
CS62 Class 14: Quicksort
Sorting



Last week review

Perform the first 2 steps of selection, insertion, and the merging of mergesort for the following array:

13 5 4 2



Last week review
Selection sort: select smallest element and swap

13 5 4 2 31 5 4 2

Insertion sort: insert next element into sorted left side subarray 

21 5 4 3

13 5 4 2 31 5 4 2 21 3 5 4

Merge sort: merge halves 

13 5 4 2 31 5 2 4 31 5 2 4

Single elements Groups of 2 merged Group of 3 merged



Agenda
• Quicksort basics & demo 

• Quicksort code 

• Quicksort analysis



Quicksort basics



Quicksort live demo!
• I need 5-10 volunteers who want to be sorted by height.



Quicksort = pivots & partitions
• The main idea behind Quicksort is we pick a pivot, x, to partition the array such 

that: 

• All entries to the left of x are <= x (smaller). 

• All entries to the right of x are >= x (bigger). 

• x is in the right place in the final, sorted array.  

• Then we sort each subarray (to the left and to the right) recursively.
input (pivot = 6)

example of valid output also example of valid output



Worksheet time!
• The main idea behind Quicksort is we pick a 

pivot, x, to partition the array such that: 

• All entries to the left of x are <= x (smaller). 

• All entries to the right of x are >= x (bigger). 

• x is in the right place in the final, sorted array. 

Which are valid partitions of this array if 10 is the pivot?

5 550 10 4 10 9 330

4 5 9 10 10 550 330A

5 9 10 4 10 330 550B

4 5 9 10 10 330 550C

105 9 4 10 550 330D



Worksheet Answers
• The main idea behind Quicksort is we pick a 

pivot, x, to partition the array such that: 

• All entries to the left of x are <= x (smaller). 

• All entries to the right of x are >= x (bigger). 

• x is in the right place in the final, sorted array. 

Which are valid partitions of this array if 10 is the pivot?

5 550 10 4 10 9 330

4 5 9 10 10 550 330A

5 9 10 4 10 330 550B

4 5 9 10 10 330 550C

105 9 4 10 550 330D

✅

✅

✅

❌



Context for Quicksort’s Invention (Source)
1960: Tony Hoare was working on a crude automated translation program for 
Russian and English.  

... ...

beautiful красивая 

... ...

cat кошка

... ...

“The cat wore a beautiful hat.”

Dictionary of D english words

N words

“Кошка носил  
красивая шапка.”

How would you do this?
● (Binary) Search for each word. 
○ Find “the” in log D time. 
○ Find “cat” in log D time... 

● Total time: N log D

https://www.bl.uk/voices-of-science/interviewees/tony-hoare/audio/tony-hoare-inventing-quicksort


Context for Quicksort’s invention
• However, we had hardware limitations at the time. 

• Dictionary stored on long piece of tape 
• Sentence is an array in RAM. 
• Search of tape takes very long (requires physical movement!). 
• D >> N. 

• Better: Sort the sentence and scan dictionary tape once. Takes N 
log N + D time. 
• But Tony had to figure out how to sort an array... 
• Came up with Quicksort but did not know how to implement it. 
• Learned Algol 60 and recursion and implemented it. 
• Won the 1980 Turing Award (also invented the concept of null—

and regretted it).

https://en.wikipedia.org/wiki/Tony_Hoare

https://en.wikipedia.org/wiki/Tony_Hoare


Partition Sort, a.k.a. Quicksort

Observations: 

• 5 is “in its place.” Exactly where it’d be if the array were sorted. 
• Can sort two halves separately, e.g. through recursive use of partitioning.

5 3 2 1 8 4 67

3 2 1 4 7 8 65

3 2 1 4 5 7 8 65

2 1 3 4 5 6 7 85

Q: How would we use this 
operation for sorting?

Note: this element order is slightly different than our implementation



Quick Sort
Quick sorting N items:  

• Partition on leftmost item.  

• Quicksort left half. 

• Quicksort right half.

32 15 2 17 19 26 41 17 17Input:

unsorted



Quick Sort
Quick sorting N items:  

• Partition on leftmost item (32).  

• Quicksort left half. 

• Quicksort right half.

32 15 2 17 19 26 41 17 17Input:

partition(32)



Quick Sort
Quick sorting N items:  

• Partition on leftmost item (32).  

