
CS062

DATA STRUCTURES AND ADVANCED PROGRAMMING

8: Analysis of Algorithms

BASIC DATA STRUCTURES

Alexandra Papoutsaki 
she/her/hers

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

Today we're going to do some math and some science. Not a lot, but we need to have a scientific basis for understanding the performance of our algorithms to properly
develop them and use them in practice.

TODAY’S LECTURE IN A NUTSHELL

Lecture 8: Analysis of Algorithms

▸ Experimental Analysis of Running Time

▸ Mathematical Models of Running Time

▸ Order of Growth Classification

▸ Analysis of ArrayList operations

2

Some slides adopted from Algorithms 4th Edition or COS226

We're going to look at how to make mathematical models and how to classify algorithms according to the order of growth of their running time and we’ll apply those
principles to analyze the running time of array list operations.

EXPERIMENTAL ANALYSIS OF RUNNING TIME

Different Roles

3

You

Programmer 
needs a working solution

Theoretician 
Wants to understand

User 
Wants an efficient solution

To put this all in perspective, we're going to think about these issues from the point of view of different types of characters. The first one is the programmer who needs to
solve a problem programmatically. The second one is the user who wants to use whatever program to get the job done efficiently. The third one is the theoretician; that's
somebody who really wants to understand what's going on when analyzing an algorithm. There's a little bit of each one of these perspectives in today's lecture. As a
student, you have to think that you might be playing any or all of these roles some day. Therefore, it's pretty important to understand these different points of view.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

3-SUM: Given distinct numbers, how many unordered triplets sum to 0?n

EXPERIMENTAL ANALYSIS OF RUNNING TIME

‣ Input: 30 -40 -20 -10 40 0 10 5

‣ Output: 4

‣ 30 -40 10

‣ 30 -20 -10

‣ -40 40 0

‣ -10 0 10

For a running example, we're going to use the 3-sum: If you have n distinct integers, how many triplets sum to exactly zero? For example, with these eight integers, there
are four triples that sum to zero. Our goal is to write a program that can compute this quantity for any set of n distinct integers. The 3-sum problem is an extremely
important computation that's deeply related to many problems in computational geometry which is a branch of computer science that covers the algorithms and
underlying science related to graphics, movies, and geometric models of all sorts.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

EXPERIMENTAL ANALYSIS OF RUNNING TIME

public class ThreeSum {

public static int count(int[] a) {

	 	 int n = a.length;

	 	 int count = 0;

	 	 for (int i = 0; i < n; i++) {

	 	 	 for (int j = i+1; j < n; j++) {

	 	 	 	 for (int k = j+1; k < n; k++) {

	 	 	 	 	 if (a[i] + a[j] + a[k] == 0) {

	 	 	 	 	 	 count++;

	 	 	 	 	 }

	 	 	 	 }

	 	 	 }

	 	 }

	 	 return count;

	 }

public static void main(String[] args) {

	 	 String filename = args[0];

	 	 int fileSize = Integer.parseInt(args[1]);

	 	 try {

	 	 	 Scanner scanner = new Scanner(new File(filename));

	 	 	 int intList[] = new int[fileSize];

	 	 	 int i=0;

	 	 	 while(scanner.hasNextInt()){

	 	 	 	 intList[i]=scanner.nextInt();

 i++;

	 	 	 }

	 	 	 Stopwatch timer = new Stopwatch();

	 	 	 int count = count(intList);

	 	 	 System.out.println("elapsed time = " + timer.elapsedTime());

	 	 	 System.out.println(count);

	 	 }

	 	 catch (IOException e) {

	 	 	 throw new IllegalArgumentException("Could not open " + filename, e);

	 	 }

	 }

3-SUM: Brute force algorithm

Let's assume that the n distinct numbers are given to us in a file. We could come up with a brute force algorithm for solving the 3-sum problem. Our main method
accepts two arguments through the args String[]. The first one corresponds to the name of the file that contains one integer per line. The second is the number of lines of
the file. We use the Scanner class to read the specified number of lines and we count how much time has elapsed when running our count method. The count method
has three nested loops that examine every combination of triples to see which ones add up to 0 and increases a counter accordingly. We are sure that our code works
correctly but how much time does it take as a function of n (that is the number of distinct numbers?)

