SEARCHING

Alexandra Papoutsaki
she/her/hers
Midterm II Review

- Sorting
- Heaps/Priority Queues
- Dictionaries
- Misc
- Practice Problems
- Answers
Sorting

- Selection sort
- Insertion sort
- Merge sort
- Quick sort
- Heap sort
Sorting

- Given an array of n items, sort them in non-descending order based on a comparable key.

- Cost model counts comparisons and exchanges (or array accesses).

- Not in place: If linear extra memory is required.

- Stable: If duplicate elements stay in the same order that they appear in the input.

- Practice: https://visualgo.net/en/sorting (minus quick sort).
Selection sort - Algorithm

```java
public static <E extends Comparable<E>> void selectionSort(E[] a) {
    int n = a.length;
    for (int i = 0; i < n; i++) {
        int min = i;
        for (int j = i+1; j < n; j++) {
            if (a[j].compareTo(a[min])<0){
                min = j;
            }
        }
        E temp = a[i];
        a[i]=a[min];
        a[min]=temp;
    }
}
```
Selection sort - Key characteristics

- At the end of each iteration i:
 - $a[0...i]$ is sorted.
 - no smaller item exists in $a[i+1...n-1]$.
- In-place.
- Not stable.
- $O(n^2)$ comparisons for best/average/worst case.
 - $O(n)$ exchanges.
- Slowest. Realistically, rarely used in practice unless small array and minimizing cost of exchanges is important.
Selection sort - Example

- Sort: 1,4,9,3,8,2.

<table>
<thead>
<tr>
<th>i iteration</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1,4,9,3,8,2</td>
</tr>
<tr>
<td>1</td>
<td>1,2,9,3,8,4</td>
</tr>
<tr>
<td>2</td>
<td>1,2,3,9,8,4</td>
</tr>
<tr>
<td>3</td>
<td>1,2,3,4,8,9</td>
</tr>
<tr>
<td>4</td>
<td>1,2,3,4,8,9</td>
</tr>
<tr>
<td>5</td>
<td>1,2,3,4,8,9</td>
</tr>
</tbody>
</table>
Sorting

- Selection sort
- Insertion sort
- Merge sort
- Quick sort
- Heap sort
Insertion sort - Algorithm

```java
public static <E extends Comparable<E>> void insertionSort(E[] a) {
    int n = a.length;
    for (int i = 0; i < n; i++) {
        for (int j = i; j > 0; j--) {
            if (a[j].compareTo(a[j-1]) < 0) {
                E temp = a[j];
                a[j] = a[j-1];
                a[j-1] = temp;
            } else {
                break;
            }
        }
    }
}
```
Insertion sort - Key characteristics

- At the end of each iteration i:
 - $a[0...i]$ is partially sorted.
- In-place.
- Stable.
- $O(n^2)$ comparisons/exchanges for average/worst case.
- $O(n)$ comparisons and 0 exchanges for best case (already sorted array).
- Slow but in practice such little overhead that can be even faster than quick sort for small arrays. Often used below certain thresholds for merge sort and quick sort.
Insertion sort - Example

- Sort: \(1,4,9,3,8,2\).

<table>
<thead>
<tr>
<th>i (iteration)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(1,4,9,3,8,2)</td>
</tr>
<tr>
<td>1</td>
<td>(1,4,9,3,8,2)</td>
</tr>
<tr>
<td>2</td>
<td>(1,4,9,3,8,2)</td>
</tr>
<tr>
<td>3</td>
<td>(1,3,4,9,8,2)</td>
</tr>
<tr>
<td>4</td>
<td>(1,3,4,8,9,2)</td>
</tr>
<tr>
<td>5</td>
<td>(1,2,3,4,8,9)</td>
</tr>
</tbody>
</table>
TODAY’S LAB IN A NUTSHELL

