CS62 Class 14: Priority Queues & Heapsort

Element with the Dequeue Arcay -n

highest priority

Tnitial Elemem's Mox Hep«p

Enqueue i After Bu]ldinﬁ max-heap, the elements n +he arcoy will be:

.]| s
Priority queue: another representation

of a binary heap Heapsort: sorting using a binary heap

Agenda

* From last time: Continuing Binary Heaps
* Priority Queues
* Heapsort

* Heapsort Analysis

Heap-ordered binary trees aka binary heaps

» The largest key in a heap-ordered binary tree is found at the root!

100
SDEERED

Array rep is in-order traversal: [-, 100, 19, 36, 17/, 3, 25, 1, 2, 7]

Swim/promote/percolate up: code

private void swim(int k) {

while (k > 1 & & a[k/2].compareTo(al[k])<0) {

E temp = a[k];
alk] = al[k/2];
alk/2] = temp;
k = k/2;

We swim large nodes so they become parents
We do this by swapping with the parent if it's larger

Ef XI* ORCI s
1
-\
f J
. '/'S\/ \'(_R.\'
. w
N/ S \Iy

Sink/demote/top down heapify code

private void sink(int k) {
while (2*k <= n) {

int j = 2%k; .m.'r;l, n.fi."u;"! -
1f (J < n & al[j].compareTo(Cal[j+1])<0)) R T (T)
:.++; : - / N -/\f .
if (a[k].compareTo(a[j1)>=0)) “(H) 'R)
break;[] .r‘T// \>¥Tﬁu /‘4? S%&\
E temp = a k ; : ” 3 ' '_./' V)
alk] = al3]; LN N
Q:J: = temp; "\E/" l‘\I."’ "\!.’) "_-/.
k = ja -
} '/I\'
} 2 (e / \ ~\
e)\/ (R)
. :’P:/ STn) (0) (A
We sink small nodes so they become leaves Z- » Z—/ —
: : : : - -~ 10 ~ .
We do this by swapping with the larger child l:E/'- (1) (H) '.\G_\,'

So...why sink?

Binary heap: return (and delete) the maximum

remove the maximum
» Delete max: Swap the root with the last (1)~ ke to remore
node (the rightmost child). Return and \'
delete the root. Sink the new root down.

» Why do we swap with the rightmost
child? Only element we can remove
without breaking completeness.

» Cost: At most 2logn compares.

Worksheet time!

* Delete and return the maximum of this binary

heap.

Worksheet answers

» First, swap W|th 7/ » Then, sink 7 (find the blgger child)

‘fé@ % ‘fé@

removed & returned

Worksheet answers
* Then, sink 7 (find the bigger child)

o
ofo Yo

° - Done when 7 has no more bigger children

Worksheet time!

» Implement public E deleteMax().
» Assume precondition (n > 0) is true.
 Hint: you can doitin 4 lines of code.
1. find max
2.77
3.77

4. return max

Worksheet answers

public E deleteMax() { remove the maximum @ «— key to remove

E max = a[l]; maxisalwaysthe root
all] = a[n--] , Swap root with the last element, decrement size

S1 nk(l) ; sink the last element to update tree

h key
return max; & @O © @‘—ex:'igfgrgofy
@ - violates

heap order

p) (0) (A

remiove node

T = from heap

Binary heap operation run times

* Insertion is O(logn) (because O(1) insert at the end, O(log n) swim up to proper
place).

» Delete max is O(log n) (because O(1) swap last node to root, and then O(log n) sink
down to proper place).

» Space efficiency is O(n) (because of array representation).

Alg() Il th 11 S ROBERT SEDGEWICK | KEVIN WAYNE

2.4 BINARY HEAP DEMO

Algorithms

ROBERT SEDGEWICK | KEvVIN WAYNE

http://algs4.cs.princeton.edu

Priority Queues

Priority Queue

» An abstract data type of a queue where each element additionally has a priority.

- Two operations:

» Dequeue, aka delete the maximum

» Enqueue, aka insert

- How can we implement a priority queue efficiently?

highest priority lowest priority highest priority lowest priority
element element element element

. v v v

‘oon N Bon

min-priority queue max-priority queue

Option 1: Unordered array

* The lazy approach where we defer doing work (deleting the maximum) until
necessary.