• Quicksort left half. 

• Quicksort right half.

15 2 17 19 26 17 17 32 41Input:

<= 32 >= 32

in its 
place

partition(32)



Quick Sort
Quick sorting N items:  

• Partition on leftmost item (32) (done).  

• Quicksort left half. 

• Quicksort right half.

15 2 17 19 26 17 17 32Input:

in its 
place

41

partition(32)



Quick Sort
Quick sorting N items:  

• Partition on leftmost item (32) (done).  

• Quicksort left half (details not shown). 

• Quicksort right half.

partition(32)

partition(15)

partition(2) partition(17)

partition(19)

partition(17)

partition(17)

partition(26)

x x x

x

x

x x

2 15 17 17 17 19 26 32 41Input:

in its 
place

in its 
place

in its 
place

in its 
place

in its 
place

in its 
place

in its 
place

in its 
place

x



Quick Sort
Quick sorting N items:  

• Partition on leftmost item (32) (done).  

• Quicksort left half (details not shown). 

• Quicksort right half (details not shown).

partition(32)

partition(15)

partition(2) partition(17)

partition(19)

partition(17)

partition(17)

partition(26)

x x x

x

x

x x

2 15 17 17 17 19 26 32 41Input:

in its 
place

in its 
place

in its 
place

in its 
place

in its 
place

in its 
place

in its 
place

in its 
place

in its 
place

If you don't fully trust 
the recursion, see 
these extra slides for a 
complete demo. 

x

https://docs.google.com/presentation/d/1QjAs-zx1i0_XWlLqsKtexb-iueao9jNLkN-gW9QxAD0/edit#slide=id.g12aaf29688_0_307


Quicksort code



Quicksort Code



Partition
i starts on left side, j starts on right side 
i = elems bigger than pivot, j = elems smaller than pivot

finally, swap pivot with j

swap i and j since is bigger than the pivot (should be on the right side) 
and j is smaller than the pivot (should be on left side) 



Code walkthrough with debugger
OS R T M E

OM R E S T

ME R O S T

T is a single element, so no 
sorting needed!

OM R E S T

ME O R S T

ME R O S T
E is a single element, so no 
sorting needed!



Worksheet time!

35 6 2 4 0 4

Please draw what happens after the first partition of the following array



Worksheet answers

35 6 2 4 0 4

30 4 2 4 5 6



Quicksort analysis



Great algorithms are better than good ones
• Your laptop executes  comparisons per second 

• A supercomputer executes  comparisons per second

108

1012

Insertion sort Mergesort Quicksort

Computer
Thousand 

inputs
Million 
inputs

Billion 
inputs

Thousand 
inputs

Million 
inputs

Billion 
inputs

Thousand 
inputs

Million 
inputs

Billion 
inputs

Home Instant 2 hours 300 years instant 1 sec 15 min Instant 0.5 sec 10 min

Supercomput
er

Instant 1 sec 1 week instant instant instant instant instant instant



Best case: pivot always lands in the middle

Only size 1 problems remain, so we’re done.

Worksheet Q: what’s the best case run time?



Ω(nlogn) best case

Only size 1 problems remain, so we’re done.

Total # of comparisons at 
each level:

≈ N

≈N/2 + ≈N/2 = ≈N

≈N/4 * 4 = ≈N

Overall runtime: 

Ω(NH) where H(eight) = Ω(log N) 

so: Ω(N log N)Just like Mergesort, we’re dividing the work in half each level, so 
a log(n) relationship for height



Worst case: pivot always at the start
Worksheet Q: Give an example of an array input that  
would result in this behavior. 
 
What is the run time?



Worst case: pivot always at the start
Worksheet Q: Give an example of an array input that  
would result in this behavior. 

[1 2 3 4 5 6] 
 
What is the run time? 

O(n^2)

Now the height is N, instead of log(N)



OK but
• How is Quicksort the fastest sorting algorithm in practice if the worst case is 

O(n^2)? 

• We can just first randomly shuffle our data (takes N time, one operation) to avoid 
sorting on pre-sorted arrays. Then it’s extremely unlikely to ever run into the 
worst case scenario (you’re more likely to get struck by lightning).  

