
CS62 Class 13: Binary Trees & Heaps
Trees

Binary tree: ≤ 2 children per node Heap: ordered binary tree

Agenda
• Binary Trees

• Tree Traversals

• Binary Search

• Binary Heaps

Binary trees

Trees in Computer Science
• Abstract data types that store elements hierarchically rather than linearly.

• Examples of hierarchical structures:

• Organization charts for

‣ Companies (CEO at the top followed by CFO, CMO, COO, CTO, etc).

‣ Universities (Board of Trustees at the top, followed by President, then by VPs,
etc).

• Sitemaps (home page links to About, Products, etc. They link to other pages).

• Computer file systems (user at top followed by Documents, Downloads, Music,
etc. Each folder can hold more folders.).

Trees in Computer Science
• Hierarchical: Each element in a tree has a single parent (immediate ancestor) and

zero or more children (immediate descendants).

Real tree root and leaves

CS tree root and leaves

Definition of a tree
• A tree is a set of nodes that store elements based on a parent-child relationship:

• If is non-empty, it has a node called the root of , that has no parent.

‣ Here, the root is A.

• Each node , other than the root, has a unique parent node . Every node with
parent is a child of .

‣ Here, E’s parent is C and F has two children, H and I.

T

T T

v u
u u

Tree Terminology
• Edge: a pair of nodes s.t. one is the parent of the

other, e.g., (K,C).

• Parent node is directly above child node, e.g., K is
parent of C and N.

• Sibling nodes have same parent, e.g., A and F.

• K is ancestor of B.

• B is descendant of K.

• Node plus all descendants gives subtree.

• Nodes without descendants are called leaves or
external. The rest are called internal.

More Terminology
• Simple path: a series of distinct nodes s.t. there are edges

between successive nodes, e.g., K-N-V-U.

• Path length: number of edges in path, e.g., path K-C-A has
length 2.

• Height of node: length of longest path from the node to a
leaf, e.g., N’s height is 2 (for path N-V-U).

• Height of tree: length of longest path from the root to a
leaf. Here 3.

• Degree of node: number of its children, e.g., F’s degree is 2.

• Degree of tree (arity): max degree of any of its nodes. Here
is 2.

• Binary tree: a tree with arity of 2, that is any node will
have 0-2 children.

Even More Terminology
• Level/depth of node defined recursively:

• Root is at level 0.

• Level of any other node is equal to level of
parent + 1.

• It is also known as the length of path from root
or number of ancestors excluding itself.

• Height of a node defined recursively:

• If leaf, height is 0.

• Else, height is max height of child + 1.

• The height of a binary tree is equal to the level of
its deepest leaf node.

http://code.cloudkaksha.org/binary-tree/types-binary-tree

Full and complete

• Full (or proper): a
binary tree whose
every node has 0 or 2
children.

• Complete: a binary
tree with minimal
height. Any holes in
tree would appear at
last level to the right,
i.e., all nodes of last
level are as left as
possible.

Practice Time: This tree is
• A: Full

• B: Complete

• C: Full and Complete

• D: Neither Full nor Complete

Its height is

• 1

• 2

• 3

Answer
• A: Full

• B: Complete

• C: Full and Complete

• D: Neither Full nor Complete

Its height is

• 1

• 2

• 3

Practice Time: This tree is
• A: Full

• B: Complete

• C: Full and Complete

• D: Neither Full nor Complete

The degree of the tree is

• 0

• 1

• 2

Answer
• A: Full

• B: Complete

• C: Full and Complete

• D: Neither Full nor Complete

The degree of the tree is

• 0

• 1

• 2

Counting in binary trees
• Lemma: if is a binary tree, then at level , has

nodes.

• E.g., at level 2, at most 4 nodes (A, F, M, V)

• Theorem: If has height , then # of nodes in
satisfy: .

• Equivalently, if has nodes, then
.

• Worst case: When or , the tree looks
like a left or right-leaning “stick”.

• Best case: When a tree is as compact as possible
(e.g., complete) it has height.

T k T ≤ 2k

T h n T
h + 1 ≤ n ≤ 2h+1 − 1

T n
log(n + 1) − 1 ≤ h ≤ n − 1

h = n − 1 O(n)

O(log n)

Worksheet time!
• Follow the instructions in the worksheet about the following tree:

Worksheet answers
• Root: 2

• Leaves: 2 (in black), 10, 5, 11, 4

• Internal nodes: 2 (red), 7, 5, 6, 9

• Siblings of 10: 2, 6

• Parent of 6: 7

• Children of 2 (in red): 7, 5

• Ancestors of 10: 7 and 2 (in red)

• Descendants of 7: 2, 10, 6, 5, 11

• Length of path 2 to 4: 3

• Height of 7: 2

• Height of tree: 3

• Degree of 7: 3

• Arity/Degree of tree: 3

• Level/depth of 11: 3

Tree traversal

Basic idea behind a simple Binary Tree implementation

public class BinaryTree<E> {
private Node root;

private class Node {
private E element;

private Node left;
private Node right;  

public Node(Node left, Node right, E element) {
this.left = left;
this.right = right;
this.element = item;

