CS62 Class 11: Iterators & Comparators

Traversal of Singly Linked List 96

Head

!

A —> B | —>c | — D —>nNu

Data Next

Iterator: an interface that tells us how to get the to the next element (e.g., node.next)

Comparator: an interface that tells us how to compare elements (e.g., node1.data > node2.data?)

Last week review

* Stacks: LIFO (last in, first out). Queues: FIFO (first in, first out). Want to make

operations (push/pop, enqueue/dequeue) O(1) time. Ideal implementation for a
stack is a singly linked list where we push/pop from the head. Ideal

implementation for a queue is a singly linked list with a tail pointer.

* Practice: How would you implement a stack using two queues? What are the time
complexities of push and pop?

Last week review

* Approach 1: O(1) push, O(n) pop
* Push: enqueue to Q1 (which holds the elements of the stack)

* Pop: transfer all but one element in Q1 to an empty Q2. Dequeue last element
in Q1. Make Q1 = Q2 and Q2 empty.

* Approach 2: O(n) push, O(1) pop

* Push: Enqueue to Q2, which is empty. Transfer all elements in the rest of Q1 to
Q2. Make Q1 = Q2 and Q2 empty.

* Pop: dequeue from Q1 (which holds the elements of the stack).

Agenda

* New chapter: Sorting! Why sorting?
* Iterables & Iterators

* Comparables & Comparators

Why study sorting?

+ We're constantly sorting things: e.g., sorting flights by price, contacts by last
name, files by size, emails by day sent, neighborhoods by zipcode, etc.

» Good example of how to compare the performance of different algorithms for the
same problem.

» Sorting your data will often be a good starting point when solving other problems
(keep that in mind for interviews).

. . the process of arranging n elements of a collection in non-
decreasing order (e.g., numerically, lexicographically, etc).

» Why non decreasing instead of increasing? Each element should be > the one
before it (increasing is strictly >).

» To sort data in a data structure, we must first be able to iterate through the data
structure...

Iterators

Traversing our own ArraylList

* Let's assume we have the following code snippet:
ArrayList<String> csClasses = new ArraylList<String>();

myList.add("cs51");
myList.add("cs54");
myList.add("cs62");

* The (sometimes unnecessarily verbose) story so far:
for (int 1 = 0; 1 < csClasses.s1ze(); 1++){

System.out.println(csClasses.get(1);
$

- What we would like to do instead:
for(String course: csClasses){

System.out.println(course);

¥

How to make your data structures iterable?

1. Implement Iterable interface.

2. Make a private class that implements the Iterator interface.

3. Implement 1terator() method to return an instance of the private class in
step 2.

Example: making ArraylL1ist iterable

public class ArraylList<E> implements List<E>, Iterable<E> {
//.. Step 1
public Iterator<E> 1iterator() {
return new ArraylListIterator();
1 Step 3 (note return type)
Step 2 (nested private class)
private class ArraylListIterator implements Iterator<E> {
private int 1 = 0;
public boolean hasNext() {
return 1 < size;

¥
public E next() { Step 4: write public hasNext() and next()
return datali++]: methods in your private class
)
1) Review question: what does data[i++] do?

Why not data[++i]? (Can you remember an
earlier in class activity?)

ITterable<E> Interface

* Interface that allows an object of a class that implements it to be the target of a for-
each loop.

1nterface Iterable<E>{
//returns an i1terator over elements of type E
Iterator<k> 1terator();

¥

» |If the declaration of our class is something like:
e public class ArraylList<E> implements List<E>, Iterable<E>

+ we promise to have a method iterator() that returns an Iterator<E> (see step
3 in previous slide)

https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html

Iterator<k> Interface

 |Interface that allows us to iterate over a collection (i.e. a data structure) one
element at a time.

public 1nterface Iterator<k> {
//returns true 1f the i1terator has more elements
//that 1s 1f next() would return an element instead of throwing an

exception
boolean hasNext();

//returns the next element 1n the 1teration
//post: advances the 1terator to the next value
E next();

You can also implement this in a different class, it doesn't have to
} be your “main” class for the data structure.