Sorting

- Selection sort
- Insertion sort
- Merge sort
- Quick sort
- Heap sort
Merge sort - Algorithm

```java
private static <E extends Comparable<E>> void merge(E[] a, E[] aux, int lo, int mid, int hi) {
    for (int k = lo; k <= hi; k++) {
        aux[k] = a[k];
    }
    int i = lo, j = mid + 1;
    for (int k = lo; k <= hi; k++) {
        if (i > mid) {
            // ran out of elements in the left subarray
            a[k] = aux[j++];
        } else if (j > hi) {
            // ran out of elements in the right subarray
            a[k] = aux[i++];
        } else if (aux[j].compareTo(aux[i]) < 0) {
            a[k] = aux[j++];
        } else {
            a[k] = aux[i++];
        }
    }
}

public static <E extends Comparable<E>> void mergeSort(E[] a) {
    E[] aux = (E[]) new Comparable[a.length];
    mergeSort(a, aux, 0, a.length - 1);
}

private static <E extends Comparable<E>> void mergeSort(E[] a, E[] aux, int lo, int hi) {
    if (hi <= lo){
        return;
    }
    int mid = lo + (hi - lo) / 2;
    mergeSort(a, aux, lo, mid);
    mergeSort(a, aux, mid+1, hi);
    merge(a, aux, lo, mid, hi);
}
```
Merge sort - Key characteristics

- Divide till you reach an array of a single element and conquer by merging two already-sorted subarrays into a sorted larger one.
- Not in-place, requires linear extra memory. On-disk sort assignment showed how to use the disk if memory is not enough.
- Stable.
- $O(n \log n)$ comparisons/array accesses for best/average/worst case.
- Stable performance, preferred for arrays of objects due to stability. Slower than quick sort on average. Not in-place so not good when memory is in short supply (e.g., embedded systems).
Merge sort - Example

- Sort: 1, 4, 9, 3, 8, 2.
Sorting

- Selection sort
- Insertion sort
- Merge sort
- Quick sort
- Heap sort
Quick sort - Algorithm

```java
private static <E extends Comparable<E>> int partition(E[] a, int lo, int hi) {
    int i = lo - 1;
    E pivot = a[hi]
    for (int j = lo; j < hi; j++) {
        if (a[j].compareTo(pivot) <= 0) {
            i++;
            E temp = a[i];
            a[i] = a[j];
            a[j] = temp;
        }
    }
    i++;
    E temp = a[i];
    a[i] = a[hi];
    a[hi] = temp;
    return i;
}
```

```java
private static <E extends Comparable<E>> void quickSort(E[] a) {
    quickSort(a, 0, a.length-1);
}
```

```java
private static <E extends Comparable<E>> void quickSort(E[] a, int lo, int hi) {
    if (lo < hi) {
        int pivot = partition(a, lo, hi);
        quickSort(a, lo, pivot-1);
        quickSort(a, pivot+1, hi);
    }
}
```
Quick sort - Key characteristics

- Swap smaller elements than pivot to go to left, and larger elements to go to right subarray.
- In-place.
- Not stable.
- $O(n \log n)$ comparisons/exchanges for best/average case.
- $O(n^2)$ comparisons/exchanges for worst case (already (reversely) sorted array, where pivot is always the smallest/largest element).
- Preferred for arrays of primitives since stability does not matter. Fastest on average but if unlucky quadratic (can avoid with high likelihood if shuffle first). In-place so good choice for memory efficient applications with tolerance for occasional slowdowns.
Quick sort - Example

- Sort: 1,4,9,3,8,2

<table>
<thead>
<tr>
<th>lo</th>
<th>hi</th>
<th>Index of pivot returned</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1,2,9,3,8,4</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>3</td>
<td>1,2,3,4,8,9</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
<td>1,2,3,4,8,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Final result: 1,2,3,4,8,9</td>
</tr>
</tbody>
</table>
Sorting

- Selection sort
- Insertion sort
- Merge sort
- Quick sort
- Heap sort
Heap sort - Key characteristics

- Heap construction in $O(n)$: heapify subtrees rooted in internal nodes in reverse order.
 - There is also a slower $O(n \log n)$ version with n insertions. Avoid it.
 - Sortdown in $O(n \log n)$: Repeat: exchange root with last element and sink.
- In-place.
- Not stable.
- $O(n \log n)$ comparisons/exchanges for best/average/worst case.
- Slower than merge sort (and quick sort) but does not require extra memory. Good choice for memory efficient applications that need stable performance.
Heap sort - Example

Sort: 1, 4, 9, 3, 8, 2,

Heap construction: Start at first internal node \(k = 6 \div 2 = 3 \), sink \(k \). \(k = 3 \) -- till you reach root.