}
 }
}

Pre-order traversal

• Preorder(Tree)

• Mark root as visited

• Preorder(Left Subtree)

• Preorder(Right Subtree)

• K C A B F D H N M V U

In-order traversal
• Inorder(Tree)

• Inorder(Left Subtree)

• Mark root as visited

• Inorder(Right Subtree)

• A B C D F H K M N U V

Post-order traversal
• Postorder(Tree)

• Postorder(Left Subtree)

• Postorder(Right Subtree)

• Mark root as visited

• B A D H F C M U V N K

Level-order traversal
• From left to right, mark nodes of level as visited before nodes in level . Start

at level 0.

• K C N A F M V B D H U

i i + 1

Tree traversal summary
• Pre: Root, left, right

• K C A B F D H N M V U

• In: Left, root, right

• A B C D F H K M N U V

• Post: Left, right, root

• B A D H F C M U V N K

• Level: Go down levels, L->R

• K C N A F M V B D H U

Worksheet time!
• List the nodes in pre-order, in-order, post-order, and level order:

Worksheet answers
• List the nodes in pre-order, in-order, post-order, and level order:

• Pre-order: 8, 5, 9, 7, 1, 12, 2, 4, 11, 3

• In-order: 9, 5, 1, 7, 2, 12, 8, 4, 3, 11

• Post-order: 9, 1, 2, 12, 7, 5, 3, 11, 4, 8

• Level-order: 8, 5, 4, 9, 7, 11, 1, 12, 3, 2

Binary Search

Binary search
• Goal: Given a sorted array and an item, find index of the item in the array. E.g.,

find 3 in [1, 3, 5, 10, 200]. Return -1 if not found.

• Guaranteed O(n) worst case. (Why?)

• We can do better! (How? Hint: Think of the fact that the array is ordered)

• Basic mechanism: Compare item against middle entry.

• If too small, repeat in left half.

• If too large, repeat in right half.

• If equal, you are done.

Binary search example
• Goal: Given a sorted array and an item, find index of the item in the array.

• Basic mechanism: Compare item against middle entry.

• If too small, repeat in left half.

• If too large, repeat in right half.

• If equal, you are done.

10 4 5 6 7 9Find: 4

mid

10 4 5 6 7 9Find: 4

mid

10 4Find: 4

done

Binary search implementation - iterative
• First binary search published in 1946 but first bug-free in 1962.

• Bug in Java’s Arrays.binarySearch() discovered in 2006 https://ai.googleblog.com/
2006/06/extra-extra-read-all-about-it-nearly.html (the calculation of the mid point) (by
our friend Joshua Bloch, creator of ArrayLists!)

public static <Item extends Comparable<Item>> int binarySearch(Item[] a, Item item) {  
 int lo = 0, hi = a.length-1;
 while (lo <= hi) {  
 int mid = lo + (hi - lo) / 2;  
 if (item.compareTo(a[mid])<0)  
 hi = mid - 1;  
 else if (item.compareTo(a[mid])>0)  
 lo = mid + 1;  
 else return mid; }  
 return -1;  
}

• Uses at most compares to search in a sorted array of size , that is it is .1 + log n n O(log n)

https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html

Binary search implementation - recursive
private static <Item extends Comparable<Item>> int binarySearch(Item[] a, int lo,
int hi, Item item) {
 if (lo < hi) {  
 int mid = lo + (hi - lo) / 2;  
 if (item.compareTo(a[mid])<0)  
 return binarySearch(a, lo, mid - 1, item);  
 else if (item.compareTo(a[mid])>0)  
 return binarySearch(a, mid+1, hi, item);  
 else return mid; }  
 return -1;  
}
public static <Item extends Comparable<Item>> int binarySearch(Item[] a, Item item)
{  
 return binarySearch(a, 0, a.length-1, item);  
}

• Uses at most compares to search in a sorted array of size , that is it is .1 + log n n O(log n)

Binary Heap

Heap-ordered binary trees
• The largest key in a heap-ordered binary tree is found at the root!

• A binary tree is heap-ordered if the key in each node is larger than or equal to the
keys in that node’s two children (if any).

Heap-ordered binary trees
• A binary tree is heap-ordered if the key in each node is larger than or equal to the

keys in that node’s two children (if any).

• Specifically, this is called a max heap (since the maximum is the root)

• Equivalently, the key in each node of a heap-ordered binary tree is smaller than
or equal to the key in that node’s parent (if any).

• No assumption of which child is smaller.

• Moving up from any node, we get a non-decreasing sequence of keys.

• Moving down from any node we get a non-increasing sequence of keys.

Binary heap representation
• We could use a linked representation like we use for binary trees (this, this.left,

this.right), but we would need three links for every node (one for parent, one for
left subtree, one for right subtree).

• If our binary tree is complete (minimal height), we can use instead an array.