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.ntml

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html

Taking a closer look at ArraylListIterator

public class ArraylList<E> implements List<E>, Iterable<E> {
//..
public Iterator<E> 1iterator() { A new ArrayListlterator() is created each

return new ArraylListIterator(); timewe make anew forloop (soiisreset
1 to 0)

private class ArraylListIterator implements Iterator<E> {
private i1nt 1 = 0; | is an instance variable of this new class

public boolean hasNext() {
return 1 < size;

}
public E next() {

return datal[1++]; we increment i every time we call .next()

¥
¥

Worksheet time!

Write an OddlIterator class that retrieves only the odd values in an ArraylList.

If the ArrayListis [/, 4, 1, 3, 0], the following code should print 7, 1, 3:

public static void main(String[] args) A
ArrayList<Integer> myList = new ArrayList<Integer>(Arrays.asList(7, 4, 1, 3, 0));
OddIterator oi = new OddIterator(myList);
while(oi.hasNext()){
System.out.println(oi.next());
}

public class 0ddIterator implements Iterator<Integer> {

// The array whose odd values are to be enumerated
private ArrayList<Integer> myArraylList;

Worksheet answers

//any other instance variables you might need
int counter;

//An 1terator over the odd values of myArraylList
public OddIterator(ArrayList<Integer> myArrayList){

this.myArraylList = myArraylList, Constructor
counter = 0;
I3
//runs in 0(n) time
public boolean hasNext(){
for (int i=counter; i<myArrayList.size(); i++){ Manually iterate through the ArraylList,
if(myArraylList.get(i)%2 == 1)1 true if there's an odd element left

counter = 1;
return true;

}
}

return false:

}

//runs in 0(1) time

public Integer next()1 get the element at index “counter”,
return myArrayList.get(counter++);

1 INcrement counter

®
The Java Collections
Collections , | Framework
Abstract Class
T Class ‘
Collection
Everything in Collection implements
Iterable, so you can iterate through with every
Set List Queue AbstactCollection bu”t_in ClaSS in theJCF
SortedSet ‘ AbstactSet \ Deque [AbstractList AbstractQueue
NavigableSet
AbstractSequentiallList

TreeSet LinkedList Arraylist Vector PriorityQueue

https://en.wikipedia.org/wiki/lava_collections_framework

e

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://en.wikipedia.org/wiki/Java_collections_framework

Comparable & Comparator

Back to sorting...

» Definition of a Key: assuming that an element consists of multiple components,
the key is the property based on which we sort elements.

« Examples: elements could be books and potential keys are the title or the
author which can be sorted alphabetically, or the ISBN which can be sorted
numerically.

+ Naturally lends itself to OOP where objects have different instance variables
that can serve as different keys.

+ Let's say we want to sort an array of objects of type E.

* QOur class E should implement the Comparable<E> interface and we will need to
implement the compareTo(E that) method.

+ Alternatively, it can also implement the Comparator<E> interface and we will
need to implement the compare(E that) method.

Comparable<E>

» Interface with a single method that we need to implement: public 1int
compareTo(T that)

 Implement it so that v.compareTo(w):
» Returns >0 if v is greater than w.
* Returns <0 if vis smaller than w.
» Returns O if v is equal to w.

» Corresponds to

» Java classes such as Integer, Double, String, File all implement Comparable.

Example - Employee

public class Employee implements Comparable<Employee> {

private int 1id;
private String name;
private int salary;

public Employee(int id, String name, int salary) {
this.1d = 1d;

this.name = name; There are 3 instance variables we can sort by here
\ this.salary = salary; Let’s just start with id for now
ublic int compareTo(Employee e) { | |
P if (this. ig < e.id) p{ 4 If this employee’s ID # is smaller than that employee’s,
return -1; return a negative number
; elf_:tﬁin(?_wls' id > e.id) 1 If this employee’s ID # is bigger than that employee’s,
1 else ' return a positive number
return 0;

Otherwise, they're equal, so return O

Example - Employee

public int compareTo(Employee e) {

Y Y Y A A A A A AR A A A A A a e e e R R AR AR AR A A A e e a e T AV a Ve Vo W VY

This method also works - use the built in .compareTo of Integers

Note: Integer is an object, int is a primitive type. Integer.valueOf(int) unwraps the primitive int
and converts its type to Integer so we can call the .compareTo method.

