CS62 Class 13: Binary Trees & Heaps

Binary tree: < 2 children per node

Heap Data Structure
@/\ /\
S\ TN AN TN
(9
Min Heap Max Heap

Trees
.

Heap: ordered binary tree

Agenda

* Binary Trees
* Tree Traversals
* Binary Search

* Binary Heaps

Binary trees

Trees in Computer Science

» Abstract data types that store elements hierarchically rather than linearly.
» Examples of hierarchical structures:
* Organization charts for
~ Companies (CEO at the top followed by CFO, CMO, COOQO, CTO, etc).

~ Universities (Board of Trustees at the top, followed by President, then by VPs,
etc).

» Sitemaps (home page links to About, Products, etc. They link to other pages).

» Computer file systems (user at top followed by Documents, Downloads, Music,
etc. Each folder can hold more folders.).

Trees in Computer Science

» Hierarchical: Each element in a tree has a single parent (immediate ancestor) and
zero or more children (immediate descendants).

1 CS tree root and leaves §

Definition of a tree

» Atree Tis a set of nodes that store elements based on a relationship:
» If T is non-empty, it has a node called the of T, that has no parent.

» Here, the root is A.

» Each node v, other than the root, has a unique node u. Every node with
parent u is a of u.

~ Here, E's parent is C and F has two children, H and |.

Tree Terminology

» Edge: a pair of nodes s.t. one is the parent of the
other, e.g., (K,C).

» Parent node is directly above child node, e.g., Kiis
parent of C and N.

» Sibling nodes have same parent, e.g., Aand F.

« Kis ancestor of B.

* Bis descendant of K.

* Node plus all descendants gives subtree.

« Nodes without descendants are called leaves or
external. The rest are called internal.

More Terminology

» Simple path: a series of distinct nodes s.t. there are edges
between successive nodes, e.g., K-N-V-U.

» Path length: number of edges in path, e.g., path K-C-A has
Iength 2. .
C

» Height of node: length of longest path from the node to a
leaf, e.g., N's height is 2 (for path N-V-U).

» Height of tree: length of longest path from the root to a
leaf. Here 3. a

» Degree of node: number of its children, e.g., F's degree is 2.

» Degree of tree (arity): max degree of any of its nodes. Here
IS 2.

« Binary tree: a tree with arity of 2, that is any node will
have 0-2 children.

Even More Terminology

» Level/depth of node defined recursively:

* Root is at level O.

 Level of any other node is equal to level of
parent + 1.

* It is also known as the length of path from root .
or number of ancestors excluding itself.

» Height of a node defined recursively: a
- |If leaf, height is O.

* Else, height is max height of child + 1.

» The height of a binary tree is equal to the level of
its deepest leaf node.

Full and complete

Neither complete nor full Complete but not full

» Full (or proper): a
binary tree whose
every node has 0 or 2
children.

» Complete: a binary
tree with minimal
height. Any holes in
tree would appear at
last level to the right,
i.e., all nodes of last
level are as left as
possible.

Full but not complete Complete and full

http://code.cloudkaksha.org/binary-tree/types-binary-tree

Practice Time: This tree is

* A: Full
» B: Complete
» C: Full and Complete

* D: Neither Full nor Complete

Its height is
*]
+ 2
+ 3

Answer

* A: Full
* B: Complete
» C: Full and Complete

* D: Neither Full nor Complete

Its height is
]
¢ 2
+ 3

Practice Time: This tree is

* A: Full
» B: Complete
» C: Full and Complete

* D: Neither Full nor Complete

The degree of the tree is
0
o]
+ 2

Answer

* A: Full
» B: Complete
» C: Full and Complete

* D: Neither Full nor Complete

The degree of the tree is
0
° 1
+ 2

Counting in binary trees

+ Lemma: if Tis a binary tree, then at level k, T has < 2*
nodes.

+ E.g., at level 2, at most 4 nodes (A, F, M, V)

» Theorem: If T has height i, then # of nodesninT
satisfy: h +1 <n <21 — 1.