• Compact arrays vs explicit links means memory savings!

Array representation of heaps
• Nothing is placed at index 0 (for arithmetic convenience).

• Root is placed at index 1.

• Rest of nodes are placed
in level order.

• No unnecessary indices and no wasted
space because it’s a complete heap.

Binary heaps
• Binary heap: the array representation of a complete heap-ordered binary tree.

• Items are stored in an array such that each key is guaranteed to be larger (or
equal to) than the keys at two other specific positions (children).

• Max-heap but there are min-heaps (root is smallest), too.

Practice: Which are the following are valid binary heaps?

100

19 36

17 3 25

2 7

100

19 36

17 3 25 1

2

A B
❌✅

Practice: Which are the following are valid binary heaps?

100

19 36

17 25 1

100

47 101

17 49

C D
❌ ❌

Reuniting immediate family members
• For every node at index , its parent is at index .

• Its two children are at indices and .

• We can travel up and down the heap by using this simple arithmetic on array
indices.

k ⌊k/2⌋

2k 2k + 1

Example: P is at 4, so its parent (S) is at 2

A is at 7, so its parent (R) is at 3 (round down)

Example: R is at 3, so its children are at 6
and 7 (O & A).

Binary heap: insertion
• Insert: Add node at end in bottom level, then swim it up.

• Cost: At most compares.

public void insert(E x) {  
 a[++n] = x;  
 swim(n);  
}

log n + 1

n is current size of array

Swimming: Maintaining heap order
• Scenario: a key becomes larger than its parent therefore it violates the heap-

ordered property.

• To eliminate the violation:

• Exchange key in child with key in parent.

• Repeat until heap order restored.

• This is called swimming, percolating,
promoting up, or bottom up reheapify

Worksheet time!
• Write the array representation of this binary

heap.

• Insert 47 in this binary heap.

100

19 36

17 3 25 1

2 7

Worksheet answers
• Array representation is just in-order traversal

with root first

• [-, 100, 19, 36, 17, 3, 25, 1, 2, 7]
 1 2 3 4 5 6 7 8 9

100

19 36

17 3 25 1

2 7

Worksheet answers
• First, 47 needs to go to the left-most leaf node

(left child of 3) 100

19 36

17 3 25 1

2 7 47

Worksheet answers
• Then, we swim it up

100

19 36

17 47 25 1

2 7 3

100

47 36

17 19 25 1

2 7 3

Final heap!

private void swim(int k) {
 while (k > 1 && a[k/2].compareTo(a[k])<0) {
 E temp = a[k];
 a[k] = a[k/2];
 a[k/2] = temp;
 k = k/2;
 }
}

Swim/promote/percolate up: code

End conditions:

k == 1: it’s already at the root

a[k/2] > a[k]: node is smaller than parent

exchange with parent

change index to be parent’s

Sink/demote/top down heapify
• Scenario: a key becomes smaller than one (or both) of its children’s keys.

• To eliminate the violation:

• Exchange key in parent with key in larger child.

• Repeat until heap order is restored.

Sink/demote/top down heapify code
private void sink(int k) {
 while (2*k <= n) {
 int j = 2*k;
 if (j < n && a[j].compareTo(a[j+1])<0))
 j++;
 if (a[k].compareTo(a[j])>=0))
 break;
 E temp = a[k];
 a[k] = a[j];
 a[j] = temp;
 k = j;
 }
}

j is left child

look at j+1 (right child) instead

while the left child exists

swap node with correct child

stop swapping when it’s bigger than
or equal to child

Lecture 13 wrap-up
• HW6: On Disk sort due 11:59pm tonight

• Lab tonight on shell scripting - lots of people are absent, so come to the first section if you can!

• HW7: Autocomplete released

• I know this class seems like a lot with all the assignments and stuff - you get a break and there’s
no HW the week of your checkpoint 2 (Nov 3)

• Special OH for quiz makeups (and other 62 things) Fri 3-4pm

Resources
• Reading from textbook: Chapter 2.4 (Pages 308-327)

• Heap visualizations: Insert and ExtractMax: https://visualgo.net/en/heap

• Online textbook website - https://algs4.cs.princeton.edu/24pq/

• Practice problems behind this slide

https://visualgo.net/en/heap
https://algs4.cs.princeton.edu/24pq/

Practice Problem 1
• Given the tree below, list the nodes in order of visit in a:

• pre-order traversal

• in-order traversal

• post-order traversal

• level-order traversal

Practice Problem 2
• Given the binary heap below, delete and return the max.

ANSWER 1
• pre-order: 90, 36, 25, 2, 3, 26, 19, 17, 7, 1

• in-order: 2, 25, 3, 36, 19, 26, 90, 7, 17, 1

• post-order: 2, 3, 25, 19, 26, 36, 7, 1, 17, 90

• level-order: 90, 36, 17, 25, 26, 7, 1, 2, 3, 19

ANSWER 2
• Given the binary heap below, delete and return the max.

•