* Insert is O(1) and assumes we have the space in the array.

» Delete maximum is O(n) (have to traverse the entire array to find the maximum
element and exchange it with the last element).

Option 2: Ordered array

» The eager approach where we do the work (keeping the array sorted) up front to
make later operations efficient.

* |Insert is O(n) (we have to find the index to insert and shift elements to perform
Insertion).

» Delete maximum is O(1) (just take the last element which will be the maximum).

Option 3:

+ Will allow us to both insert and delete max in O(log n) running time.

* There is no way to implement a priority queue in such a way that insert and
delete max can be achieved in O(1) running time.

* Priority queues are synonymous to binary heaps.

Worksheet time!

A

. Insert P (16)
Insert Q (17)
Insert E (5)
Delete Max
Insert X (24)
Insert A (1)
Insert M (13)
Delete Max
Insert P (16)
10.Insert L (12)
11.Insert E (5)
12.Delete Max

o © N o U A WD

Given an empty binary heap that represents a priority queue,
perform the following operations. Ideally draw the binary tree
at each step, but compare with your neighbors what it looks
like in the end, and what the 3 delete maxes return.

Worksheet answers

1. Insert P insert ¥ ())
remove max (X) m (E)
2. Insert Q nsert Q D
3. InsertE P
4 Delete max insert E ﬁ\@ insert P
5. Insert X
remove max (Q) G
6. Insert A (E) e L
7. Insert M icort X (X,
8. Delete max £ R &
9. Insert P ccort A G O o
10. Insert L @
1. Insert E , remove max (P) O
insert M 0
12. Delete max ®% @ Q

» Look into MaxPQ class https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4d/MaxPQ.java.htm

https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/MaxPQ.java.html

Heapsort

Basic plan for heap sort

» Given an array to be sorted, use a priority queue to develop a sorting method
that works in two steps:

. build a binary heap with all n keys that need to be sorted.
. repeatedly remove and return the maximum key.

» Basically, we sort an array by constructing a binary heap and continually
removing the max (root).

O(n log n) Naive heap construction

 Insert n elements, one by one, swim up to their appropriate position.

* Remember that insert() in a binary heap takes O(log n) time because swim takes O(log

n) time)
private void swim(int k) {
while (k > 1 && alk / 2].compareTo(alk]) < @) {
temp = alk];
k] = alk / 2];
k / 2] = temp;
k =k / 2:

« We can do better!

QU m

Q

}

public void insert(E x) 1
al++n] = x;
swim(n);

O(n) Heap construction

+ Recall sink(k): small nodes who are parents are sunken down to their proper place
(switched with their larger child)

. . After sink(k) completes, the subtree rooted at k is a heap. Basically,
performing sink guarantees the subtree at node k is a valid binary heap because of the

switches.

private void sink(int k) {
while (2 % k <= n) {
int J = 2 % k;
if (j < n & aljl.compareTo(alj + 1]) < 0) j++;
if (alk].compareTo(alj]l) >= @) break;
E temp = alkl];

alk] = aljl;
aljl = temp;
kK = 73;

O(n) Heap construction algorithm

» T.Insert all nodes as is, in indices 1 to n (e.g., starting point is the first element is the root,
the second element is the left child, the third is the right child, etc.). This is a binary tree
definitely not in heap order.

» 2. Sink each internal node, ignoring all the leaves (indices n/2+1,...,n). Remember the
leaves will be placed in correct order since they are subtrees of the internal nodes.

3 public class HeapSort {

4 public static <E extends Comparable<E>> void sort(E[] input) {
5 int n = 1nput.length;

6

7 // create a l-indexed array to make the math cleaner for this demo
8 // (though you shouldn't do this in practice)

9 E[] a = (EL]) new Comparableln + 11;

10 System.arraycopy(input, @, a, 1, n);

11

12 // Heap construction in 0(n)

13 for (int k = n / 2; k >= 1; k—) {

14 sink(a, k, n);

15 F

Example: SORTEDEXAMPLE ;.00 s ™

Because once the smaller subtrees are
correct, they're guaranteed to stay correct
when we sink down their parents.