» Equivalently, if T has n nodes, then
logn+1)—1<h<n-1.

» Worst case: When h=n—1 or O(n), the tree looks
like a left or right-leaning “stick”.

» Best case: When a tree is as compact as possible
(e.g., complete) it has O(log n) height.

Worksheet time!

» Follow the instructions in the worksheet about the following tree:

Worksheet answers

* Root: 2

« Leaves: 2 (in black), 10, 5, 11, 4
* Internal nodes: 2 (red), 7, 5, 6, 9
» Siblings of 10: 2, 6

» Parentof6:7

« Children of 2 (inred): 7, 5

« Ancestors of 10: 7 and 2 (in red)

Descendants of 7: 2, 10, 6, 5, 11

Length of path 2 to 4: 3
Height of 7: 2

Height of tree: 3
Degree of /: 3
Arity/Degree of tree: 3
Level/depth of 11: 3

Tree traversal

Basic idea behind a simple Binary Tree implementation

public class BinaryTree<E> {
private Node root;

private class Node { root

rivate E element; : //

o a left link

private Node left; a subtree N

private Node right; N\

public Node(Node left, Node right, E element) ({ \
this.left = left; a leaf node
this.right = right;
this.element = item; |

\ null links

Pre-order traversal

* Preorder(Tree)
» Mark root as visited
* Preorder(Left Subtree)
* Preorder(Right Subtree)
+ KCABFDHNMVU

In-order traversal

* |norder(Tree)
* |norder(Left Subtree)
» Mark root as visited
* Inorder(Right Subtree)
+ ABCDFHKMNUYV

Post-order traversal

« Postorder(Tree)
« Postorder(Left Subtree)
+ Postorder(Right Subtree)
» Mark root as visited

* BADHFCMUVNK

Level-order traversal

» From left to right, mark nodes of level i as visited before nodes in level i + 1. Start
at level 0.

- KCNAFMVBDHU

Tree traversal summary

* Pre: Root, left, right
+ KCABFDHNMVU
* In: Left, root, right
- ABCDFHKMNUYV
 Post: Left, right, root
* BADHFCMUVNK
* Level: Go down levels, L->R

- KCNAFMVBDHU

Worksheet time!

» List the nodes in pre-order, in-order, post-order, and level order:

Worksheet answers

» List the nodes in pre-order, in-order, post-order, and level order:

* Pre-order:8,5,9,7,1,12,2,4,11, 3

* In-order:9,5,1,7,2,12,8,4,3,11 o o

» Post-order:9,1,2,12,7,5,3,11,4, 8 o o
* Level-order:8,5,4,9,7,11,1,12,3, 2 o 0

Binary Search

Binary search

. Given a sorted array and an item, find index of the item in the array. E.g.,
find 3in[1, 3,5, 10, 200]. Return -1 if not found.

Guaranteed O(n) worst case. (Why?)

We can do better! (How? Hint: Think of the fact that the array is ordereqd)
Basic mechanism: Compare item against middle entry.

* |f too small, repeat in left half.

» |f too large, repeat in right half.

» If equal, you are done.

Binary search example

+ Goal: Given a sorted array and an item, find index of the item in the array.
» Basic mechanism: Compare item against middle entry.

* |f too small, repeat in left half.

» |f too large, repeat in right half.

» If equal, you are done.

o L]
-
e [] I S

mid

done

Binary search implementation - iterative
» First binary search published in 1946 but first bug-free in 1962.