Do not sink, does not violate heap-order.

Total cost: \(O(n) \)
Heap sort - Example

- Sort: 1, 4, 9, 3, 8, 2,
Sorting: Everything you need to remember about it!

<table>
<thead>
<tr>
<th>Which Sort</th>
<th>In place</th>
<th>Stable</th>
<th>Best</th>
<th>Average</th>
<th>Worst</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>X</td>
<td></td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>n exchanges</td>
</tr>
<tr>
<td>Insertion</td>
<td>X</td>
<td>X</td>
<td>$O(n)$</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>Use for small arrays or partially ordered</td>
</tr>
<tr>
<td>Merge</td>
<td></td>
<td>X</td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
<td>Guaranteed performance; stable</td>
</tr>
<tr>
<td>Quick</td>
<td>X</td>
<td></td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
<td>$O(n^2)$</td>
<td>$n \log n$ probabilistic guarantee; fastest!</td>
</tr>
<tr>
<td>Heap</td>
<td>X</td>
<td></td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
<td>Guaranteed performance; in place</td>
</tr>
</tbody>
</table>
Heaps/Priority Queues

- Insertion
- Deletion
Heaps

- Array representation of binary trees (at most 2 children for each node) which are complete ($\log n$ minimal height and nodes in last level as left as possible) and heap-ordered (every node is larger/equal to both of its children - if any).
- For node k, left child can be found at $2k$, right child at $2k+1$, and parent at $k/2$. Elements start at index 1.
- Heaps and priority queues are often considered synonyms.
- Practice: https://visualgo.net/en/heap (including heap sort).
Heaps

- Insertion
- Deletion
Heaps - Insertion

- Insert node at last level, as left as possible (or create a new level if last level is full). Swim newly-added node to its proper place so that heap-ordered property is satisfied. At most $O(\log n)$ comparisons.
TODAY'S LAB IN A NUTSHELL

Heaps

- Insertion
- Deletion
Heaps - delete max

- Exchange root with last element. Sink down the new root to its proper place so that heap-ordered property is satisfied. Nullify index of deleted element and return it.

At most $O(\log n)$ comparisons.
Dictionaries

- Binary search trees
- 2-3 search trees
- Left-leaning red-black trees
Dictionaries

- (Possibly ordered by key) collections of key-value pairs. Keys are comparable and unique. Values cannot be null.
- Ultimate goal is to achieve fast search based on key.
- Support insertion, deletion, and possibly ordered operations.
Binary search trees

- Binary trees with symmetric order (every node contains key larger than all keys in left subtree and smaller than all keys in right subtree).

- Height can vary from $O(\log n)$ (compact like complete trees) all the way to $O(n)$ (sticks/twigs).

- Practice: https://visualgo.net/en/bst

```java
public class BST<Key extends Comparable<Key>, Value> {
    private Node root; // root of BST

    private class Node {
        private Key key; // sorted by key
        private Value val; // associated value
        private Node left, right; // roots of left and right subtrees
        private int size; // #nodes in subtree rooted at this

        public Node(Key key, Value val, int size) {
            this.key = key;
            this.val = val;
            this.size = size;
        }
    }
```
Binary search trees - search

- Compare key with root node. Smaller? Go left. Larger? Go right.
- Search hit: If found node with key you’re looking for. Return associated value.
- Search miss: reached a null node. Return null.

```java
public Value get(Key key) {
    Node x = root;
    while (x != null) {
        int cmp = key.compareTo(x.key);
        if (cmp < 0)
            x = x.left;
        else if (cmp > 0)
            x = x.right;
        else if (cmp == 0)
            return x.val;
    }
    return null;
}
```

```java
public Value get(Key key) {
    return get(root, key);
}
```

```java
private Value get(Node x, Key key) {
    if (x == null)
        return null;
    int cmp = key.compareTo(x.key);
    if (cmp < 0)
        return get(x.left, key);
    else if (cmp > 0)
        return get(x.right, key);
    else
        return x.val;
}
```
Binary search trees - search
Binary search trees - insertion

