot into its correct position
    E \text{ temp} = a[lo];
                                     finally, swap pivot with j
    a[lo] = a[j];
    a[j] = temp;
    return j; // Return final pivot position
```

Partition

i starts on left side, j starts on right side i = elems bigger than pivot, j = elems smaller than pivot

swap i and j since is bigger than the pivot (should be on the right side) and j is smaller than the pivot (should be on left side)

Code walkthrough with debugger



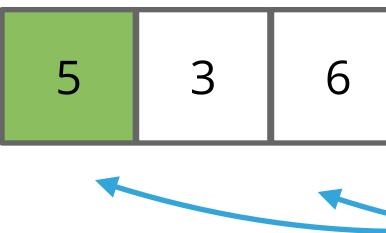
E is a single element, so no sorting needed!

T is a single element, so no sorting needed!

Please draw what happens after the first partition of the following array

5	3	6	2	4	0	4
---	---	---	---	---	---	---

Worksheet answers



0 3 4	2	4	5	6
-------	---	---	---	---

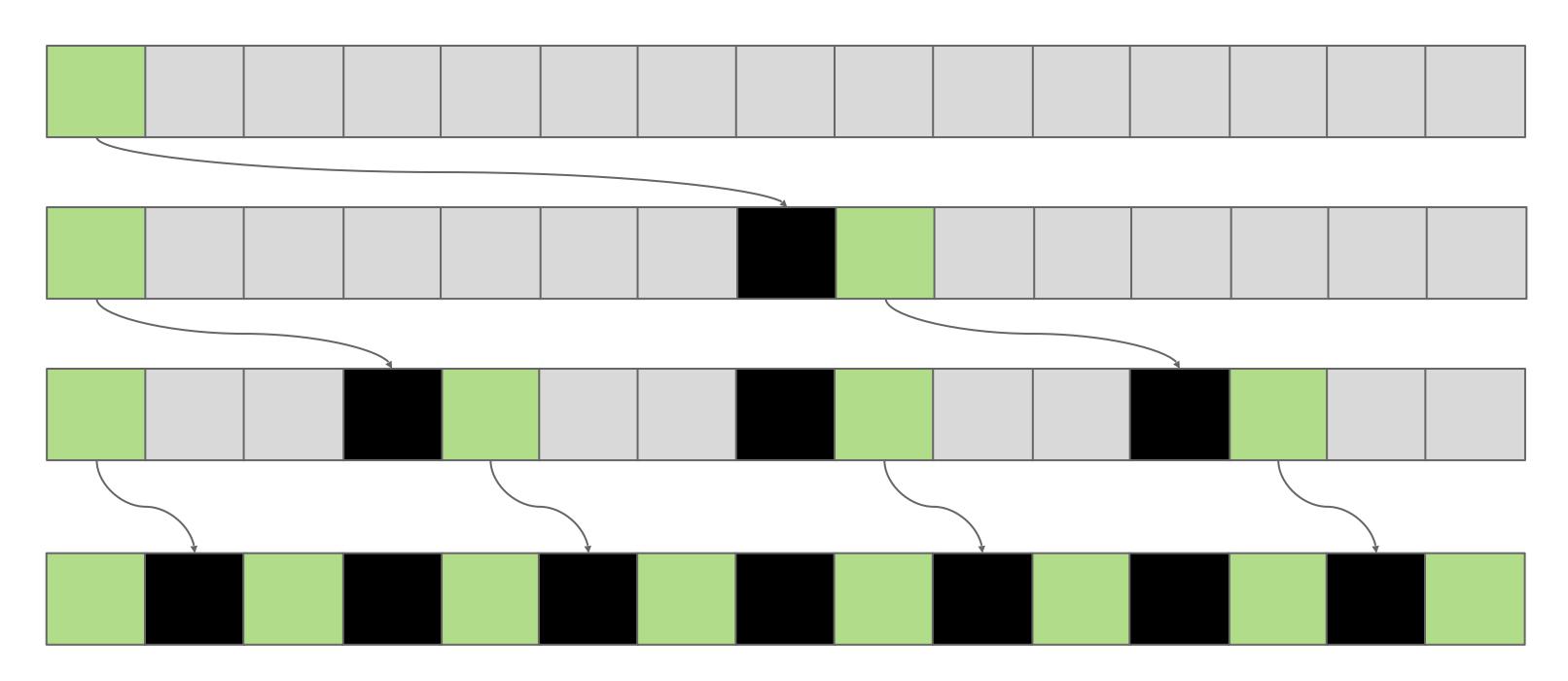
2	4	0	4

Great algorithms are better than good ones

- Your laptop executes 10⁸ comparisons per second
- A supercomputer executes 10¹² comparisons per second

	Insertion sort			Mergesort			Quicksort		
Computer	Thousand inputs	Million inputs	Billion inputs	Thousand inputs	Million inputs	Billion inputs	Thousand inputs	Million inputs	Billion inputs