• Average case is Θ(nlogn). We won’t go into a detailed proof, but hopefully the next 
slide can convince you intuitively, and the following one empirically:



Argument #1: 10% Case
Suppose pivot always ends up at least 10% from either edge (not to scale).

N

N/10 9N/10

N/100 9N/100 9N/100 81N/100

Work at each level: O(N) 

● Runtime is O(NH).  
○ H is approximately log 10/9 N = O(log N) 

● Overall: O(N log N).

Punchline: Even if you are unlucky 
enough to have a pivot that never 
lands anywhere near the middle, 
but at least always 10% from the 
edge, runtime is still O(N log N).



Empirical Quicksort Runtimes

For more, see: http://www.informit.com/articles/article.aspx?p=2017754&seqNum=7 

Empirical histogram for quicksort compare counts (10,000 trials with N = 1000)

For N items: 

• Mean number of compares to complete Quicksort: ~2N ln N 
• Standard deviation: 

Lots of arrays take 12,000ish 
compares to sort with Quicksort.

A very small number take 15,000ish 
compares to sort with Quicksort.

Chance of taking 1,000,000ish compares is effectively zero.

http://www.informit.com/articles/article.aspx?p=2017754&seqNum=7


Things to remember about Quicksort
• ~39% more compares than mergesort but in practice it is faster because it does not move 

data much (no need to copy the array!).  

•  average,  worst, in practice faster than mergesort. 

• In-place sorting. 

• Not stable. (We swap!) 

• It’s mainly about choosing a smart pivot. 

• We just took the leftmost element 

• Tony Hoare’s algorithm actually uses 2 pointers that walk towards each other 

• The modern Quicksort used in practice in Java to sort arrays of primitives uses 2 pivot 
points instead (Yaroslavskiy, Bentley, and Bloch, 2009) 

• Java uses Timsort (modified Mergesort) to sort arrays of objects, because of stability

O(n log n) O(n2)

Q: Why would stability be important for objects but not primitives?



Philosophies to avoid worst case Quicksorts
• 1) Randomness: pick a random pivot instead of the leftmost pivot, or shuffle your 

data before starting 

• 2) Smarter pivot selection: calculate or approximate the media to serve as the 
pivot 

• 3) Knowing when to stop: use insertion sort if the array size gets small/recursion 
gets too deep 

• 4) Preprocessing the array: analyze array beforehand to see if Quicksort will be 
slow 

• This doesn’t really work in practice. You can’t just check if an array is sorted, 
because “almost” sorted arrays (e.g., [1, 2, 3, … 99, 98, 100]) are also basically 
O(n^2) time, and there’s no obvious way to see if an array is “almost” sorted



Sorting: the story so far

Which 
Sort

In 
place

Stable Best Average Worst Memory Remarks

Selection X      exchanges

Insertion X X
Fastest if almost 
sorted or small

Merge X
Guaranteed 

performance; stable

Quick X
            probabilistic 

guarantee; fastest in 
practice

Ω(n2) Θ(n2) O(n2) n

O(n2)Ω(n)

Ω(n log n) Θ(n log n) O(n log n)

O(n2)
n log n

Ω(n log n)

Θ(n2)

Θ(n log n)

Θ(1)

Θ(1)

Θ(n)

Θ(log n)

(call stack)



Lecture 14 wrap-up
• HW5: Compression part 2 due Tues 11:59pm 

• HW6: On Disk sort released (more motivation in lab tomorrow) 

• Quiz on sorting in lab tomorrow 

Resources
• Reading from textbook: Chapter 2.3 (pages 288–296) 

• Quicksort video: https://www.youtube.com/watch?v=Hoixgm4-P4M  

• Online textbook website - https://algs4.cs.princeton.edu/23quicksort/ (note we have 
a different implementation) 

• Practice problem behind this slide

https://www.youtube.com/watch?v=Hoixgm4-P4M
https://algs4.cs.princeton.edu/23quicksort/


Practice Problem 1
• What would the resulting array for the first call to partition be for the following 

array if instead the pivot was the rightmost element: [E,A,S,Y,Q,U,E,S,T,I,O,N].



Answer 1
• What would the resulting array for the first call to partition be for the following 

array if instead the pivot was the rightmost element: [E,A,S,Y,Q,U,E,S,T,I,O,N]. 

• [E, A, E, I, N, U, S, S, T, Y, O, Q] and pivot: at index 4.