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

EXPERIMENTAL ANALYSIS OF RUNNING TIME

‣ Input: 8ints.txt

‣ Output: 4 and 0

‣ Input: 1Kints.txt

‣ Output: 70 and 0.081

‣ Input: 2Kints.txt

‣ Output: 528 and 0.38

‣ Input: 2Kints.txt

‣ Output: 528 and 0.371

‣ Input: 4Kints.txt

‣ Output: 4039 and 2.792

‣ Input: 8Kints.txt

‣ Output: 32074 and 21.623

‣ Input: 16Kints.txt

‣ Output: 255181 and 177.344

Input size Time
8 0

1000 0.081
2000 0.38
2000 0.371
4000 2.792
8000 21.623

16000 177.344

Empirical Analysis

The stopwatch will help us with our empirical analysis. We will run our code for various input sizes that will double every time and measure their running time. The results
are shown on the table. It’s interesting to note that for the same input, we will have slight variations in measurements every time we run it, but broadly they will show the
same trend. What we see is that each time we're doubling the size of the input, our code takes longer to run.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

EXPERIMENTAL ANALYSIS OF RUNNING TIME

 n

T(n)

logn

logT(n)

Straight line of slope 3

‣ Regression: (power-law).

‣ , where is slope.

‣ Experimentally: ~ , in our example for ThreeSum.

T(n) = anb

log T(n) = b log n + log a b
0.42 × 10−10n3

Plots and log-log plots

We can now take these numbers and plot them. On the left figure, you see that the x-axis has the problem size (that is the number of distinct integers) and y-axis has the
corresponding time it took in seconds. The right figure shows the log-log plot, where on the x-axis we have the logarithm of the problem size (the number of integers),
and on the y-axis the logarithm of the time it took for each run. Very often, this will result in a a straight line. The slope (the change in y coordinate with respect to the
change in x coordinate, m = (y2-y1)/(x2-x1)) of the straight line is the key to what's going on. In this case, the slope of the straight line is 3. We can run a regression to fit a
straight line through the data points. We won’t do the proof, but if you get a straight line and the slope is b (here, 3), then your function is proportional to an^b. That's
called the power law. And that's true of many, many scientific problems including most polynomial algorithms. Experimentally, in our example for our three-sum problem
this would result in 0.42x10^{-10}n^3, that is a=0.42 and b=3 (as we’ve already seen).

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

EXPERIMENTAL ANALYSIS OF RUNNING TIME

‣ Doubling input size increases running time by a factor of

‣ Run program doubling the size of input. Estimate factor of growth:

‣ .

‣ E.g., in our example, for pair of input sizes and the ratio

 is or ~8 which can be written as , therefore is

approximately .

‣ Assuming we know , we can figure out .

‣ E.g., in our example, .

‣ Solving for we get .

T(n)
T(n/2)

T(n)
T(n/2)

=
anb

a(n
2)b

= 2b

8000 16000

(
177.344
21.623

) 8.2 23 b

3
b a

T(16000) = 177.34 = a × 160003

a a = 0.42 × 10−10

Input size Time
8 0

1000 0.081
2000 0.38
4000 2.792
8000 21.623

16000 177.344
Doubling Hypothesis

Let’s use this to figure out how we can experimentally figure out how the running time of our algorithm grows as the problem size grows. We have already taken various
measurements where we double the size of the problem and note how long it takes every time. What we will do is pick two large input sizes, where one is twice as big as
the other one and divide their running times. This relationship will result in a number that can be rewritten as 2^b. This is known as the doubling hypothesis.

For example, our code took 177.344 sec and 21.623 seconds respectively for 16000 and 8000 random distinct integers. If we divide 177.344/21.623 we get 8.2 which is
roughly equal to 8, which can be written as 2^3, thus b is approximately 3. Now that we know b, we can figure out a. Remember T(n)=an^b. n=16000 and b=3, thus
solving for a we get a = 0.42x10^{-10}

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

EXPERIMENTAL ANALYSIS OF RUNNING TIME

‣ Suppose you time your code and you make the following
observations. Which function is the closest model of ?

