
CS62 Class 14: Priority Queues & Heapsort
Sorting

Priority queue: another representation
of a binary heap Heapsort: sorting using a binary heap

Agenda
• From last time: Continuing Binary Heaps

• Priority Queues

• Heapsort

• Heapsort Analysis

Heap-ordered binary trees aka binary heaps
• The largest key in a heap-ordered binary tree is found at the root!

Array rep is in-order traversal: [-, 100, 19, 36, 17, 3, 25, 1, 2, 7]

private void swim(int k) {
 while (k > 1 && a[k/2].compareTo(a[k])<0) {
 E temp = a[k];
 a[k] = a[k/2];
 a[k/2] = temp;
 k = k/2;
 }
}

Swim/promote/percolate up: code

We swim large nodes so they become parents
We do this by swapping with the parent if it’s larger

Sink/demote/top down heapify code
private void sink(int k) {
 while (2*k <= n) {
 int j = 2*k;
 if (j < n && a[j].compareTo(a[j+1])<0))
 j++;
 if (a[k].compareTo(a[j])>=0))
 break;
 E temp = a[k];
 a[k] = a[j];
 a[j] = temp;
 k = j;
 }
}

We sink small nodes so they become leaves
We do this by swapping with the larger child

So…why sink?

Binary heap: return (and delete) the maximum
• Delete max: Swap the root with the last

node (the rightmost child). Return and
delete the root. Sink the new root down.

• Why do we swap with the rightmost
child? Only element we can remove
without breaking completeness.

• Cost: At most compares.2 log n

Worksheet time!
• Delete and return the maximum of this binary

heap. 100

19 36

17 3 25 1

2 7

Worksheet answers
• First, swap with 7

7

19 36

17 3 25 1

2

100 removed & returned

36

19 7

17 3 25 1

2

• Then, sink 7 (find the bigger child)

Worksheet answers

36

19 25

17 3 7 1

2

• Then, sink 7 (find the bigger child)

• Done when 7 has no more bigger children

Worksheet time!
• Implement public E deleteMax().

• Assume precondition (n > 0) is true.

• Hint: you can do it in 4 lines of code.

• 1. find max

• 2. ??

• 3. ??

• 4. return max

100

19 36

17 3 25 1

2 7

Worksheet answers
 public E deleteMax() {
 E max = a[1];
 a[1] = a[n--];
 sink(1);
 return max;
}

max is always the root

swap root with the last element, decrement size

sink the last element to update tree

Binary heap operation run times
• Insertion is (because O(1) insert at the end, O(log n) swim up to proper

place).

• Delete max is (because O(1) swap last node to root, and then O(log n) sink
down to proper place).

• Space efficiency is (because of array representation).

O(log n)

O(log n)

O(n)

Priority Queues

Priority Queue
• An abstract data type of a queue where each element additionally has a priority.

• Two operations:

• Dequeue, aka delete the maximum

• Enqueue, aka insert

• How can we implement a priority queue efficiently?

Option 1: Unordered array
• The lazy approach where we defer doing work (deleting the maximum) until

necessary.

• Insert is and assumes we have the space in the array.

• Delete maximum is (have to traverse the entire array to find the maximum
element and exchange it with the last element).

O(1)

O(n)

Option 2: Ordered array
• The eager approach where we do the work (keeping the array sorted) up front to

make later operations efficient.

• Insert is (we have to find the index to insert and shift elements to perform
insertion).

• Delete maximum is (just take the last element which will be the maximum).

O(n)

O(1)

Option 3: Binary heap
• Will allow us to both insert and delete max in running time.

• There is no way to implement a priority queue in such a way that insert and
delete max can be achieved in running time.

• Priority queues are synonymous to binary heaps.