- Compare key with root node. Smaller? Go left. Larger? Go right.
- If found node with same key, update value.
- If reached a null node, insert (key,value) pair.

```java
public void put(Key key, Value val) {
    root = put(root, key, val);
}

private Node put(Node x, Key key, Value val) {
    if (x == null)
        return new Node(key, val, 1);
    int cmp = key.compareTo(x.key);
    if (cmp < 0)
        x.left = put(x.left, key, val);
    else if (cmp > 0)
        x.right = put(x.right, key, val);
    else
        x.val = val;
    x.size = 1 + size(x.left) + size(x.right);
    return x;
}
```
Binary search trees - insertion
Binary search trees - Hibbard’s deletion

- Search for node:
 - Leaf? Just delete it.
 - Node with one child? Delete it and replace with child.
 - Node with two children? Delete and replace with successor (smallest of the larger keys). If successor has a (right) child, pass it to parent.
Binary search trees - delete node with key 21
2-3 Search Trees

- **Definition**: A 2-3 tree is either empty or a
 - **2-node**: one key (and associated value) and two links, a left to a 2-3 search tree with smaller keys, and a right to a 2-3 search tree with larger keys (similarly to standard BSTs), or a
 - **3-node**: two keys (and associated values) and three links, a left to a 2-3 search tree with smaller keys than first key, a middle to a 2-3 search tree with keys between the node’s keys, and a right to a 2-3 search tree with larger keys than the second key.

- **Symmetric order**: In-order traversal yields keys in ascending order.

- **Perfect balance**: Every path from root to null link (empty tree) has the same length.
2-3 Search Trees - Search

- Compare search key against (every) key in node.
- Find interval containing search key (left, potentially middle, or right).
- Follow associated link, recursively.

![Diagram of 2-3 tree search](image-url)
2–3 tree demo: insertion

Insert into a 2-node at bottom.
- Search for key, as usual.
- Replace 2-node with 3-node.

insert K
Left-leaning red-black trees

- A left-leaning red-black tree is a BST such that:
 - No node has two red links connected to it.
 - Red links lean left.
 - Every path from root to leaves has the same number of black links (perfect black balance).
Left rotation: Orient a (temporarily) right-leaning red link to lean left
Right rotation: Orient a left-leaning red link to a (temporarily) lean right
Color flip: Recolor to split a (temporary) 4-node

```java
void flipColors(Node h) {
    h.color = RED;
    h.left.color = BLACK;
    h.right.color = BLACK;
}
```

Flipping colors to split a 4-node
Insertion into a LLRB

- Do standard BST insertion and color the new link red.
- Repeat until color invariants restored:
 - Both children red? Flip colors.
 - Right link red? Rotate left.
 - Two left reds in a row? Rotate right.
Red-black BST construction demo

red–black BST

[Diagram of a red-black BST]
Summary for dictionary operations

<table>
<thead>
<tr>
<th></th>
<th>Worst case</th>
<th></th>
<th></th>
<th>Average case</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Search</td>
<td>Insert</td>
<td>Delete</td>
<td>Search</td>
<td>Insert</td>
</tr>
<tr>
<td>BST</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>logn</td>
<td>logn</td>
<td>logn</td>
</tr>
<tr>
<td>2-3 search tree</td>
<td>logn</td>
<td>logn</td>
<td>logn</td>
<td>logn</td>
<td>logn</td>
<td>logn</td>
</tr>
<tr>
<td>Red-black BSTs</td>
<td>logn</td>
<td>logn</td>
<td>logn</td>
<td>logn</td>
<td>logn</td>
<td>logn</td>
</tr>
</tbody>
</table>
Misc

- Comparable/Comparator Interfaces
- Iterable/Iterator Interfaces
- BT Traversals
Comparable Interface