A.

B.

C.

D.

T(n)
n2

6 × 10−4n
5 × 10−9n2

7 × 10−9n2

Input size Time
1000 0
2000 0.0
4000 0.1
8000 0.3

16000 1.3
32000 5.1

PRACTICE TIME

Let’s see whether we know how to apply the doubling hypothesis.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

EXPERIMENTAL ANALYSIS OF RUNNING TIME

‣ C.

‣ T(32000)/T(16000) is approximately , therefore .

‣ .

‣ Solving for .s

5 × 10−9n2

4 b = 2
T(32000) = 5.1 = a × 320002

a = 4.98 × 10−9

Input size Time
1000 0
2000 0.0
4000 0.1
8000 0.3

16000 1.3
32000 5.1

ANSWER

The correct answer was C

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

EXPERIMENTAL ANALYSIS OF RUNNING TIME

‣ System independent effects: Algorithm + input data

‣ Determine in power law relationships.

‣ System dependent effects: Hardware (e.g., CPU, memory,
cache) + Software (e.g., compiler, garbage collector) + System
(E.g., operating system, network, etc).

‣ Dependent and independent effects determine in power

law relationships.

‣ Although it is hard to get precise measurements, experiments
in Computer Science are cheap to run.

b

a

Effects on Performance

The running time of a program can be affected by the machine you run it on, but the primary effects are independent of what computer you run it on. Far more important
is what algorithm you have chosen and what kind of data you have. These two factors will determine b, the exponent in the power law. Of course the system itself, as
what hardware, software, and what other programs you run will affect the performance of your code. This will be captured in the a of the power law.

In modern systems there is so much going on in the hardware and software, it's sometimes difficult to get really precise measurements. But on the other hand we don't
have to sacrifice animals, or fly to another planet the way they do in other sciences, we can just run a huge number of experiments and usually take care of
understanding these kind of effects.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 8: Analysis of Algorithms

▸ Experimental Analysis of Running Time

▸ Mathematical Models of Running Time

▸ Order of Growth Classification

▸ Analysis of ArrayList operations

12

Observing what's happening as we did in the last section, gives us a way to predict performance but it really doesn't help us understand what the algorithms are doing.
So next, we're going to look at mathematical modeling, a way to get a better concept of what's really happening.

MATHEMATICAL MODELS OF RUNNING TIME

‣ Popularized by Donald Knuth in the 60s in the four volumes of
“The Art of Computer Programming”.

‣ Knuth won the Turing Award (The “Nobel” in CS) in 1974. 

‣ In principle, accurate mathematical models for performance of
algorithms are available.

‣ Total running time = sum of cost x frequency for all operations.

‣ Need to analyze program to determine set of operations.

‣ Exact cost depends on machine, compiler.

‣ Frequency depends on algorithm and input data.

Total Running Time

We will focus on the total running time, a concept that was developed and popularized by Donald Knuth starting in the late 60s. At that time, computer systems were
really becoming complicated for the first time and computer scientists were concerned about whether we really were going to be able to understand what's going on.
Knuth was very direct in saying that this is something that we certainly can do. We can calculate the total running time of a program by identifying all the basic
operations, figuring out the cost, figuring out the frequency of execution, and summing up the cost times frequency for all the operations. You have to analyze the
program to determine what set of operations. As we saw, the cost depends on the machine and the computer in the system and the frequency on the algorithm and the
input data. Knuth has written a series of books that give very detailed and exact analyses within a particular computer model for a wide range of algorithms. So, from
Knuth, we know that we can get accurate mathematical models for the performance of algorithms or programs in operation.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

MATHEMATICAL MODELS OF RUNNING TIME

‣ Add < integer multiply < integer divide < floating-point add <
floating-point multiply < floating-point divide.