* Buginjava's Arrays.binarySearch() discovered in 2006
(the calculation of the mid point) (by

our friend Joshua Bloch, creator of ArrayLists!)

public static <Item extends Comparable<Item>> int binarySearch(Item[] a, Item i1tem) {
int lo = 0, hi1 = a.length-1;
while (lo <= hi) {
int md = lo + (h1 - lo) / 2Z2;
1t (1tem.compareTo(a[mid])<0)
hi = mid - 1;
else 1f (1tem.compareTo(a[mid])>0)
lo = md + 1;
else return mid; }
return -1;

h
» Uses at most 1 + logn compares to search in a sorted array of size », that is it is O(logn).

https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html

Binary search implementation - recursive

private static <Item extends Comparable<Item>> int binarySearch(Item[] a, int lo,
int hi, Item item) {
1f (lo < h1) {
int md = lo + (h1 - lo) / 2;
1t (1tem.compareTo(a[mid])<0)
return binarySearch(a, lo, mid - 1, item);
else 1f (1tem.compareTo(a[mid])>0)
return binarySearch(a, mid+1l, hi, i1tem);
else return mid; }
return -1;

¥

public static <Item extends Comparable<Item>> int binarySearch(Item[] a, Item 1tem)

1
¥

» Uses at most 1 + logn compares to search in a sorted array of size n, that is it is O(log n).

return binarySearch(a, 0, a.length-1, i1tem);

Binary Heap

Heap-ordered binary trees

» The largest key in a heap-ordered binary tree is found at the root!

* A Dbinary tree is if the key in each node is larger than or equal to the
keys in that node’s two children (if any). @

Heap-ordered binary trees

* A Dbinary tree is if the key in each node is larger than or equal to the
keys in that node’s two children (if any).

» Specifically, this is called a max heap (since the maximum is the root)

+ Equivalently, the key in each node of a heap-ordered binary tree is smaller than
or equal to the key in that node’s parent (if any).

* No assumption of which child is smaller.
- Moving up from any node, we get a non-decreasing sequence of keys.

* Moving down from any node we get a non-increasing sequence of keys.

Binary heap representation

» We could use a linked representation like we use for binary trees (this, this.left,
this.right), but we would need three links for every node (one for parent, one for
left subtree, one for right subtree).

» |f our binary tree is complete (minimal height), we can use instead an array.

» Compact arrays vs explicit links means memory savings!

Array representation of heaps

* Nothing is placed at index O (for arithmetic convenience).

* Root is placed atindex 1. i 0 12 3 4 5 6 7
al[i] - T S R P N 0O A
+ Rest of nodes are placed .
in level order. SSTR
* No unnecessary indices and no wasted P:'__'_.I:Jn: 0 A

space because it's a complete heap.

/ \
AN 0/
N -

(1) 11" 11,

\ /

4(P
/E(

3 '
. "

ol

Heap representations

oo

m / //

)

Binary heaps

. . the array representation of a complete heap-ordered binary tree.

* |tems are stored in an array such that each key is guaranteed to be larger (or
equal to) than the keys at two other specific positions (children).

« Max-heap but there are min-heaps (root is smallest), too.

Practice: Which are the following are valid binary heaps?

.

(0) (&
@@\@
(2)

Practice: Which are the following are valid binary heaps?

*
: $o
< 2

C % D

Reuniting immediate family members

* For every node at index k, its parent is at index |k/2].
* |ts two children are at indices 2k and 2k + 1.

» We can travel up and down the heap by using this simple arithmetic on array
indices.

i 012 3456 7 8 91011 Example: P is at 4, so its parent (S) is at 2
al[i] - T S R P N 0O A E I H C
T | Ais at /7, so its parent (R) is at 3 (round down)
S sl
SPINLO A
/11\ Example: Ris at 3, so its children are at 6
/,5\ /R and 7 (O & A).
a(p] SUN) (0) 7(A
(E) XI 10 H\/H\ G)

Heap representations

Binary heap: insertion

p
 Insert: Add node at end in bottom level, then swim it up. f"f

» Cost: At mostlogn + 1 compares. (€) (1) (C) S «~— keytoinser
. L. (T)
public void insert(E x) { !
e R

al++n] = Xx; p
swim(n); /(
} &

N is current size of array

add key to heap
viclates heap order

Swimming: Maintaining heap order

» Scenario: a key becomes larger than its parent therefore it violates the heap-
ordered property.

