CS62 Class 14: Quicksort

Last week review

In

Stable Best Average Worst Remarks
place
Selection | X Qn?) O(n?) O(n?) n exchanges
Use for small
Insertion | X X Q(n) O(n?) O(n?) arrays or partially
ordered
Merge Guaranteed
5 X | Qnlogn)®(nlogn) |O(mlogn) | performance;
sort stable

Perform the first 2 steps of selection, insertion, and the merging of mergesort for the following array:

Last week review

Selection sort: select smallest element and swap

Insertion sort: insert next element into sorted left side subarray

Merge sort: merge halves

Single elements Groups of 2 merged Group of 3 merged

Agenda

* Quicksort basics & demo
* Quicksort code

* Quicksort analysis

Quicksort basics

Quicksort live demo!

* | need 5-10 volunteers who want to be sorted by height.

Quicksort = pivots & partitions

* The main idea behind Quicksort is we pick a pivot, X, to partition the array such
that:

* All entries to the left of x are <= x (smaller).
* All entries to the right of x are >= x (bigger).
* Xisinthe right place in the final, sorted array.

* Then we sort each subarray (to the left and to the right) recursively.

input (pivot = 6)

6 3 3 1 2 7 4 9

example of valid output also example of valid output

Sl oo

WOI‘kShQEt time.’ Which are valid partitions of this array if 10 is the pivot?

* The main idea behind Quicksort is we pick an.
: .. 5 | 550 | 10 4 10 330
pivot, X, to partition the array such that:
* All entries to the left of x are <= x (smaller).

* All entries to the right of x are >= x (bigger).

* X isin the right place in the final, sorted array.

Ao =[] €[] [+ oo =]
B [+ [+ [« Jl=[=] [J8l+ [v[=[»

WOI‘kShEEt AI‘)SWQI‘S Which are valid partitions of this array if 10 is the pivot?

* The main idea behind Quicksort is we pick a-.
: .. 5 | 550 | 10 4 10 330
pivot, X, to partition the array such that:
* All entries to the left of x are <= x (smaller).

* All entries to the right of x are >= x (bigger).

* X isin the right place in the final, sorted array.

B ONEE

A] ¢ [+]+ [e[
g [+ [+ [« [l [

S e [=[

&0

Context for Quicksort’s Invention (Source)

1960: Tony Hoare was working on a crude automated translation program for

Russian and English.

“The cat wore a beautiful hat.”

N words

beautiful

KpacuBas

cat

KOLUKa

Dictionary of D english words

How would you do this?
e (Binary) Search for each word.

o Find “the” in log D time.
o Find “cat” in log D time...

e Total time: N logD

“Kowka Hocun
| KpacuBas Lanka.”

https://www.bl.uk/voices-of-science/interviewees/tony-hoare/audio/tony-hoare-inventing-quicksort

Context for Quicksort’s invention

* However, we had hardware limitations at the time.
» Dictionary stored on long piece of tape
» Sentence is an array in RAM.
» Search of tape takes very long (requires physical movement!).
« D>>N.

- Better: Sort the sentence and scan dictionary tape once. Takes N
log N + D time.
» But Tony had to figure out how to sort an array...
» Came up with Quicksort but did not know how to implement it.

» Learned Algol 60 and recursion and implemented it.
https://en.wikipedia.org/wiki/Tony_Hoare

* Won the 1980 Turing Award (also invented the concept of null—
and regretted it).

https://en.wikipedia.org/wiki/Tony_Hoare

Partition Sort, a.k.a. Quicksort
slelzfr|r]s]a]s
alzfr]efs]7e]s

Note: this element order is slightly different than our implementation

Q: How would we use this
operation for sorting?

Observations:

» 5is“inits place.” Exactly where it'd be if the array were sorted.
» Can sort two halves separately, e.g. through recursive use of partitioning.

;
;

Quick Sort

Quick sorting N items:

+ Partition on leftmost item.
* Quicksort left half.

* Quicksort right half.

unsorted

l—‘—\

o [l 2w w]w]a0]v

Quick Sort

Quick sorting N items:

partition(32)

- Partition on leftmost item (32).

* Quicksort left half.
* Quicksort right half.

o [w2 s o]0

Quick Sort

partition(32)

Quick sorting N items:
- Partition on leftmost item (32).
* Quicksort left half.
* Quicksort right half.

in its

place

——————

o []a w]w ala]w] 2w

Quick Sort

Quick sorting N items:

partition(32)

- Partition on leftmost item (32) (done).