Operation Example Nanoseconds
Variable declaration int a

Assignment statement a = b
Integer comparison a < b

Array element access a[i]
Array length a.length

1D array allocation new int[n]
2D array allocation new int[n][n]

string concatenation s+t

c1

c2

c3
c4

c5
c6n
c7n2

c8n

Cost of Basic Operations

For basic operations, like addition etc. we’ll postulate that the running time is some constant. If we're going to allocate an int array of size n, it takes time proportional to n
because in Java, the default is that all the elements in an int array are initialized to zero. Another important one is string concatenation. If you concatenate two strings, the
running time is proportional to the length of the final string. Many novices in programming and Java make the mistake of assuming that that's a constant time operation,
when it's not.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

MATHEMATICAL MODELS OF RUNNING TIME

‣ How many operations as a function of ?

 int count = 0;
 for (int i = 0; i < n; i++) {
 if (a[i] == 0) {
 count++;
 }
 }

n

Operation Frequency

Variable declaration
Assignment

Less than
Equal to

Array access
Increment ton 2n

n
n

n + 1
2
2

Example:1-SUM

Let’s look into 1-SUM, a very simple variant of a 3-SUM problem, which calculates how many numbers are zero. We can solve this problem with just one for loop: we go
through our array and we test if the number is zero and increment our count. By analyzing that code, you can see that:

- i and count have to be declared and then they have to be assigned to zero. That gives us 2 variable declarations and 2 assignments.

- There’s n+1 comparison of i against n (i<n).

- There’s n comparisons of a[i] against zero (a[i]==0)

- There’s n array accesses (a[I]).

- In terms of increment, we have n for the i (i++). count++ will be done 0 to n times depending on how many of our n numbers are 0. So overall, we get n to 2n

increments.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

MATHEMATICAL MODELS OF RUNNING TIME

‣ How many operations as a function of ?

 int count = 0;
 for (int i = 0; i < n; i++) {
 for (int j = i+1; j < n; j++) {
 if (a[i] + a[j] == 0) {
 count++;
 }
 }
 }

n

Operation Frequency

Variable declaration
Assignment

Less than
Equal to

Array access
Increment ton(n + 1)/2 n2

n(n − 1)
n(n − 1)/2

(n + 1)(n + 2)/2
n + 2
n + 2

BECOMING TOO TEDIOUS TO CALCULATE

Example: 2-SUM 1 + 2 + 3 + . . . + n = n(n + 1)/2

Let's look at a more complicated problem, the 2-SUM problem which asks how many pairs of integers sum to zero.

- We have 1 declaration for count, 1 for i, and n for j (j gets redeclared every time i increases). That gives n+2 declarations.

- Same idea for assignments.

- Let’s count the frequency of the less than operations

- The outer circle gives us n+1 such comparisons (i<n).

- The inner circle gives us n(n+1)/2 such comparisons (j<n). How did we calculate that?

 When i=0, we do n comparisons with j

 When i=1, we do n-1 comparisons with j

 When i=2, we do n-2 comparisons with j

 …

 When i=n-2, we do 2 comparisons with j

 When i=n-1, we do 1 comparison with j

 If we add those up we have 1+ 2 + ... + (n-1) +n = n(n+1)/2

 Together we have (n+1) +n(n+1)/2= (n+1)(n+2)/2

Alternatively, this can be calculated as \sum_{i=0}^{n}(1+ \sum_{j=i + 1}^{n} 1) = (n+1)(n + 2)/2

- Let’s apply the same idea to counting the equal to operation (==).

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

i=0: n-1

i=1: n-2

i=2: n-3

...

i=n-2: 1

i=n-1: 0

0+1+ 2 + ... (n-2) + (n-1) = (n-1)(n-1+1)/2 = n(n-1)/2

Alternatively \sum_{I=0}^{n - 1}\sum_{j=i+1}^{n-1} = n(n-1)/2

- Let’s apply the same idea to counting the array accesses. Remember we have two each time.

i=0: 2*(n-1)

i=1: 2*(n-2)

i=2: 2*(n-3)

…

i=n-3:2*2

i=n-2:2*1

i=n-1: 0

2(1+2+ ... (n-2) + (n-1))= 2(n(n-1)/2) = n(n-1)

Alternatively \sum_{i=0}^{n - 1}\sum_{j=i+ 1}^{n-1}2 = n(n-1)

- For increments:

- the outer cycle gives n increments for i.