for (int k =n / 2; k >= 1; k—) { n=11, so k=5 initially

heap construction | ‘
sink(4, 11)

. ; l
o Tg "LE)) l\x/i ‘\A/l - >
- - - - ; ~
5/'23 \::/‘]..s’\ (['é ‘_P‘/'
'\.M) '\.P./' '\.L./' ‘\.E./'
starting point (arbitrary order,
sink(3, 11)

sink(5, 11)

L
>

|\E/l

resul! (heap-ordered,

Why O(n)?

for (int k=n / 2; k >= 1; k—) {

heap construction

starting point (arbitrary order,

sink(5, 11)

Intuition: A single sink worst case is O(log n). But we don't sink every node.
Most internal nodes are near the bottom of the heap, so it is just 1 swap (a
constant time operation). In total, we do ~2n swaps and compares maximum.

sink(4, 11)

@
ORG

sink(3, 11)

resul! (heap-ordered,

Worksheet time!

* Run the first step of heapsort, heap
construction, on the array [2,9,7,6,5,8]. What is
the resultant binary heap?

Worksheet answer

Step one: just in array order 2. sink(3, 6)

3. sink(2, 6)

(no action needed)

Worksheet answer

4. sink(1,6)

2 ° 3 ° 2 ° 3 ° Final heap!

part 1: swap 2 & 9 (9 > 8) part 2: swap 6 & 2

Sortdown

* Now that we have an ordered binary heap, all that remains is to pull out the roots
(each subsequent max element).

* Recall: deleteMax() in binary heaps swaps the last element to be the new root and
sinks that down.

‘ . After each iteration of sortDown, the array consists of a heap-ordered
subarray of k elements, followed by a sub-array of n-k elements in final order.

// Sorting in O(nlogn)

while (n > 1) { While the heap has > 1 element,
swap(a, 1, n—); swap the root with the last element
sink(a, 1, n); sink the new root appropriately

LX;W(- --1 [
sink(1l, 10) — N
(P \I’S{
(O l[_;' I:R/l I\/‘;;l
E)

Sortdown example

n =11, so first we call swap
(or "exch”) on (1, 11), then sink(1, 10)

Swap X with E, sink down E -> T is new root
return X

swap T with E, sink down E -> S is new root
return T, X

swap S with E, sink down E -> R is new root
return S, T, X

while (n > 1) {
swap(a, 1, n——);
sink(a, 1, n);

exch(l, 53’ (P)
s1nk (] ! o
SINKL L, ._/_ \,_.\
' ”\\V l?l
r_{ L ©® (
R
excn ': .. ’ .".] /O\'
> | Nk ': 1 " 1 -
1 X D, = \- -
| fv1 | t/.
(‘/\ ' I:\' /‘.Z
N S '\!_:/'
exch(l, 6) M

sink(1l, 5) ‘“vf”””QJ/\\YE\

exch(l, 5) (1)
sink(1, 4) _/__

exch(l, 4 /t\

sink(1l, 3) _»”,/”&-
4 —

A E)

7

L

swap R with M, sink M -> P is
new root

Y returnR,S T, X

swap P with A, sink A-> 0O
IS new root

" returnP,R S T, X

swap O with E, sink E -> M
IS New root

return O, P, R, S, T, X

swap M with E, sink E-> L is
new root

return M, O, P, R, S, T, X

swap L with A, sink A->E is
new root

returnL, M, O, P, R, S, T, X

exch(l,
sink(1l,

exch(l,
sink(1l,

3) (E)
2) -
2) n
1) Ly
-
CA
‘E

M

swap E with E, sink E (no
action) -> E Is new root

return g, L M, O,P,R,S, T, X

swap E with A, sink A(Ais just a
single node, nothing to sink)

return g, E,L M, O, P,R S, T, X

because n =1, we're done
return A, E, E,L,M, O,P,R,S, T, X

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

sink 1

Worksheet time!

* Given the heap you constructed before, run the
second step of heapsort, sortdown, to sort the
array [2,9,7,6,5,8].