» To eliminate the violation: 2
* Exchange key in child with key in parent. SN /\
(¢ 5(T) 6) | A
» Repeat until heap order restored. N N
(E) (I) (H) (G) (larcer kev thom bare
* This is called swimming, percolating, -
promoting up, or bottom up reheapify L~
2 7 .‘\/ - \ 5
u\:‘x.] | R |
\ (_" / '\E_/x . '_,;' ‘\ﬁ,/.
e SN e,
E) (L) H) (&)

Worksheet time!

» Write the array representation of this binary

heap. @

* Insert 47 in this binary heap.

Worksheet answers

 Array representation is just in-order traversal

with root first @

- [-, 100,19, 36,17/, 3,25, 1, 2, /]
1T 2 3 4 5 6 7809

Worksheet answers

» First, 47 needs to go to the left-most leaf node
(left child of 3)

Worksheet answers

Final heap!
* Then, we swim it up

g %6' s

Swim/promote/percolate up: code

private void swim(int k) {

while (k > 1 && a[k/2].compareTo(a[k])<@) { g
E temp = a[k]; \/k")\r_

alkl = alk/2]; exchange with parent
alk/2] = temp;

K = k7¢; change index to be parent's 9 W
; T viclate flc r'-m':'.'
} (larger key than parent)
End conditions:
k == 1:it's already at the root 2)

a[k/2] > a[k]: node is smaller than parent

Sink/demote/top down heapify

+ Scenario: a key becomes smaller than one (or both) of its children’s keys.

 To eliminate the violation: violates heap order
‘smaller t! nld; P
/T\

'

1A@n A cr
.

L ,/.H

N

» Exchange key in parent with key in larger child. N
R)
+ Repeat until heap order is restored. SN I\

Sink/demote/top down heapify code

private void sink(int k) {
while (2*k <= n) { while the left child exists

int j = 2*k; jis left child ,. _';"'%‘,"‘,‘;-'j-'"r';{i’ff’ — N
if (j < n & a[j].compareTo(a[j+1])<@)) ~=marer el @i T
J++; look at j+1 (right child) instead > 5 / /\ Y
if (a[k].compareTo(a[j1)>=0)) () 'R
break stop swapping when it's bigger than / _ (\“&
£) K7 - or equal to child (pY 5{s) ‘0) A\l
_t?mp = q[1; _<> . <~/ Y
Cl:Ifz = al3l; swap node with correct child '/é Ty (N (e
aljj = temp; —/ o/ O
K = 73;

Lecture 13 wrap-up

« HW6: On Disk sort due 11:59pm tonight

» Lab tonight on shell scripting - lots of people are absent, so come to the first section if you can!
» HW7/:. Autocomplete released

* | know this class seems like a lot with all the assignments and stuff - you get a break and there's
no HW the week of your checkpoint 2 (Nov 3)

» Special OH for quiz makeups (and other 62 things) Fri 3-4pm

Resources
* Reading from textbook: Chapter 2.4 (Pages 308-327)
* Heap visualizations: Insert and ExtractMax:
* Online textbook website -

* Practice problems behind this slide

https://visualgo.net/en/heap
https://algs4.cs.princeton.edu/24pq/

Practice Problem 1

* Given the tree below, list the nodes in order of visit in a:
* pre-order traversal
* in-order traversal
* post-order traversal

» |level-order traversal

Practice Problem 2

* Given the binary heap below, delete and return the max.

ANSWER 1

» pre-order: 90, 36, 25, 2, 3, 26, 19,17, 7, 1

* in-order: 2, 25, 3,36, 19, 26,90, 7, 17, 1

» post-order: 2, 3, 25,19, 26,36, 7,1, 17, 90
* level-order: 90, 36, 17, 25, 26,7, 1, 2,3, 19

ANSWER 2

* Given the binary heap below, delete and return the max.

