
CS62 Class 11: Iterators & Comparators
Sorting

Iterator: an interface that tells us how to get the to the next element (e.g., node.next)

Comparator: an interface that tells us how to compare elements (e.g., node1.data > node2.data?)

Last week review
• Stacks: LIFO (last in, first out). Queues: FIFO (first in, first out). Want to make

operations (push/pop, enqueue/dequeue) O(1) time. Ideal implementation for a
stack is a singly linked list where we push/pop from the head. Ideal
implementation for a queue is a singly linked list with a tail pointer.

• Practice: How would you implement a stack using two queues? What are the time
complexities of push and pop?

Last week review
• Approach 1: O(1) push, O(n) pop

• Push: enqueue to Q1 (which holds the elements of the stack)

• Pop: transfer all but one element in Q1 to an empty Q2. Dequeue last element
in Q1. Make Q1 = Q2 and Q2 empty.

• Approach 2: O(n) push, O(1) pop

• Push: Enqueue to Q2, which is empty. Transfer all elements in the rest of Q1 to
Q2. Make Q1 = Q2 and Q2 empty.

• Pop: dequeue from Q1 (which holds the elements of the stack).

Agenda
• New chapter: Sorting! Why sorting?

• Iterables & Iterators

• Comparables & Comparators

Why study sorting?

• We’re constantly sorting things: e.g., sorting flights by price, contacts by last
name, files by size, emails by day sent, neighborhoods by zipcode, etc.

• Good example of how to compare the performance of different algorithms for the
same problem.

• Sorting your data will often be a good starting point when solving other problems
(keep that in mind for interviews).

• Sorting definition: the process of arranging elements of a collection in non-
decreasing order (e.g., numerically, lexicographically, etc).

• Why non decreasing instead of increasing? Each element should be ≥ the one
before it (increasing is strictly >).

• To sort data in a data structure, we must first be able to iterate through the data
structure…

n

Iterators

Traversing our own ArrayList
• Let's assume we have the following code snippet:
ArrayList<String> csClasses = new ArrayList<String>();
myList.add("cs51");
myList.add("cs54");
myList.add("cs62");

• The (sometimes unnecessarily verbose) story so far:
for (int i = 0; i < csClasses.size(); i++){
 System.out.println(csClasses.get(i);
}

• What we would like to do instead:
for(String course: csClasses){
 System.out.println(course);
}

We need to implement the Iterable and Iterator interfaces
so Java knows how to make our data structures
iterable in this loop short hand!

How to make your data structures iterable?
1. Implement Iterable interface.

2. Make a private class that implements the Iterator interface.

3. Implement iterator() method to return an instance of the private class in
step 2.

Example: making ArrayList iterable
public class ArrayList<E> implements List<E>, Iterable<E> {
 //…

public Iterator<E> iterator() {
return new ArrayListIterator();  

 }

private class ArrayListIterator implements Iterator<E> {
private int i = 0;
public boolean hasNext() {

 return i < size;
}
public E next() {

return data[i++];
}

}

Step 1

Step 2 (nested private class)
Step 3 (note return type)

Step 4: write public hasNext() and next()
methods in your private class

Review question: what does data[i++] do?
Why not data[++i]? (Can you remember an
earlier in class activity?)

Iterable<E> Interface

https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html

• Interface that allows an object of a class that implements it to be the target of a for-
each loop.

interface Iterable<E>{
 //returns an iterator over elements of type E
 Iterator<E> iterator();
}

• If the declaration of our class is something like:
• public class ArrayList<E> implements List<E>, Iterable<E>

• we promise to have a method iterator() that returns an Iterator<E> (see step
3 in previous slide)

https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html

Iterator<E> Interface

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html

• Interface that allows us to iterate over a collection (i.e. a data structure) one
element at a time.

public interface Iterator<E> {
 //returns true if the iterator has more elements
 //that is if next() would return an element instead of throwing an
exception
 boolean hasNext();

 //returns the next element in the iteration
 //post: advances the iterator to the next value
 E next();

}

You can also implement this in a different class, it doesn’t have to
be your “main” class for the data structure.