Integer (object) # int (primitive)!!!

Comparator<E>

» Sometimes the natural ordering is not the type of ordering we want.

» Comparator is an interface which allows us to dictate that kind of ordering we

want by implementing the method:
public 1nt compare(T this, T that)

« Implement it so that compare(v, w).

» Returns >0 if vis greater than w.
* Returns <0 if v is smaller than w.

» Returns O if vis equal to w.

Basically, kind of the same thing as Comparable<E> and compareTo, but for external controllable ordering

https://stackoverflow.com/questions/2266827/when-to-use-comparable-and-comparator

https://stackoverflow.com/questions/2266827/when-to-use-comparable-and-comparator

Example - Employee
public class Employee implements Comparable<Employee> {

private int 1id,;
private String name;
private int salary;

public Employee(int id, String name, int salary) {
this.id = 1id;

this.name = name,;

this.salary = salary;

b One last method for compareTo: call compare() in the Integer class

public int compareTo(Employee e) {
return Integer.compare(this.id, e.id);
s

Two Comparator<k>s - different syntax, but both do comparisons

public static Comparator<Employee> nameComparator = new Comparator<Employee>() A
public int compare(Employee el, Employee e2) {
return el.name.compareTo(e2.name);
s

b

public static Comparator<Employee> salaryComparator() A
return (Employee el, Employee e2) —> Integer.compare(el.salary, e2.salary);
}

Example - Employee (syntax explanation)

public static Comparator<Employee> nameComparator = new Comparator<Employee>() A
public int compare(Employee el, Employee e2) {
return el.name.compareTo(e2.name);

b

}

create an object called nameComparator which is of type Comparator<Employee>

nameComparator has access to the compare() method, which returns a call to the built-in
.compareTo() method of Strings (e1.name, e2.name)

public static Comparator<Employee> salaryComparator() A
return (Employee el, Employee e2) —> Integer.compare(el.salary, e2.salary);

}

This is the more “modern” shorthand notation. The -> arrow is a lambda expression, shorthand for
public 1nt compare(Employee el, Employee e2) {

return Integer.compare(el.salary, e2.salary);

¥

Employee e’
he -> short

, Employee e2 are the inputs.

interface on

ne method returns Integer.compare(el.salary, e2.salary).

nand is an anonymous function: i

t doesn’t need a name, since the Comparator<g>

y implements one method (compare) by default, and the signatures match.

Note: nameComparator is an object, but salaryComparator() is a method which returns an object!

(Changes ho

w you call them)

Sorting with Collections with Comparable

* As long as our class implements a Comparable interface, we can sort them with
the sort() method in the Collections class:

* Collections.sort(list)

* e.g., Collections.sort(employees) where employees is an ArrayList of
Employee objects

* If the elements in list do not implement the Comparable, throws a
ClassCastException.

Sorting with Collections with Comparator

* If we instead choose to use a Comparator interface, we can use

* Collections.sort(list, someComparator)

* e.g., Collections.sort(employees, Employees.nameComparator)
where employees is an ArrayList of Employee objects

* If the elements in list can’t be compared with Comparator, or do not
implement the Comparable, throws a ClassCastException.

public class Employee implements Comparable<Employee> {

private int 1id;

Full Employee Class

private int salary;

public Employee(int id, String name, int salary) {
this.id = 1id;

this.name = name;

this.salary = salary;

}

public int compareTo(Employee e) {
if (this.id < e.id) {
return -1;
} else if (this.id > e.id) {
return 1;
} else
return 0,
// return Integer.valueOf(this.id).compareTo(Integer.valueOf(e.id));
// return Integer.compare(this.id, e.id);

}

public static Comparator<Employee> nameComparator = new Comparator<Employee>() {
public int compare(Employee el, Employee e2) {
return el.name.compareTo(e2.name);
I3

};
public static Comparator<Employee> salaryComparator() {

return (Employee el, Employee e2) —> Integer.compare(el.salary, e2.salary);
}

public String toString() {
return "Name: " + name + " ID: " + id + " Salary: " + salary;
¥

Worksheet time!