- The inner cycle gives n(n-1)/2 increments for j.

- Together n+n(n-1)/2= n(n+1)/2

	 Alternatively, sum_{i=0}^{n-1}(1+\sum_{j=i+1}^{n-1}1) = n(n + 1)/2

	 - Count++ can be executed from 0 times all the way to n(n-1)/2

	 - All the increments together are:

	 	 - at minimum n(n+1)/2 and

	 	 - at maximum n(n+1)/2+ n(n-1)/2=n^2.

This is getting too tedious to have to do for every single operation!

MATHEMATICAL MODELS OF RUNNING TIME

‣ Estimate running time (or memory) as a function of input size .

‣ Ignore lower order terms.

‣ When is large, lower order terms become negligible.

‣ Example 1: ~  

‣ Example 2: ~  

‣ Example 3: ~  

n

n

1
6

n3 + 10n + 100 n3

1
6

n3 + 100n2 + 47 n3

1
6

n3 + 100n
2
3 +

1/2
n

n3

Tilde Notation

Instead of doing all these difficult calculations we will use the tilde notation that drops all the lower order terms. We will use it both when analyzing the running time or the
memory as a function of the problem input size n. The idea is that when n is large, the lower order terms become negligible. Above you can see three examples of how
we can simplify the analysis to showing that all three of these algorithms run in n^3 time.

MATHEMATICAL MODELS OF RUNNING TIME

‣ Cost model: Use some basic operation as proxy for running
time. E.g., array accesses

‣ Combine it with tilde notation.

‣ ~ array accesses for the 2-SUM problemn2

Operation Frequency Tilde notation

Variable declaration ~
Assignment ~

Less than ~
Equal to ~

Array access ~
Increment to ~

n(n − 1)

n + 2
n + 2

n2
n2
n2
n2
n
n

n2

Simplification

n(n + 1)/2

n(n − 1)/2
(n + 1)(n + 2)/2

Our cost model will use some basic operation as proxy for running time. E.g., array accesses and combine it with the tilde notation. That means we can simplify the 2-
SUM analysis to showing that the frequency of operations is n or n^2. We will choose the number of array accesses, n^2 as a proxy for the total cost of this algorithm.

MATHEMATICAL MODELS OF RUNNING TIME

‣ Approximately how many array accesses as a function of input size
?

 int count = 0;
 for (int i = 0; i < n; i++) {
 for (int j = i+1; j < n; j++) {
 for (int k = j+1; k < n; k++) {
 if (a[i] + a[j] + a[k] == 0) {
 count++;
 }
 }
 }
 }

‣ array accesses.

n

n−1

∑
i=0

n−1

∑
j=i+1

n−1

∑
k=j+1

3 = 1/2n(n2 − 3n + 2) ∼ n3

Back to the 3-SUM problem

We can apply the same logic to figure out that the 3-SUM problem takes n^3 array accesses.

The outer loop runs n times.

The middle loop runs from i+1 to n-1, so it iterates n-1-(i+1) +1 = n-i-1 times for each iteration of the outer loop

The inner loop runs from j+1 to n-1, so it iterates n-1-(j+1)+1 = n-j-1 times for each iteration of the middle loop.

The total number of array accesses is the product of the number of iterations of the three loops multiplied by the number of array accesses inside the innermost loop.
Therefore, the total number of array accesses in terms of input size n is:

\sum_{i=0}^{n-1}\sum_{j=i+1}^{n-1}\sum_{k=j+1}^{n-1}3 = 1/2n(n^2 - 3n + 2) which simplifies to n^3

A much more detailed way to solving this would be calculating it as follows:

When:

i = 0, j= 1, k=2…n-1, that is 3*(n-2) array access

i=0, j=2, k= 3…n-1, that is 3*(n-3) array accesses

i=0, j=3, k=4…n-1, that is 3*(n-4) array accesses

…

i=0, j=n-2, k=n-1, that is 3*1 array accesses

Overall 3*(1+2+…+n-2) =3*(n-2)(n-1)/2

When:

i = 1, j=2, k=3…n-1, 3*(n-3) array accesses

…

i= 1, j=n-2, k=1, that is 3 array accesses

Overall 3*(1+2+…+n-3) =3*(n-3)(n-2)/2

...