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html

Taking a closer look at ArrayListIterator
public class ArrayList<E> implements List<E>, Iterable<E> {
 //…

public Iterator<E> iterator() {
return new ArrayListIterator();  

 }

private class ArrayListIterator implements Iterator<E> {
private int i = 0;
public boolean hasNext() {

 return i < size;
}
public E next() {

return data[i++];
}

}

i is an instance variable of this new class

we increment i every time we call .next()

A new ArrayListIterator() is created each
time we make a new for loop (so i is reset
to 0)

 public static void main(String[] args) {
 ArrayList<Integer> myList = new ArrayList<Integer>(Arrays.asList(7, 4, 1, 3, 0));
 OddIterator oi = new OddIterator(myList);
 while(oi.hasNext()){
 System.out.println(oi.next());
 }
 }

Worksheet time!

If the ArrayList is [7, 4, 1, 3, 0], the following code should print 7, 1, 3:

Write an OddIterator class that retrieves only the odd values in an ArrayList.

public class OddIterator implements Iterator<Integer> {

 // The array whose odd values are to be enumerated
 private ArrayList<Integer> myArrayList;

 //any other instance variables you might need
 int counter;

 //An iterator over the odd values of myArrayList
 public OddIterator(ArrayList<Integer> myArrayList){
 this.myArrayList = myArrayList;
 counter = 0;
 }

 //runs in O(n) time
 public boolean hasNext(){
 for (int i=counter; i<myArrayList.size(); i++){
 if(myArrayList.get(i)%2 == 1){
 counter = i;
 return true;
 }
 }
 return false;
 }

 //runs in O(1) time
 public Integer next(){
 return myArrayList.get(counter++);
 }
}

Worksheet answers

Constructor

Manually iterate through the ArrayList,
true if there’s an odd element left

get the element at index “counter”,
increment counter

JCF

The Java Collections
Framework

 https://en.wikipedia.org/wiki/Java_collections_framework

Everything in Collection implements
Iterable, so you can iterate through with every
built-in class in the JCF.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://en.wikipedia.org/wiki/Java_collections_framework

Comparable & Comparator

Back to sorting…
• Definition of a Key: assuming that an element consists of multiple components,

the key is the property based on which we sort elements.

• Examples: elements could be books and potential keys are the title or the
author which can be sorted alphabetically, or the ISBN which can be sorted
numerically.

• Naturally lends itself to OOP where objects have different instance variables
that can serve as different keys.

• Let’s say we want to sort an array of objects of type E.

• Our class E should implement the Comparable<E> interface and we will need to
implement the compareTo(E that) method.

• Alternatively, it can also implement the Comparator<E> interface and we will
need to implement the compare(E that) method.

Comparable<E>
• Interface with a single method that we need to implement: public int
compareTo(T that)

• Implement it so that v.compareTo(w):

• Returns >0 if v is greater than w.

• Returns <0 if v is smaller than w.

• Returns 0 if v is equal to w.

• Corresponds to natural ordering.

• Java classes such as Integer, Double, String, File all implement Comparable.

Example - Employee
public class Employee implements Comparable<Employee> {

 private int id;
 private String name;
 private int salary;

 public Employee(int id, String name, int salary) {
 this.id = id;
 this.name = name;
 this.salary = salary;
 }

 public int compareTo(Employee e) {
 if (this.id < e.id) {
 return -1;
 } else if (this.id > e.id) {
 return 1;
 } else
 return 0;
 }

There are 3 instance variables we can sort by here
Let’s just start with id for now

If this employee’s ID # is smaller than that employee’s,
return a negative number

If this employee’s ID # is bigger than that employee’s,
return a positive number

Otherwise, they’re equal, so return 0

Example - Employee

This method also works - use the built in .compareTo of Integers

Note: Integer is an object, int is a primitive type. Integer.valueOf(int) unwraps the primitive int
and converts its type to Integer so we can call the .compareTo method.