O(log n)

O(1)

Worksheet time!
1. Insert P (16)

2. Insert Q (17)

3. Insert E (5)

4. Delete Max

5. Insert X (24)

6. Insert A (1)

7. Insert M (13)

8. Delete Max

9. Insert P (16)

10. Insert L (12)

11. Insert E (5)

12.Delete Max

Given an empty binary heap that represents a priority queue,
perform the following operations. Ideally draw the binary tree
at each step, but compare with your neighbors what it looks
like in the end, and what the 3 delete maxes return.

1. Insert P

2. Insert Q

3. Insert E

4. Delete max

5. Insert X

6. Insert A

7. Insert M

8. Delete max

9. Insert P

10. Insert L

11. Insert E

12. Delete max

• Look into MaxPQ class https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/MaxPQ.java.html

Worksheet answers

https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/MaxPQ.java.html

Heapsort

Basic plan for heap sort
• Given an array to be sorted, use a priority queue to develop a sorting method

that works in two steps:

• 1) Heap construction: build a binary heap with all keys that need to be sorted.

• 2) Sortdown: repeatedly remove and return the maximum key.

• Basically, we sort an array by constructing a binary heap and continually
removing the max (root).

n

 Naïve heap constructionO(n log n)
• Insert n elements, one by one, swim up to their appropriate position.

• Remember that insert() in a binary heap takes O(log n) time because swim takes O(log
n) time)

• We can do better!

 Heap constructionO(n)
• Recall sink(k): small nodes who are parents are sunken down to their proper place

(switched with their larger child)

• Key insight: After sink(k) completes, the subtree rooted at k is a heap. Basically,
performing sink guarantees the subtree at node k is a valid binary heap because of the
switches.

 Heap construction algorithmO(n)
• 1. Insert all nodes as is, in indices 1 to n (e.g., starting point is the first element is the root,

the second element is the left child, the third is the right child, etc.). This is a binary tree
definitely not in heap order.

• 2. Sink each internal node, ignoring all the leaves (indices n/2+1,…,n). Remember the
leaves will be placed in correct order since they are subtrees of the internal nodes.

Example: SORTEDEXAMPLE
n=11, so k=5 initially

Why “bottom up” and starting with the
lowest internal node first?
Because once the smaller subtrees are
correct, they’re guaranteed to stay correct
when we sink down their parents.

Why O(n)? Intuition: A single sink worst case is O(log n). But we don’t sink every node.
Most internal nodes are near the bottom of the heap, so it is just 1 swap (a
constant time operation). In total, we do ~2n swaps and compares maximum.

Worksheet time!
• Run the first step of heapsort, heap

construction, on the array [2,9,7,6,5,8]. What is
the resultant binary heap?

Worksheet answer

2

9 7

6 5 8

Step one: just in array order

2

9 8

6 5 7

2. sink(3, 6)

1

2 3

3. sink(2, 6)

2

9 8

6 5 7

1

2 3

(no action needed)

Worksheet answer
4. sink(1,6)

9

2 8

6 5 7

1

2 3

part 1: swap 2 & 9 (9 > 8)

9

6 8

2 5 7

1

2 3

part 2: swap 6 & 2

Final heap!

Sortdown
• Now that we have an ordered binary heap, all that remains is to pull out the roots

(each subsequent max element).

• Recall: deleteMax() in binary heaps swaps the last element to be the new root and
sinks that down.

• Key insight: After each iteration of sortDown, the array consists of a heap-ordered
subarray of k elements, followed by a sub-array of n-k elements in final order.

While the heap has > 1 element,

swap the root with the last element

sink the new root appropriately

Sortdown example

n = 11, so first we call swap
(or “exch”) on (1, 11), then sink(1, 10)