* Quicksort left half.
* Quicksort right half.

In its
place

o [T a [o] [QI w

Quick Sort

partition(32)
/
Quick sorting N items: partition(15)
. : v ™~
» Partition on leftmost item (32) (done). bartition(2) vartition(17)
* Quicksort left half (details not shown). X X X Stition(']g)
. . . N
Quicksort right hallf. bartition(17) partition(26)
X X X
partition(17)
X X

INits Inits Inits inits inits inits Iinits Inits
place place place place place place place place

e

2 |15 |17 |17 | 17 | 19 | 26 32

Input:

Quick Sort

partition(32)
Quick sorting N items: partition(15) -
- Partition on leftmost item (32) (done). bartition(2) - Ertiticnm)
* Quicksort left half (details not shown). X X X Stition(']g)
* Quicksort right half (details not shown). sartition(17) - Emti on(26)
If you don't fully trust ’ \partitign(’]?) ’ ’
the recursion, see « y

these extra slides for a
complete demo.

INits Inits Inits inits inits Iinits inits Inits Inits
place place place place place place place place place

T T

Input: 2 115 117 117 | 17 1 19 26 | 32 | 41

https://docs.google.com/presentation/d/1QjAs-zx1i0_XWlLqsKtexb-iueao9jNLkN-gW9QxAD0/edit#slide=id.g12aaf29688_0_307

Quicksort code

Quicksort Code

//helper method that sorts subarray from lo to hi
private static <E extends Comparable<E>> void quickSort(E[] a, int lo, int hi) {
if (lo < hi){
int pivot = partition(a, lo, hi);
quickSort(a, lo, pivot - 1);
quickSort(a, pivot + 1, hi);

/ *

* Rearranges the array 1n ascending order, using the natural order.

* @param a array to be sorted

*/

public static <E extends Comparable<E>> void quickSort(E[] a) 1
quickSort(a, @, a.length - 1);

private static <E extends Comparable<E>> int partition(E[] a, int lo, int hi) {
E pivot = allo]; // Choose leftmost element as pivot
int i = lo + 1; // Start from the next element
int j = hi;

Partition

| starts on left side, j starts on right side

while (true) { | = elems bigger than pivot, | = elems smaller than pivot
// Move right until we find an element >= pivot
while (1 <= j && ali].compareTo(pivot) <= @) {
1++;

}

// Move left until we find an element < pivot

while (j >= i && aljl.compareTo(pivot) > 8) {
J==;

+

// If pointers cross, break

if (i > 3j) {
break;

5

// Swap elements to ensure correct partitioning

o :[?][1] swap i and j since is bigger than the pivot (should be on the right side)
aljl = temp; and j is smaller than the pivot (should be on left side)

}

// Swap pivot into its correct position
E temp = allol;

allol = aljl; finally, swap pivot with |
aljl = temp;

return j; // Return final pivot position

Code walkthrough with debugger

n“

single element, so no
tg eeded!

single element, s
tg eeded!

Worksheet time!

Please draw what happens after the first partition of the following array

slefefz]e]e]e

Worksheet answers

nn

M

oo fef=< [l

Quicksort analysis

Great algorithms are better than good ones

* Your laptop executes 10° comparisons per second

* A supercomputer executes 10> comparisons per second

Insertion sort Mergesort Quicksort
Combuter Thousand | Million | Billion | Thousand | Million Billion | Thousand | Million Billion
P inputs inputs | Inputs inputs inputs inputs inputs inputs inputs
Home Instant 2 hours [300years| instant 1 sec 15 min Instant 0.5 sec 10 min
Supercomput
or Instant 1 sec 1 week Instant Instant Instant Instant Instant Instant

Best case: pivot always lands in the middle

\

\ -\
S —
H B H B H B

Only size 1 problems remain, so we're done.

Q(nlogn) best case

Total # of comparisons at
each level:

SEEEEEEEEEEE . a
SEEEEEE EEEEEEE N2 N2 =

=N/4 * 4 = =N
Only size 1 problems remain, so we're done. Overall runtime:
Just like Mergesort, we're dividing the work in half each level, so so: (Q)(N log N)

a log(n) relationship for height

Worst case: pivot always at the start

I
<

Worst case: pivot always at the start

I
<

Now the height is N, instead of log(N)

OK but

* How is Quicksort the fastest sorting algorithm in practice if the worst case is
O(nN2)?