- Interface with a single method that we need to implement:
  ```java
  public int compareTo(T that)
  ```
- Implement it so that `v.compareTo(w)`:
 - Returns >0 if v is greater than w.
 - Returns <0 if v is smaller than w.
 - Returns 0 if v is equal to w.
- Corresponds to natural ordering.
Comparator Interface

- Sometimes the natural ordering is not the type of ordering we want.
- Comparator is an interface which allows us to dictate what kind of ordering we want by implementing the method:
  ```java
  public int compare(T this, T that)
  ```
- Implement it so that `compare(v, w)`:
 - Returns >0 if v is greater than w.
 - Returns <0 if v is smaller than w.
 - Returns 0 if v is equal to w.

  ```java
  public static Comparator<ClassName> reverseComparator(){
      return (ClassName a, ClassName b)->{return -a.compareTo(b)};
  }
  ```
Misc

- Comparable/Comparator Interfaces
- Iterable/Iterator Interfaces
- BT Traversals
Iterable\(<T>\) Interface

- Interface with a single method that we need to implement:
 `Iterator\(<T>\)` `iterator()`

- Class becomes iterable, that is it can be traversed with a for-each loop.

- `for` (String student: students){
 System.out.println(student);
}

Iterator\textless T\textgreater Interface

- Interface with two methods that we need to implement: \texttt{boolean hasNext()} and \texttt{T next()}.
- \texttt{hasNext()} checks whether there is any element we have not seen yet.
- \texttt{next()} returns the next available element.
- Always check if there are any available elements before returning the next one.
- Typically a comparable class, has an inner class that implements Iterator. Outer class’s \texttt{iterator} method returns an instance of inner class.
- Can also be implemented in a standalone class where collection to iterate over is passed in the constructor.
Misc

- Comparable/Comparator Interfaces
- Iterable/Iterator Interfaces
- BT Traversals
BT traversals

- Pre-order: mark root visited, left subtree, right subtree.
- In-order: left subtree, mark root visited, right subtree.
- Post-order: left subtree, right subtree, mark root visited.
- Level-order: start at root, mark each node as visited level by level, from left to right.
Practice Problems

- Problem 1 - Sorting
- Problem 2 - Heaps
- Problem 3 - Tree traversals
- Problem 4 - Binary Trees
- Problem 5 - Binary Search Trees
- Problem 6 - Iterators
Problem 1 - Sorting

- In the next slide, you can find a table whose first row (last column 0) contains an array of 18 unsorted numbers between 1 and 50. The last row (last column 6) contains the numbers in sorted order. The other rows show the array in some intermediate state during one of these five sorting algorithms:
 - 1-Selection sort
 - 2-Insertion sort
 - 3-Mergesort
 - 4-Quicksort (one partition only)
 - 5-Heapsort

- Match each algorithm with the right row by writing its number (1-5) in the last column.
Problem 1 - Sorting

12	11	35	46	20	43	42	47	44	32	16	10	40	18	41	21	28	15	0																																			
11	12	20	35	42	43	46	47	44	32	16	10	40	18	41	21	28	15																																				
12	11	10	15	20	43	42	47	44	32	16	35	40	18	41	21	28	46																																				
10	11	12	15	16	43	42	47	44	32	20	35	40	18	41	21	28	46																																				
43	32	42	28	20	40	41	21	15	11	16	10	35	18	12	44	46	47																																				
11	12	20	35	46	43	42	47	44	32	16	10	40	18	41	21	28	15																																				
10	11	12	15	16	18	20	21	28	32	35	40	41	42	43	44	46	47	6																																			
Problem 2 - Heaps

- Consider the following max-heap:

- Draw the heap after you insert key 13.

- Suppose you delete the maximum key from the original heap. Draw the heap after you delete 14.
Problem 3 - Tree Traversals

Circle the correct binary tree(s) that would produce both of the following traversals:

- Pre-order: C R B W O S T N Q
- In-order: B R W O C S N T Q
Problem 4 - Binary Trees

- You are extending the functionality of the BinaryTree class that represents binary trees with the goal of counting the number of leaves. Remember that BinaryTree has a pointer to a root Node and the inner class Node has two pointers, left and right to the root nodes that correspond to its left and right subtrees.