Swap X with E, sink down E -> T is new root
return X

1

2 3

4 5 6 7

8 9 10 11

swap T with E, sink down E -> S is new root
return T, X

swap S with E, sink down E -> R is new root
return S, T, X

swap R with M, sink M -> P is
new root

return R, S, T, X

swap P with A, sink A -> O
is new root

return P, R, S, T, X

swap O with E, sink E -> M
is new root

return O, P, R, S, T, X

swap M with E, sink E -> L is
new root

return M, O, P, R, S, T, X

swap L with A, sink A -> E is
new root

return L, M, O, P, R, S, T, X

swap E with E, sink E (no
action) -> E is new root

return E, L, M, O, P, R, S, T, X

swap E with A, sink A (A is just a
single node, nothing to sink)

return E, E, L, M, O, P, R, S, T, X

because n = 1, we’re done

return A, E, E, L, M, O, P, R, S, T, X

Worksheet time!
• Given the heap you constructed before, run the

second step of heapsort, sortdown, to sort the
array [2,9,7,6,5,8].

Worksheet answer

9

6 8

2 5 7

1

2 3

4 5 6

Starting heap

1. swap(1,6) sink(1,5) means
swap 9 & 7 and sink 7

8

6 7

2 5

2. swap(1,5) sink(1,4) means
swap 8 & 5 and sink 5

7

6 5

2

Return: 9 Return: 8, 9

Worksheet answer

3. swap(1,4) sink(1,3) means
swap 7 & 2 and sink 2

6

2 5

Return: 7, 8, 9

4. swap(1,3) sink(1,2) means
swap 6 & 5 and sink 5 (no sinking needed)

5

2

Return: 6, 7, 8, 9

4. swap(1,2) sink(1,1) means
swap 5 & 2 and sink 2 (no sinking needed, single node)

Return: 5, 6, 7, 8, 9

5. done! Return: 2, 5, 6, 7, 8, 9

2

5 6

7 8 9

Heapsort analysis

Heapsort analysis
• Summary: heapsort has two steps, heap construction and sort down.

• Heap construction (the fast version) makes exchanges and compares.

• Sort down and therefore the entire heapsort exchanges and compares.

• Each sink() is logn time, and we do n-1 sinks

• worst case. What about best case? Average case?

• The same

• In-place (no need to copy anything).

• Not stable (we are swapping elements)

O(n) O(n)

O(n log n)

O(n log n)

Heapsort analysis
• Review:

• Mergesort: not in place, requires linear extra space.

• Quicksort: quadratic time in worst case.

• Heapsort is optimal both for time and space in terms of Big-O, but:

• Inner loop is longer than quicksort because of sink.

• Poor use of cache because it accesses memory in non-sequential manner,
jumping around the heap/array (more in CS105).

• In general, quicksort is preferred when it comes to speed, and mergesort is
preferred when it comes to stability.

Sorting: we’re done!
Which

Sort
In

place
Stable Best Average Worst Memory Remarks

Selection X exchanges

Insertion X X
Fastest if almost
sorted or small

Merge X
Guaranteed

performance; stable

Quick X
 probabilistic

guarantee; fastest in
practice

Heap X
Guaranteed

performance; in place

Ω(n2) Θ(n2) O(n2) n

O(n2)Ω(n)

Ω(n log n) Θ(n log n) O(n log n)

O(n2)
n log n

Ω(n log n)

Θ(n2)

Θ(n log n)

Θ(1)

Θ(1)

Θ(n)

Θ(log n)

Ω(n log n) Θ(n log n) O(n log n) Θ(1)

Lecture 14 wrap-up
• HW7: Autocomplete sort due Tues 11:59pm

• Checkpoint 2 in 2 weeks: Mon 11/3. Please schedule SDRC proctoring now.
Will cover up to next Mon’s lecture on B-Trees. No HW week of checkpoint
(next HW, HW8: Hex-a-pawn is about binary search trees)

Resources
• Reading from textbook: 2.5 (336-344)

• Heapsort visualization: https://algostructure.com/sorting/heapsort.php

• More visualization to compare the n and nlogn create heap approaches: https://
visualgo.net/en/heap

• Practice problems behind this slide

https://algostructure.com/sorting/heapsort.php
https://visualgo.net/en/heap
https://visualgo.net/en/heap

Practice Problem 1
• Suppose that the sequence 16, 18, 9, 15, *, 18, *, *, 9, *, 20, *, 25, *, *, *, 17, 21, 5,

*, *, *, 21, *, 5 (where a number means insert and an asterisk means delete the
maximum) is applied to an initially empty priority queue. Give the sequence of
numbers returned by the delete maximum operations.