Home	Instant	2 hours	300 years	instant	1 sec	15 min	Instant	0.5 sec	10 min
Supercomput er	Instant	1 sec	1 week	instant	instant	instant	instant	instant	instant

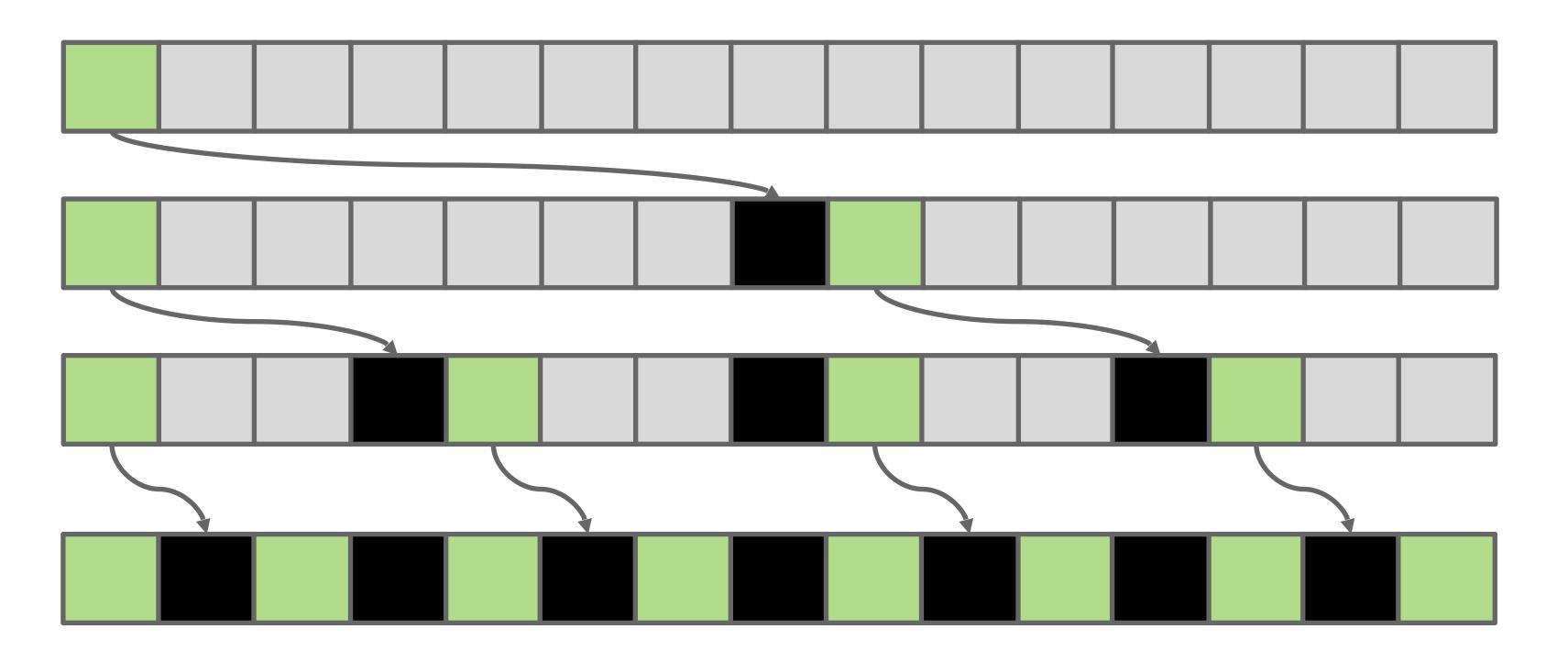
Best case: pivot always lands in the middle



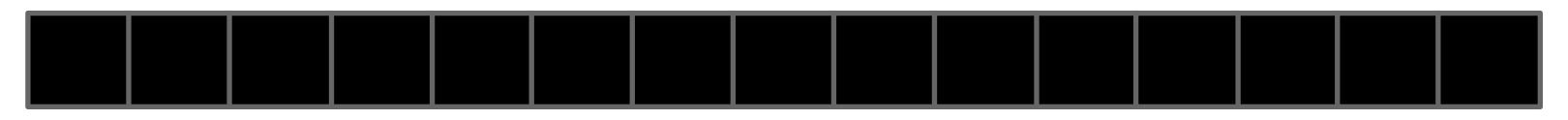
Only size 1 problems remain, so we're done.

Worksheet Q: what's the best case run time?

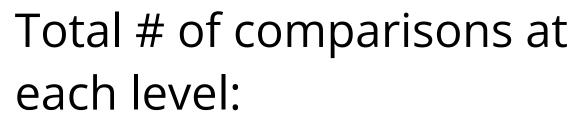
Ω(nlogn) best case



Only size 1 problems remain, so we're done.



Just like Mergesort, we're dividing the work in half each level, so a log(n) relationship for height



 $\approx N/4 * 4 = \approx N$