Worksheet answer

Return: 9 Return: 8, 9
1. swap(1,6) sink(1,5) means 2. swap(1,5) sink(1,4) means
swap 9 & 7 and sink 7/ swap 8 & 5 and sink 5

Starting heap p
1

(o) a(e) © ©
Sob &3

L(q) L

Worksheet answer

Return: 7, 8, 9 Return: 6, /7, 8, 9
3. swap(1,4) sink(1,3) means 4. swap(1,3) sink(1,2) means
swap 7 & 2 and sink 2 swap 6 & 5 and sink 5 (no sinking needed)

5 6
@ Return: 5,6, 7, 8,9

4. swap(1,2) sink(1,1) means
swap 5 & 2 and sink 2 (no sinking needed, single node) 5. done! Return: 2,5,6,7, 8,9

Heapsort analysis

Heapsort analysis

» Summary: heapsort has two steps, heap construction and sort down.

» Heap construction (the fast version) makes O(n) exchanges and O(n) compares.

+ Sort down and therefore the entire heapsort O(nlogn) exchanges and compares.
 Each sink() is logn time, and we do n-1 sinks

* O(nlogn) worst case. What about best case? Average case?
» The same

* In-place (no need to copy anything).

» Not stable (we are swapping elements)

Heapsort analysis

* Review:
» Mergesort: not in place, requires linear extra space.
» Quicksort: quadratic time in worst case.

» Heapsort is optimal both for time and space in terms of Big-O, but:
 Inner loop is longer than quicksort because of sink.

» Poor use of cache because it accesses memory in non-sequential manner,
jumping around the heap/array (more in CS105).

* In general, quicksort is preferred when it comes to speed, and mergesort is
preferred when it comes to stability.

Sorting: we’re done!

Which
Stable Best Average Worst Memory Remarks
Sort place
Selection Q(nz) @(nz) O(nz) @(1) n exchanges
; 2 2 Fastest if almost
Insertion (n) O(n) O(n*) O(1) corted or small
Guaranteed
Merge Q(nlogn)| O(logn)| Omlogn), O(n) verformance: stable
nlog n probabilistic
Quick Q(nlogn)| O(nlogn) O(n?) O(log n) guarantee; fastest in
practice
Heap Q(nlogn)| Onlogn)| Omlogn) O() Guaranteed

performance; in place

Lecture 14 wrap-up

» HW7/: Autocomplete sort due Tues 11:59pm

* Checkpoint 2 in 2 weeks: Mon 11/3. Please schedule SDRC proctoring now.
Will cover up to next Mon’s lecture on B-Trees. No HW week of checkpoint
(next HW, HW8: Hex-a-pawn is about binary search trees)

Resources
* Reading from textbook: 2.5 (336-344)

* Heapsort visualization:

* More visualization to compare the n and nlogn create heap approaches:

* Practice problems behind this slide

https://algostructure.com/sorting/heapsort.php
https://visualgo.net/en/heap
https://visualgo.net/en/heap

Practice Problem 1

» Suppose that the sequence 16, 18,9, 15, *, 18, *, *, 9, *, 20, *, 25, *, *, *, 17, 21, 5,
* * * 21, * 5(where a number means insert and an asterisk means delete the

maximum) is applied to an initially empty priority queue. Give the sequence of
numbers returned by the delete maximum operations.

ANSWER 1

» Suppose that the sequence 16, 18,9, 15, *, 18, *, *, 9, *, 20, *, 25, *, *, *, 17, 21, 5,
* * * 21, * 5(where a number means insert and an asterisk means delete the

maximum) is applied to an initially empty priority queue. Give the sequence of
numbers returned by the delete maximum operations.

+ 18,18, 16, 15, 20, 25,9, 9, 21,17, 5, 21

Code for priority queue option 1: Unordered array

public class UnorderedArrayMaxPQ<Key extends Comparable<Key>> {
private Key[] pq; // elements
private int n; // number of elements

// set 1nititial size of heap to hold size elements
public UnorderedArrayMaxPQ(int capacity) {

pq = (Key[]) new Comparable[capacity];

n = 0;

¥

public boolean isEmpty() { return n == 0;
public int size() { return n; }
public void insert(Key x) { pqgln++] = Xx; }

public Key delMax() {
int max = 0;
for (int 1 =1; 1 < n; 1++){
1f (pg[max].compareTo(pqg[1]) < @) {
max = 1;
ks