Integer (object) ≠ int (primitive)!!!

Comparator<E>
• Sometimes the natural ordering is not the type of ordering we want.

• Comparator is an interface which allows us to dictate that kind of ordering we
want by implementing the method:
public int compare(T this, T that)

• Implement it so that compare(v, w):

• Returns >0 if v is greater than w.

• Returns <0 if v is smaller than w.

• Returns 0 if v is equal to w.

https://stackoverflow.com/questions/2266827/when-to-use-comparable-and-comparator

Basically, kind of the same thing as Comparable<E> and compareTo, but for external controllable ordering

https://stackoverflow.com/questions/2266827/when-to-use-comparable-and-comparator

Example - Employee
public class Employee implements Comparable<Employee> {

 private int id;
 private String name;
 private int salary;

 public Employee(int id, String name, int salary) {
 this.id = id;
 this.name = name;
 this.salary = salary;
 }

 public int compareTo(Employee e) {
 return Integer.compare(this.id, e.id);
 }

 public static Comparator<Employee> nameComparator = new Comparator<Employee>() {
 public int compare(Employee e1, Employee e2) {
 return e1.name.compareTo(e2.name);
 }
 };

 public static Comparator<Employee> salaryComparator() {
 return (Employee e1, Employee e2) -> Integer.compare(e1.salary, e2.salary);
 }
}

One last method for compareTo: call compare() in the Integer class

Two Comparator<E>s - different syntax, but both do comparisons

Example - Employee (syntax explanation)
 public static Comparator<Employee> nameComparator = new Comparator<Employee>() {
 public int compare(Employee e1, Employee e2) {
 return e1.name.compareTo(e2.name);
 }
 }; create an object called nameComparator which is of type Comparator<Employee>

nameComparator has access to the compare() method, which returns a call to the built-in
.compareTo() method of Strings (e1.name, e2.name)

This is the more “modern” shorthand notation. The -> arrow is a lambda expression, shorthand for
public int compare(Employee e1, Employee e2) {  
 return Integer.compare(e1.salary, e2.salary);  
}
Employee e1, Employee e2 are the inputs. The method returns Integer.compare(e1.salary, e2.salary).
The -> shorthand is an anonymous function: it doesn’t need a name, since the Comparator<E>
interface only implements one method (compare) by default, and the signatures match.

Note: nameComparator is an object, but salaryComparator() is a method which returns an object!
(Changes how you call them)

 public static Comparator<Employee> salaryComparator() {
 return (Employee e1, Employee e2) -> Integer.compare(e1.salary, e2.salary);
 }

Sorting with Collections with Comparable
• As long as our class implements a Comparable interface, we can sort them with

the sort() method in the Collections class:
• Collections.sort(list)

• e.g., Collections.sort(employees) where employees is an ArrayList of
Employee objects

• If the elements in list do not implement the Comparable, throws a
ClassCastException.

Sorting with Collections with Comparator
• If we instead choose to use a Comparator interface, we can use
• Collections.sort(list, someComparator)

• e.g., Collections.sort(employees, Employees.nameComparator)
where employees is an ArrayList of Employee objects

• If the elements in list can’t be compared with Comparator, or do not
implement the Comparable, throws a ClassCastException.

public class Employee implements Comparable<Employee> {

 private int id;
 private String name;
 private int salary;

 public Employee(int id, String name, int salary) {
 this.id = id;
 this.name = name;
 this.salary = salary;
 }

 public int compareTo(Employee e) {
 if (this.id < e.id) {
 return -1;
 } else if (this.id > e.id) {
 return 1;
 } else
 return 0;
 // return Integer.valueOf(this.id).compareTo(Integer.valueOf(e.id));
 // return Integer.compare(this.id, e.id);