What does main() print?

public static void main(String[] args) {

Employee el
Employee e2
Employee e3 =

new Employee(5,
new Employee(8,
new Employee(4,

"Yash", 100000);
"Tharun", 25000);
"Yush", 10000);

List<Employee> list = new ArraylList<Employee>();

list.add(el);
list.add(e2);
1ist.add(e3);

System.out.println(list);

Collections.sort(list);
System.out.println(list);

Collections.sort(list, Employee.nameComparator);

System.out.println(list);

Collections.sort(list, Employee.salaryComparator());

System.out.println(list);

Bonus Q: Why is it
Employee.nameComparator, but
Employee.salaryComparator() (with
parentheses?)

public static void main(Stringl[] args) { WorkSheet answers

new Employee(5, "Yash", 100000);
Employee e2 = new Employee(8, "Tharun", 25000);
Employee e3 = new Employee(4, "Yush", 10000);
List<Employee> list = new ArrayList<Employee>();
list.add(el);

list.add(eZ);

list.add(e3);

Employee el

Unsorted list (order they were added)
System.out.println(list);
// [Name: Yash ID: 5 Salary: 100000, Name: Tharun ID: 8 Salary: 25000, Name: Yush ID: 4 Salary: 10000]

Collections.sort(list); Sorted by ID number (Yush, Yash, Tharun)
System.out.println(list);

// [Name: Yush ID: 4 Salary: 10000, Name: Yash ID: 5 Salary: 100000, Name: Tharun ID: 8 Salary: 25000]

Collections.sort(list, Employee.nameComparator); ;
System.out.println(list): Sorted by alphabetical name (Tharun, Yash, Yush)

// [Name: Tharun ID: 8 Salary: 25000, Name: Yash ID: 5 Salary: 100000, Name: Yush ID: 4 Salary: 10000]
Collections.sort(list, Employee.salaryComparator()); Sorted by lowest->highest salary (Yush, Tharun, Yash)

System.out.printin(list);
// [Name: Yush ID: 4 Salary: 10000, Name: Tharun ID: 8 Salary: 25000, Name: Yash ID: 5 Salary: 100000]

Summary

- Iterable<E> vs Iterator<E> - Iterable<E> is automatically called in a for each loop.
Iterator<EkE> is a class that specifies hasNext() and next() methods. The iterator() method
of an Iterable<E> must return an object of a class that implements Iterator<g>.

- Comparable<E> vs Comparator<k> - Comparable<E> defines the “natural ordering” of
how comparisons should go. Just like how Iterator<E> defined the control for looping,
Comparator<kE> defines the custom control for comparisons.

Quick Comparison Table

Interface Purpose Key Method(s) Used For

Iterable<E> Enables for-each loops iterator() Collections (e.g., List, Set)
Iterator<E> Manual iteration hasNext() , next() Looping over elements
Comparable<E> Natural ordering compareTo(E) Sorting objects in a default way

Comparator<E> Custom comparison compare(E, E) Sorting objects with external rules

(Credit to ChatGPT for this table)

Lecture 11 wrap-up

» Announcements: Compression part 1 HW released. More in lab tomorrow, but
extension to Thu 11:59pm due to checkpoint/needing the JUnit lab next week.
(Still, good to get started early: it's conceptually hard!)

» HW4: Calculator due 11:59pm tonight

 Lab tomorrow will be peer learning groups reviewing the practice problems + quiz
(solutions are updated on the PDF)

Resources

* Comparable:
* Comparator:

* Exercise for the reader: what if we wanted to make the Oddlterator in the first
worksheet Q work for all ArrayLists, such that the for-each loop would only get odd
elements? What edits would we need to make?

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html
https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html