Overall runtime:

 $\Omega(NH)$ where H(eight) = $\Omega(\log N)$

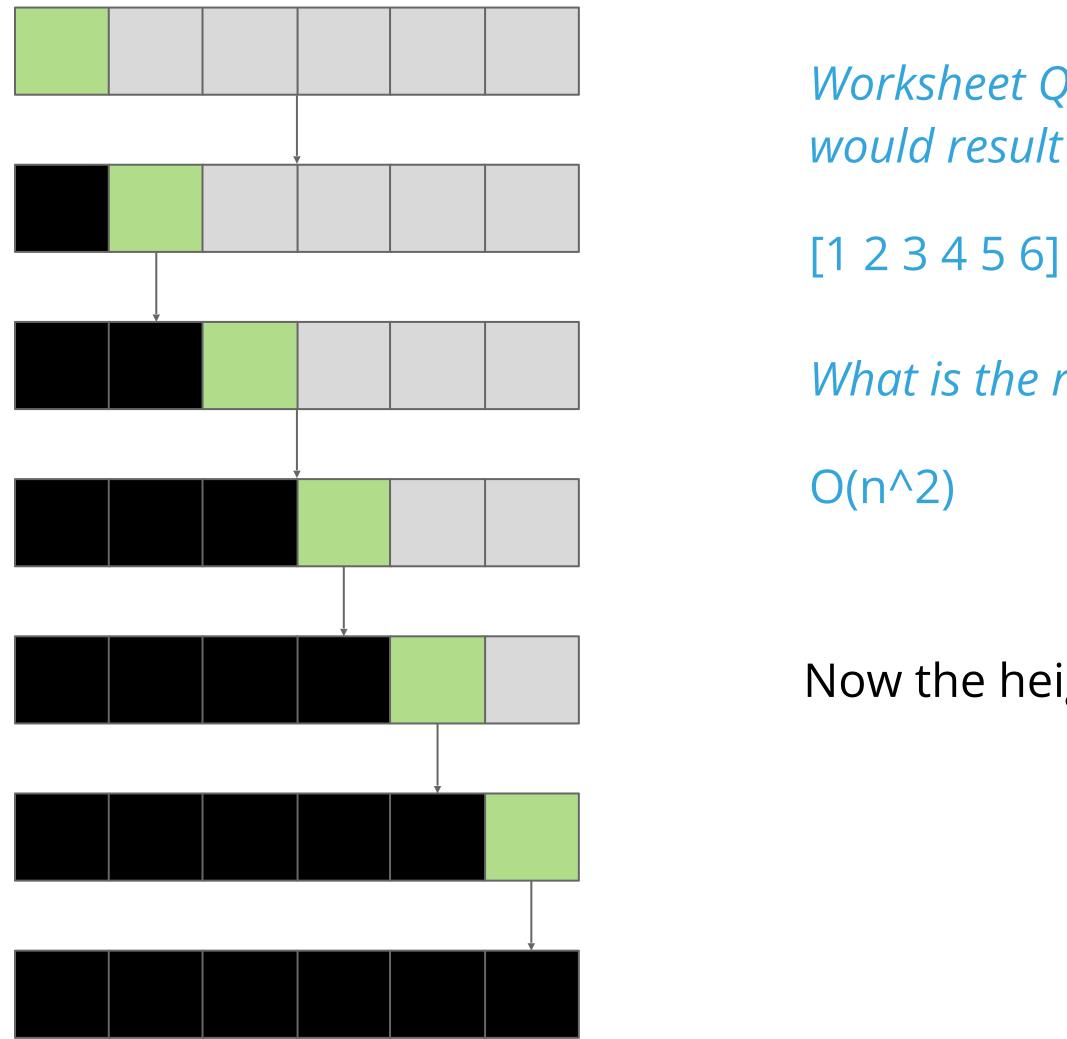
so: $\Omega(N \log N)$

Worst case: pivot always at the start

Worksheet Q: Give an example of an array input that would result in this behavior.

What is the run time?

Worst case: pivot always at the start



Worksheet Q: Give an example of an array input that would result in this behavior.

What is the run time?

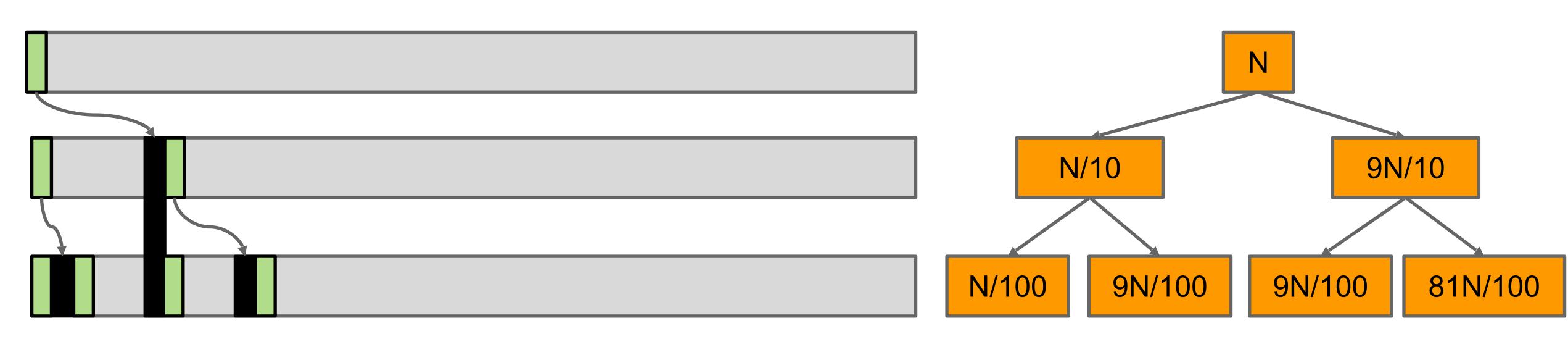
Now the height is N, instead of log(N)

OK but

- How is Quicksort the fastest sorting algorithm in practice if the worst case is O(n^2)?