ANSWER 1
• Suppose that the sequence 16, 18, 9, 15, *, 18, *, *, 9, *, 20, *, 25, *, *, *, 17, 21, 5,

*, *, *, 21, *, 5 (where a number means insert and an asterisk means delete the
maximum) is applied to an initially empty priority queue. Give the sequence of
numbers returned by the delete maximum operations.

• 18, 18, 16, 15, 20, 25, 9, 9, 21, 17, 5, 21

Code for priority queue option 1: Unordered array
public class UnorderedArrayMaxPQ<Key extends Comparable<Key>> {
 private Key[] pq; // elements
 private int n; // number of elements

 // set inititial size of heap to hold size elements
 public UnorderedArrayMaxPQ(int capacity) {
 pq = (Key[]) new Comparable[capacity];
 n = 0;
 }

 public boolean isEmpty() { return n == 0; }
 public int size() { return n; }
 public void insert(Key x) { pq[n++] = x; }

 public Key delMax() {
 int max = 0;
 for (int i = 1; i < n; i++){
 if (pq[max].compareTo(pq[i]) < 0) {
 max = i;
 }
 }
 Key temp = pq[max];
 pq[max] = pq[n-1];
 pq[n-1] = temp;

 return pq[--n];
 }
}

Practice problem 2
1. Insert P

2. Insert Q

3. Insert E

4. Delete max

5. Insert X

6. Insert A

7. Insert M

8. Delete max

9. Insert P

10. Insert L

11. Insert E

12. Delete max

Given an empty array of capacity 10, perform the following
operations in a priority queue based on an unordered array
(lazy approach):

Answer 2

Priority queue option 2: Ordered array
public class OrderedArrayMaxPQ<Key extends Comparable<Key>> {
 private Key[] pq; // elements
 private int n; // number of elements

 // set inititial size of heap to hold size elements
 public OrderedArrayMaxPQ(int capacity) {
 pq = (Key[]) (new Comparable[capacity]);
 n = 0;
 }

 public boolean isEmpty() { return n == 0; }
 public int size() { return n; }
 public Key delMax() { return pq[--n]; }

 public void insert(Key key) {
 int i = n-1;
 while (i >= 0 && key.compareTo(pq[i]) < 0) {
 pq[i+1] = pq[i];
 i--;
 }
 pq[i+1] = key;
 n++;
 }
}

Practice Problem 3
1. Insert P

2. Insert Q

3. Insert E

4. Delete max

5. Insert X

6. Insert A

7. Insert M

8. Delete max

9. Insert P

10. Insert L

11. Insert E

12. Delete max

Given an empty array of capacity 10, perform the following
operations in a priority queue based on an ordered array
(eager approach):

Answer 3

Practice Problem 4: Heapsort
• Given the array [93,36,1,46,91,92,29,60,67,6,45,11,28], apply heap sort. Visualize

what the heap will initially look like (apply the O(n) heap construction algorithm)
and visualize it during sortdown as well.

ANSWER 4
• Given the array [93,36,1,46,91,92,29,60,67,6,45,11,28], apply heap sort. Visualize

what the heap will initially look like (apply the O(n) heap construction algorithm)
and visualize it during sortdown as well.

• Heap construction step:

ANSWER 4: sortdown
• Extract max (93)

• Extract max (92)

ANSWER 4
• Extract max (91)

• Extract max (67)

ANSWER 4
• Extract max (60)

• Extract max (46)

ANSWER 4
• Extract max (45)

• Extract max (36)

ANSWER 4
• Extract max (29)

• Extract max (28)

ANSWER 4
• Extract max (11)

• Extract max (6)

• Extract max (1)