- You are given the following public method:

```java
public int sumLeafTree()
    return sumLeafTree(root);
}
```

- Please fill in the body of the following recursive method

```java
private int sumLeafTree(Node x){...}
```
Problem 5 - Binary Search Trees

You are extending the functionality of the BST class that represents binary search trees with the goal of counting the number of nodes whose keys fall within a given \([low, \text{ high}]\) range. That is you want to count how many nodes have keys that are equal or larger than low and equal or smaller than high. Remember that BST has a pointer to a root Node and the inner class Node has two pointers, left and right to the root nodes that correspond to its left and right subtrees and a Comparable Key key (please ignore the value).

You are given the following public method:

```java
public int countRange(Key low, Key high)
    return countRange(root, Key low, Key high);
}
```

Please fill in the body of the following recursive method

```java
private int countRange(Node x, Key low, Key high){...}
```
Problem 6 - Iterators

- A programmer would like to traverse an arraylist in reverse order (from last element to first element). Modify the class ArrayList we wrote together to provide such an iterator.

```java
public class ArrayList<E> implements List<E>, Iterable<E> {
    //instance variables data and size
    public Iterator<E> iterator() {
        return new ArrayListIterator();
    }

    private class ArrayListIterator implements Iterator<E> {
        //your implementation
    }
}
```
Answers

- Solution to Problem 1 - Sorting
- Solution to Problem 2 - Heaps
- Solution to Problem 3 - Tree traversals
- Solution to Problem 4 - Binary Trees
- Solution to Problem 5 - Binary Search Trees
- Solution to Problem 6 - Iterators
Solution to Problem 1 - Sorting

0-Starting point

1-Selection sort

2-Insertion sort

3-Mergesort

4-Quicksort (one partition only)

5-Heapsort

6-Final sorted result

```
0: 12 11 35 46 20 43 42 47 44 32 16 10 40 18 41 21 28 15
2: 11 12 20 35 42 43 46 47 44 32 16 10 40 18 41 21 28 15
4: 12 11 10 15 20 43 42 47 44 32 16 35 40 18 41 21 28 46
1: 10 11 12 15 16 43 42 47 44 32 20 35 40 18 41 21 28 46
5: 43 32 42 28 20 40 41 21 15 11 16 10 35 18 12 44 46 47
3: 11 12 20 35 46 43 42 47 44 32 16 10 40 18 41 21 28 15
6: 10 11 12 15 16 18 20 21 28 32 35 40 41 42 43 44 46 47
```
Solution to Problem 2 - Heaps

- Insert key 13:

- Delete max-key (14):
Solution to Problem 3 - Tree traversals

- Pre-order: C R B W O S T N Q
- In-order: B R W O C S N T Q
Solution to Problem 4 - Binary Trees

```java
private int sumLeafTree(Node x){
    if (x == null){
        return 0;
    }

    else if (x.left == null && x.right == null){
        return 1;
    }

    else{
        return sumLeafTree(x.left) + sumLeafTree(x.right);
    }
}
```
Solution to Problem 5 - Binary Search Trees

private int countRange(Node x, Key low, Key high){
 if (x == null){
 return 0;
 }
 if (x.key.compareTo(low)>=0 && x.key.compareTo(high)<=0){
 return 1 + countRange(x.left, low, high) + countRange(x.right, low, high);
 }
 else if (x.key.compareTo(low)<0){
 return countRange(x.right, low, high);
 }
 else{
 return countRange(x.left, low, high);
 }
}
Solution to Problem 6 - Iterators

A programmer would like to traverse an arraylist in reverse order (from last element to first element). Modify the class ArrayList we wrote together to provide such an iterator.

```java
public class ArrayList<E> implements List<E>, Iterable<E> {
    //instance variables data and size
    public Iterator<E> iterator() {
        return new ArrayListIterator();
    }
}

private class ArrayListIterator implements Iterator<E> {
    private int i = size - 1;

    public boolean hasNext() {
        return i >= 0;
    }

    public E next() {
        return data[i--];
    }

    public void remove() {
    }
}
```
GOOD LUCK! YOU CAN DO THIS!