We see the trend that for a certain i, we have 3*(n-2-i)(n-1-i)/2 array accesses.

We have in total \sum_{i=0}^{n-1} 3*(n-2-i)(n-1-i)/2 which results to exactly what we calculated above, i.e. 1/2n(n^2-3n+2) which simplifies to n^3

TODAY’S LECTURE IN A NUTSHELL

Lecture 8: Analysis of Algorithms

▸ Experimental Analysis of Running Time

▸ Mathematical Models of Running Time

▸ Order of Growth Classification

▸ Analysis of ArrayList operations

20

Fortunately, when we analyze algorithms not too many different functions arise and that property allows us to classify algorithms according to their performance as the
problem size grows.

ORDER OF GROWTH CLASSIFICATION

Types of analysis

▸ Best case: lower bound on cost.

▸ What the goal of all inputs should be.

▸ Often not realistic, only applies to “easiest” input.

▸ Worst case: upper bound on cost.

▸ Guarantee on all inputs.

▸ Calculated based on the “hardest” input.

▸ Average case: expected cost for random input.

▸ A way to predict performance.

▸ Not straightforward how we model random input.

In general, theoretical computer scientists perform three types of analysis for algorithms. They look at the best case, that is the lower bound on cost with the goal of what
the running time should be for all inputs. But this is often no realistic and it only applies to the easiest input. On the other side, we have the worst case analysis that
provides an upper bound on cost. This is a guarantee about the longest our code would take to run for any input at it is calculated on what is the hardest input we would
expect. Somewhere in the middle, there is the average case that focuses on the expected cost for a random input. It is the most realistic performance prediction but it is
not very easy to figure out how to model random input.

ORDER OF GROWTH CLASSIFICATION

‣ Definition: If ~ for some constant , then the order of growth of
 is .

‣ Ignore leading coefficients.

‣ Ignore lower-order terms. 

▸ We will be using the big-Oh (O) notation. For example:

▸

▸

▸

▸ Yes, , but that’s a rather useless bound.

f(n) cg(n) c > 0
f(n) g(n)

3n3 + 2n + 7 = O(n3)

2n + n2 = O(2n)

1000 = O(1)

3n3 + 2n + 7 = O(n6)

Worst case analysis

In this class, we will focus on the worst case analysis. We will start with the definition of order of growth, which an approximation of the time required to run a computer
program as the input size increases. There is a formal definition but I want you to keep two things. If you calculate that the running time of a program can be described by
a certain function, you can ignore the leading coefficients and drop the lower order terms. We will use the Big-Oh notation.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ORDER OF GROWTH CLASSIFICATION

‣ Good news: only a small number of function suffice to describe the order-of-growth of typical
algorithms.

‣ : constant

‣ Doubling the input size won’t affect the running time. Holy-grail.

‣ : logarithmic

‣ Doubling the input size will increase the running time by a constant.

‣ : linear

‣ Doubling the input size will result to double the running time.

‣ : linearithmic

‣ Doubling the input size will result to a bit longer than double the running time.

‣ : quadratic

‣ Doubling the input size will result to four times as much running time.

‣ : cubic

‣ Doubling the input size will result to eight times as much running time.

‣ : exponential

‣ When you increase the input by some constant amount, the time taken is doubled.

‣ : factorial

‣ Running time grows exponentially with the size of the input.

1

log n

n

n log n

n2

n3

2n

n!

Common order of growth classifications

The good news is there's only a small number of functions that turn up in the algorithms that we are interested in. O(1) is constant: doubling the input size won't affect the
running time. That's the holy-grail but also very hard to achieve. O(long) is logarithmic. If we double the input size we will see constant slow down of the running time.
Next is O(n), linear. Doubling the input size will result to double the running time. O(nlogn) is linearithmic: Doubling the input size will result to a bit longer than double the
running time. Next comes O(n^2) which is quadratic. Doubling the input size will result to four times as much running time. O(n^3), cubic: Doubling the input size will
result to eight times as much running time. O(2^n) is factorial: When you increase the input by some constant amount, the time taken is doubled. And finally we have
factorial O(n!): Running time grows exponentially with the size of the input.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ORDER OF GROWTH CLASSIFICATION

bigocheatsheet.com

From slowest growing to fastest growing

‣ < < < < < < < 1 log n n n log n n2 n3 2n n!