¥
Key temp = pqg[max];

pqlmax] = pq[n-1];
pgqln-1] = temp;

return pqgl[--n];

A

. Insert P
Insert Q
Insert E
Delete max
Insert X
Insert A
Insert M

Delete max

o © N o U A WD

Insert P
10. Insert L
11. Insert E

12. Delete max

Practice problem 2

0 L X 3 4 56 F+ & 9

Given an empty array of capacity 10, perform the following
operations in a priority queue based on an unordered array
(lazy approach):

p | msert 1P

0 L R 3 4 s6 F 8 1
Answer 2 Ta nsert €

0 L1 R 3 4 56 F &89

PIQ|E insert E

0 L X 3 4 56 F 89

P| &K delete -max > 6

D L R 3 4 s6 F 8 9

PE[}< LM&EV%X

0 L X 3 4 s6 F 8 9

PlE XA Lmser%/ﬁ(

0 L X 3 4 56 F &9

PEL)(J‘PN LMSEV%M

0 1 X 3 4 56 £ &8 9

PlEMI|AIX delete-moor - X

0 L 3 4 56 F 89

PEM}FP imsert

0 L R 3 4 56 F 89

PEM%PL imsert |

0 L1 X 3 4 56 F 889

PEM%PLE imsert £

0 L X 3 4 56 F &89

El[EAP]L delete-marx—=[

0 L R34 56 F 89

Priority queue option 2: Ordered array

public class OrderedArrayMaxPQ<Key extends Comparable<Key>> {
private Key[] pq; // elements
private int n; // number of elements

// set 1nititial size of heap to hold size elements
public OrderedArrayMaxPQ(int capacity) {

pg = (Key[]) (new Comparablel[capacity]);

n =20;

public boolean isEmpty() { return n == 0; }
public int size() { return n; }
public Key delMax() { return pq[--n]; }

public void insert(Key key) {

int 1 = n-1;

while (1 >= 0 && key.compareTo(pqg[1i]) < 0) {
pgl1i+1] = pq[i];
1--;

ks

pa[i+1] = key;

N++;

A

. Insert P
Insert Q
Insert E
Delete max
Insert X
Insert A
Insert M

Delete max

o © N o U A WD

Insert P
10. Insert L
11. Insert E

12. Delete max

Practice Problem 3

0 L X 3 4 56 F+ & 9

Given an empty array of capacity 10, perform the following
operations in a priority queue based on an ordered array
(eager approach):

5 | imsert PP
Answer 3 0 1235456 %51

PlQ insert &)

0 L X34 56 F 89

E1P|G) inser+ &

0 L X 5 4 56 £ 89

£ P |5 delete -max =@

0 L R 3 4 s6 F 8 9

EPL)(insert X

0 4L R 3 4 56 F 8 9

AlEIP] X imsert A

0 L X3 4 56 F 89

AlEIMIPIX Lmser%M

0 L &= &4 56 F & 9

AlEIM|P X delete-masx - X

0 4 X S5 4 56 F 89

AEWPF imsert -

0 4L R 3 4 s 6 F 89

ﬂrELMPP (msert |

0 L X 3 4 56 F 89

AlEIEILIM]PIP insert £

0 4 R 3 4 56 F & 9

AETETLIM P delete - max—=FP

OLQ34S6¥89

Practice Problem 4: Heapsort

* Given the array [93,36,1,46,91,92,29,60,67,6,45,11,28], apply heap sort. Visualize
what the heap will initially look like (apply the O(n) heap construction algorithm)
and visualize it during sortdown as well.

ANSWER 4

* Given the array [93,36,1,46,91,92,29,60,67,6,45,11,28], apply heap sort. Visualize
what the heap will initially look like (apply the O(n) heap construction algorithm)
and visualize it during sortdown as well.

» Heap construction step:

ANSWER 4: sortdown

» Extract max (93)

ANSWER 4

» Extract max (91)

ANSWER 4

» Extract max (60)

ANSWER 4

« Extract max (45)

4

» Extract max (36)

ANSWER 4

» Extract max (29)

1y
o 2

4

» Extract max (23)

ANSWER 4

« Extract max (11)

» Extract max (6)

®

1

» Extract max (1)