- We can just first *randomly shuffle* our data (takes N time, one operation) to avoid sorting on pre-sorted arrays. Then it's extremely unlikely to ever run into the worst case scenario (you're more likely to get struck by lightning).
- Average case is Θ(nlogn). We won't go into a detailed proof, but hopefully the next slide can convince you intuitively, and the following one empirically:

Argument #1: 10% Case

Suppose pivot always ends up at least 10% from either edge (not to scale).



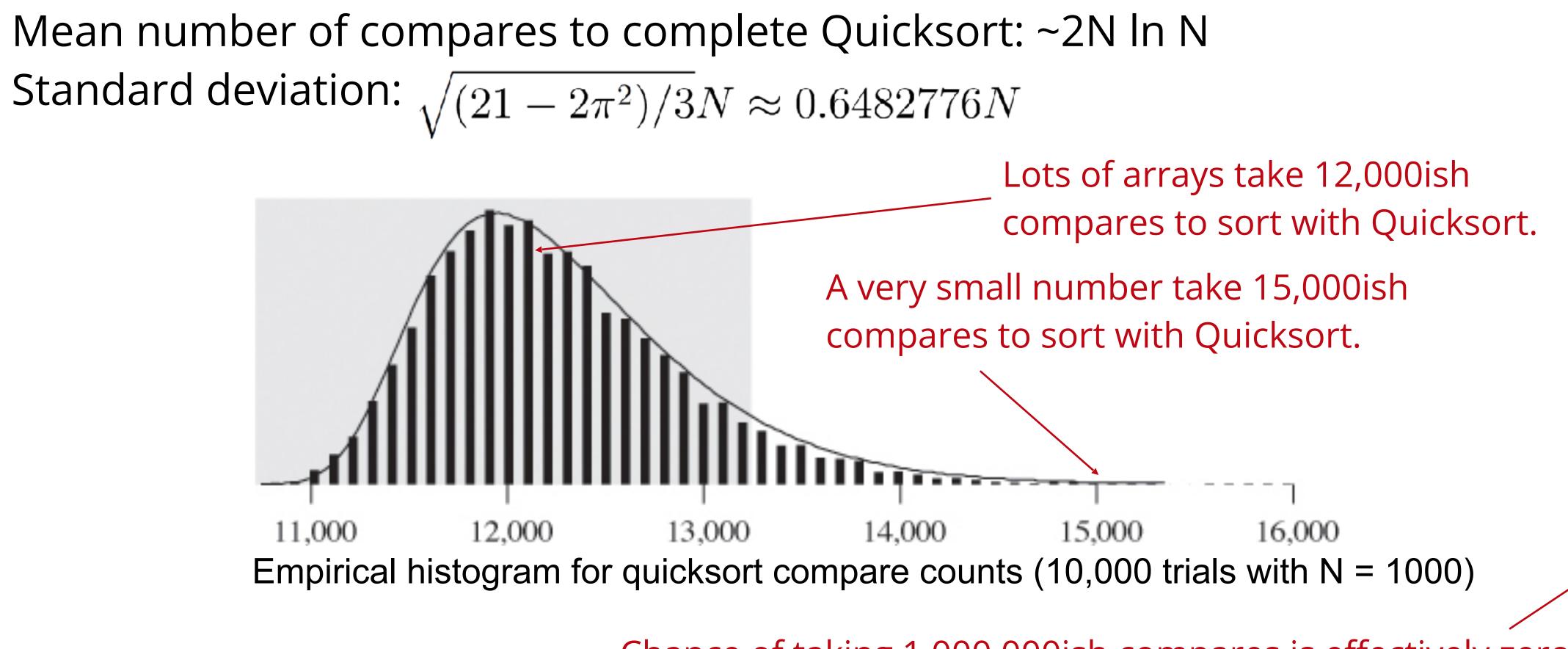
Work at each level: O(N)

- Runtime is O(NH).