Here's a good graphic about what we hope for and what we can be ok with. In general the slowest growing is constant and the fastest growing is factorial. Constant and
logarithmic are the idea. We can be ok with linear. Above that, things start slowing down considerably.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ORDER OF GROWTH CLASSIFICATION

Order-of-growth Name Example code

Constant a[i]=b+c

Logarithmic while(n>1){n=n/2;…} ~

Linear for(int i=0; i<n; i++)

Linearithmic
for (i = 1; i <= n; i++){

int x = n;
 while (x > 0)

 x -= i;
 }

~

Quadratic for(int i=0; i<n; i++) {  
 for(int j=0; j<n; j++){

Cubic
for(int i=0; i<n; i++) {  
 for(int j=0; j<n; j++){  
 for(int k=0; k<n; k++){

T(n)/T(n /2)

1

log n

n

n log n

n2

n3

1

1

2

2

4

8

Common order of growth classifications

These are some examples that we might encounter in this class. Note that the last column gives you what the experimental output would be.

I think they are all self-explanatory. For the linearithmic example:

The outer loop runs n times.

For each iteration, the inner loops runs n / i times.

The total number of runs is:

n + n/2 + n/3 + ... + n/n

Asymptotically (ignoring integer arithmetic rounding), this simplifies as

n * (1 + 1/2 + 1/3 + ... + 1/n)

This series loosely converges towards n * log(n).

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

MATHEMATICAL MODELS OF RUNNING TIME

‣ Harmonic sum: ~

‣ Triangular sum: ~

‣ Geometric sum: ~ , when

power of 2.

‣ Binomial coefficients: ~ when k is a small constant.

‣ Use a tool like Wolfram alpha.

Hn = 1 + 1/2 + 1/3 + . . . + 1/n ln n
1 + 2 + 3 + . . . + n n2

1 + 2 + 4 + 8 + . . . + n = 2n − 1 n n

(n
k) nk

k!

Useful approximations

Here are some useful approximations to be aware of in general when you analyze the running time of code. I don't expect you to have these memorized but be aware
they exist and they can simplify sums.

TODAY’S LECTURE IN A NUTSHELL

Lecture 8: Analysis of Algorithms

▸ Experimental Analysis of Running Time

▸ Mathematical Models of Running Time

▸ Order of Growth Classification

▸ Analysis of ArrayList Operations

27

Now that we know how we can analyze the running time of an algorithm both experimentally and mathematically, let's apply these lessons to seeing the running time of
array list operations we encountered last time.

ANALYSIS OF ARRAYLIST OPERATIONS

Worst-case performance of add() is O(n)

‣Cost model: 1 for insertion, for copying items to a new array.

‣Worst-case: If ArrayList is full, add() will need to call resize to
create a new array of double the size, copy all items, insert new one.

‣Total cost: .

‣Realistically, this won’t be happening often and worst-case analysis
can be too strict. We will use amortized time analysis instead.

n n

n + 1 = O(n)

28

The worst-case performance for add is O(n). For our cost model, we will assume that we will pay some constant, let's say for each insertion, and n for when we need to
copy n items to a new array. The worst-case scenario is that the array list is full and add calls resize to create a new array of double the size, copy all items, insert new
one. The total cost would be n+1 which is O(n). Realistically, this won’t be happening often and worst-case analysis can be too strict. We will use amortized time analysis
instead.

ANALYSIS OF ARRAYLIST OPERATIONS

Amortized analysis

‣Amortized cost per operation: for a sequence of operations, it is
the total cost of operations divided by .

n
n

29

Amortized time analysis says that worst-case analysis is to pessimistic. Instead, we will perform a sequence of n operations and we will take the average (the total total
cost of operations divided by n). There are

ANALYSIS OF ARRAYLIST OPERATIONS

Amortized analysis for add() operationsn

‣ As the ArrayList increases, doubling happens half as often but costs twice as much.