 }

 public static Comparator<Employee> nameComparator = new Comparator<Employee>() {
 public int compare(Employee e1, Employee e2) {
 return e1.name.compareTo(e2.name);
 }
 };

 public static Comparator<Employee> salaryComparator() {
 return (Employee e1, Employee e2) -> Integer.compare(e1.salary, e2.salary);
 }

 public String toString() {
 return "Name: " + name + " ID: " + id + " Salary: " + salary;
 }

Full Employee Class

 public static void main(String[] args) {

 Employee e1 = new Employee(5, "Yash", 100000);
 Employee e2 = new Employee(8, "Tharun", 25000);
 Employee e3 = new Employee(4, "Yush", 10000);
 List<Employee> list = new ArrayList<Employee>();
 list.add(e1);
 list.add(e2);
 list.add(e3);

 System.out.println(list);

 Collections.sort(list);
 System.out.println(list);

 Collections.sort(list, Employee.nameComparator);
 System.out.println(list);

 Collections.sort(list, Employee.salaryComparator());
 System.out.println(list);

 }

Worksheet time! What does main() print?

Bonus Q: Why is it
Employee.nameComparator, but
Employee.salaryComparator() (with
parentheses?)

 public static void main(String[] args) {

 Employee e1 = new Employee(5, "Yash", 100000);
 Employee e2 = new Employee(8, "Tharun", 25000);
 Employee e3 = new Employee(4, "Yush", 10000);
 List<Employee> list = new ArrayList<Employee>();
 list.add(e1);
 list.add(e2);
 list.add(e3);

 System.out.println(list);
 //[Name: Yash ID: 5 Salary: 100000, Name: Tharun ID: 8 Salary: 25000, Name: Yush ID: 4 Salary: 10000]

 Collections.sort(list);
 System.out.println(list);
 //[Name: Yush ID: 4 Salary: 10000, Name: Yash ID: 5 Salary: 100000, Name: Tharun ID: 8 Salary: 25000]

 Collections.sort(list, Employee.nameComparator);
 System.out.println(list);
 //[Name: Tharun ID: 8 Salary: 25000, Name: Yash ID: 5 Salary: 100000, Name: Yush ID: 4 Salary: 10000]

 Collections.sort(list, Employee.salaryComparator());
 System.out.println(list);
 //[Name: Yush ID: 4 Salary: 10000, Name: Tharun ID: 8 Salary: 25000, Name: Yash ID: 5 Salary: 100000]

 }

Worksheet answers

Unsorted list (order they were added)

Sorted by ID number (Yush, Yash, Tharun)

Sorted by lowest->highest salary (Yush, Tharun, Yash)

Sorted by alphabetical name (Tharun, Yash, Yush)

Summary
• Iterable<E> vs Iterator<E> - Iterable<E> is automatically called in a for each loop.

Iterator<E> is a class that specifies hasNext() and next() methods. The iterator() method
of an Iterable<E> must return an object of a class that implements Iterator<E>.

• Comparable<E> vs Comparator<E> - Comparable<E> defines the “natural ordering” of
how comparisons should go. Just like how Iterator<E> defined the control for looping,
Comparator<E> defines the custom control for comparisons.

(Credit to ChatGPT for this table)

Lecture 11 wrap-up
• Announcements: Compression part 1 HW released. More in lab tomorrow, but

extension to Thu 11:59pm due to checkpoint/needing the JUnit lab next week.
(Still, good to get started early: it’s conceptually hard!)

• HW4: Calculator due 11:59pm tonight

• Lab tomorrow will be peer learning groups reviewing the practice problems + quiz
(solutions are updated on the PDF)

Resources
• Comparable: https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

• Comparator: https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html

• Exercise for the reader: what if we wanted to make the OddIterator in the first
worksheet Q work for all ArrayLists, such that the for-each loop would only get odd
elements? What edits would we need to make?

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html
https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html