* We can just first randomly shuffle our data (takes N time, one operation) to avoid
sorting on pre-sorted arrays. Then it's extremely unlikely to ever run into the
worst case scenario (you're more likely to get struck by lightning).

* Average case is O(nlogn). We won't go into a detailed proof, but hopefully the next
slide can convince you intuitively, and the following one empirically:

Argument #1: 10% Case

Suppose pivot always ends up at least 10% from either edge (not to scale).

[|

e | [naoo]]onoo] onoo || tnio0

Work at each level: O(N) Punchline: Even if you are unlucky
e Runtime is O(NH). enough to have a pivot that never
o His approximately log 9,9 N = O(log N) lands anywhere near the middle,
e Overall: O(N log N). but at least always 10% from the
edge, runtime is still O(N log N).

Empirical Quicksort Runtimes

For N items:

* Mean number of compares to complete Quicksort: ~2N In N
+ Standard deviation: , /(21 — 272) /3N ~ 0.6482776N

Lots of arrays take 12,000ish
compares to sort with Quicksort.

A very small number take 15,000ish
‘ | compares to sort with Quicksort.
' I I l | l ' 1 1 LN N e , I
11,000 12,000 13.000 14,000 [5.000 16.000

Empirical histogram for quicksort compare counts (10,000 trials with N = 1000)

Chance of taking 1,000,000ish compares is effectively zero.

For more, see: http://www.informit.com/articles/article.aspx?p=2017754&segNum=7

http://www.informit.com/articles/article.aspx?p=2017754&seqNum=7

Things to remember about Quicksort

* ~39% more compares than mergesort but in practice it is faster because it does not move
data much (no need to copy the array!).

* O(nlogn) average, O(n*) worst, in practice faster than mergesort.
‘ sorting.
* Not stable. (We swap!)
* It's mainly about choosing a smart pivot.
* We just took the leftmost element
* Tony Hoare's algorithm actually uses 2 pointers that walk towards each other

* The modern Quicksort used in practice in Java to sort arrays of primitives uses 2 pivot
points instead (Yaroslavskiy, Bentley, and Bloch, 2009)

* Java uses Timsort (modified Mergesort) to sort arrays of objects, because of stability

Philosophies to avoid worst case Quicksorts

* 1) Randomness: pick a random pivot instead of the leftmost pivot, or shuffle your
data before starting

* 2) Smarter pivot selection: calculate or approximate the media to serve as the
pivot

* 3) Knowing when to stop: use insertion sort if the array size gets small/recursion
gets too deep

* 4) Preprocessing the array: analyze array beforehand to see if Quicksort will be
slow

* This doesn't really work in practice. You can't just check if an array is sorted,

because “almost” sorted arrays (e.g., [1, 2, 3, ... 99, 98, 100]) are also basically
O(nA2) time, and there’s no obvious way to see if an array is “almost” sorted

Sorting: the story so far

Which

In

Stable Best Average Worst Memory Remarks
Sort Place
Selection X Q(nz) @(nZ) 0(n2) O(1) n exchanges
. 2 2 Fastest if almost
Insertion X Q(n) O(n°) O(n-) O(1) corted or <mall
M Guaranteed
erge Q(nlogn) | O(nlogn) | Onlogn)| O(n) performance; stable
n log n probabilistic
Quick X Q(nlogn) | O(nlogn) 0(n2) O(logn) | 8uarantee; fastest in

(call stack)

practice

Lecture 14 wrap-up
» HW5: Compression part 2 due Tues 11:59pm

« HW6: On Disk sort released (more motivation in lab tomorrow)

* Quiz on sorting in lab tomorrow

Resources

* Reading from textbook: Chapter 2.3 (pages 288-296)

* Quicksort video:

* Online textbook website - (note we have
a different implementation)

* Practice problem behind this slide

https://www.youtube.com/watch?v=Hoixgm4-P4M
https://algs4.cs.princeton.edu/23quicksort/

Practice Problem 1

* What would the resulting array for the first call to partition be for the following
array if instead the pivot was the rightmost element: [E,A,S,Y,Q,U,E,S, T,I,O,N].

Answer 1

* What would the resulting array for the first call to partition be for the following
array if instead the pivot was the rightmost element: [E,A,S,Y,Q,U,E,S, T,[,O,N].

* [E,A E I,N,U,S,S,T,Y, O, Q] and pivot: at index 4.