‣ total cost)= (“cost of insertions”) + (“cost of copying”)

‣ (“cost of insertions”) .

‣ (“cost of copying”) = .

‣ total cost) , therefore amortized cost is , but “lumpy”.

0 1 2 3 75 64 8 9 10 131211 14 15 16

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Insertion
Cost 1

0 1 2 0 4 0 0 0 8 0 0 0 0 0 0 0
Copying
Cost 16

1 2 3 1 5 1 1 1 9 1 1 1 1 1 1 1
Total
Cost 17

O(∑ ∑
∑ = n

∑ 1 + 2 + 22 + . . .2⌊log2 n⌋ ≤ 2n

O(≤ 3n ≤
3n
n

= 3 = O+(1)

30

Let's see how that would play out for n additions. Remember, we pay 1 for every insertion so the total cost of n insertions is n*1 = n.

We also pay n for every time we need to resize the array. Assume that we start with an array list of 1 capacity. When the first addition happens, we are good, we don't
need to copy over. Now a second add comes, we need to copy the 1 element and add 1 element. That will result to cost of 2. When the third addition happens, we will
need to copy the two old elements and add a new one so we pay 3 in total. But then we're set until the fifth add. In general, as the ArrayList increases, doubling happens
half as often but costs twice as much. We need to copy things logn times if we have n additions. If we add up the cost for insertion and cost for copying, we will get that
the total cost is smaller than 3n.

Thus the amortized cost is smaller than 3n/n<=3 which is O^+(1). So overall, we say that the amortized cost for add is constant although we will occasionally pay a lot to
copy the old elements.

ANALYSIS OF ARRAYLIST OPERATIONS

Amortized analysis for add() operations when increasing ArrayList by 1.n

‣ (“cost of insertions”) .

‣ (“cost of copying”) = .

‣ total cost) , therefore amortized cost is or

.

‣Same idea when increasing ArrayList size by a constant.

‣This is why in the lab on Friday, we saw that doubling was the fastest and linear(1) the
slowest.

0 1 2 3 75 64 8 9 10 131211 14 15 16

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Insertion
Cost 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Copying
Cost 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Total
Cost 17

∑ = n

∑ 1 + 2 + 3 + . . . + n − 1 = n(n − 1)/2
O(= n + n(n − 1)/2 = n(n + 1)/2 (n + 1)/2
O+(n)

31

Let's see now what it would cost if we increased the capacity by 1 instead of doubling the underlying array, every time it was full. The cost of insertions remains the
same. But the cost of copying is quadratic. Therefore, the amortized cost would have been linear. The same idea applies when increasing ArrayList size by a constant.
This is why in the lab on Friday, we saw that doubling was the fastest and linear(1) the slowest. In fact, if you remember, we saw that for n additions, the running time was
becoming four times slower. That means that on average, for one addition, it would be linear. We have both experimental and mathematical proof of why doubling is a far
superior idea!

TODAY’S LECTURE IN A NUTSHELL

Lecture 8: Analysis of Algorithms

▸ Experimental Analysis of Running Time

▸ Mathematical Models of Running Time

▸ Order of Growth Classification

▸ Analysis of ArrayList operations

32

And that's it for today. From now on, we will be using these tools to analyze the running time of all of the data structures we will encounter.

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:
▸ Recommended Textbook:

▸ Chapter 1.4 (pages 172-205)

▸ Recommended Textbook Website:

▸ Resizable arrays (arraylists): https://algs4.cs.princeton.edu/13stacks/

▸ Analysis of Algorithms: https://algs4.cs.princeton.edu/14analysis/

33

Practice Problems:
▸ 1.4.1-1.4.9, 1.4.32, 1.4.35-1.4.36

Code
▸ Lecture 8 code

https://algs4.cs.princeton.edu/13stacks/
https://algs4.cs.princeton.edu/14analysis/
https://github.com/pomonacs622024sp/code/blob/main/Lecture8