 - H is approximately $\log_{10/9} N = O(\log N)$ Ο
- Overall: O(N log N).

Punchline: Even if you are unlucky enough to have a pivot that never lands anywhere near the middle, but at least always 10% from the edge, runtime is still O(N log N).

Empirical Quicksort Runtimes

For N items:



For more, see: http://www.informit.com/articles/article.aspx?p=2017754&seqNum=7

Chance of taking 1,000,000ish compares is effectively zero.

Things to remember about Quicksort

- data much (no need to copy the array!).
- $O(n \log n)$ average, $O(n^2)$ worst, in practice faster than mergesort.
- In-place sorting.
- **Not** stable. (We swap!)
- It's mainly about choosing a smart pivot.
 - We just took the leftmost element
 - Tony Hoare's algorithm actually uses 2 pointers that walk towards each other
 - points instead (Yaroslavskiy, Bentley, and Bloch, 2009)

Q: Why would stability be important for objects but not primitives?

~39% more compares than mergesort but in practice it is faster because it does not move

• The modern Quicksort used in practice in Java to sort arrays of **primitives** uses 2 pivot

Java uses Timsort (modified Mergesort) to sort arrays of objects, because of stability

Philosophies to avoid worst case Quicksorts

- data before starting
- pivot
- gets too deep
- slow

• 1) Randomness: pick a random pivot instead of the leftmost pivot, or shuffle your

• 2) Smarter pivot selection: calculate or approximate the media to serve as the

• 3) Knowing when to stop: use insertion sort if the array size gets small/recursion

• 4) Preprocessing the array: analyze array beforehand to see if Quicksort will be

• This doesn't really work in practice. You can't just check if an array is sorted, because "almost" sorted arrays (e.g., [1, 2, 3, ... 99, 98, 100]) are also basically O(n^2) time, and there's no obvious way to see if an array is "almost" sorted

Sorting: the story so far

Which Sort	In place	Stable	Best	Average	Worst	Memory	Remarks
Selection	X		$\Omega(n^2)$	$\Theta(n^2)$	$O(n^2)$	Θ(1)	n exchanges
Insertion	X	Х	$\Omega(n)$	$\Theta(n^2)$	$O(n^2)$	Θ(1)	Fastest if almost sorted or small
Merge		Х	$\Omega(n \log n)$	$\Theta(n \log n)$	$O(n \log n)$	$\Theta(n)$	Guaranteed performance; stable
Quick	X		$\Omega(n \log n)$	$\Theta(n \log n)$	$O(n^2)$	$\Theta(\log n)$	<i>n</i> log <i>n</i> probabilistic guarantee; fastest in practice

(call stack)

Lecture 14 wrap-up

- HW5: Compression part 2 due Tues 11:59pm
- HW6: On Disk sort released (more motivation in lab tomorrow)
- Quiz on sorting in lab tomorrow

Resources

- Reading from textbook: Chapter 2.3 (pages 288–296)
- Quicksort video: <u>https://www.youtube.com/watch?v=Hoixgm4-P4M</u>
- a different implementation)
- Practice problem behind this slide

Online textbook website - <u>https://algs4.cs.princeton.edu/23quicksort/</u> (note we have

Practice Problem 1

What would the resulting array for the first call to partition be for the following array if instead the pivot was the **rightmost** element: [E,A,S,Y,Q,U,E,S,T,I,O,N].

- [E, A, E, I, N, U, S, S, T, Y, O, Q] and pivot: at index 4.

 What would the resulting array for the first call to partition be for the following array if instead the pivot was the rightmost element: [E,A,S,Y,Q,U,E,S,T,I,O,N].