
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

25: Summary

GRAPHS

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

Alexandra Papoutsaki
she/her/hers

Information

2FINAL EXAM

▸ Exam: Wednesday May 8, 2-5pm in the same room we always meet.

▸ You can bring two hand-written (ok hand-written on tablets and then printed) sheets of
papers (i.e. four pages).

▸ Cumulative with a bigger emphasis on topics we covered since midterm 2.

▸ Review midterm 1 and 2, quizzes, worksheets, and practice problems in each
presentation. Use the practice questions in this presentation.

Java Basics

3LECTURES 1-6

▸ Chapter 1.1 (Pages 8–35).

▸ Chapter 1.2 (Pages 64–77, 84—88, 96—99, 107).

▸ Quick overview of Java tutorials.

▸ https://docs.oracle.com/javase/tutorial/java/

▸ In general, review the basics of OOP and of Java so that you are comfortable reading
and writing code.

https://docs.oracle.com/javase/tutorial/java/

LECTURE 8

Analysis of Algorithms

▸ Chapter 1.4 (Pages 172-205).

▸ Experimental analysis including doubling hypothesis. Pick two pairs of the largest input
sizes and check that the T(n)/T(n/2) is consistently expressed as some power of 2.

▸ Mathematical analysis including reviewing (not memorizing) useful approximations of
sums.

▸ Use midterm review slides for practice.

▸ Order of growth classifications.

▸ Review of running time of operations on array lists, linked lists, stacks and queues.

4

LECTURE 7

ArrayLists

▸ Chapter 1.3 (Pages 136-137).

▸ code

▸ Java Oracle API https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

▸ Amortized and worst-case time analysis.

5

https://github.com/pomonacs622024sp/code/tree/main/Lecture8
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

LECTURE 9

Singly Linked Lists

▸ Chapter 1.3 (Pages 142-146).

▸ code

▸ Worst-case time analysis for standard operations.

6

https://github.com/pomonacs622024sp/code/tree/main/Lecture9

LECTURE 10

Doubly Linked Lists

▸ Chapter 1.3 (Pages 126-157).

▸ code

▸ Java Oracle API.

▸ https://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html

▸ Worst-case time analysis for standard operations.

7

https://github.com/pomonacs622024sp/code/tree/main/Lecture10
https://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html

LECTURE 11

Stacks and Queues

▸ Chapter 1.3 (Pages 142-146).

▸ code for alternative implementations

▸ Worst-case time analysis for standard operations based on the underlying
implementation

8

https://github.com/pomonacs622024sp/code/tree/main/Lecture11

LECTURE 12

Iterators and Comparators

▸ Comparable vs Comparator interface.

▸ https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

▸ https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html

▸ Java Oracle Iterator and Iterable.

▸ https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html

▸ https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html

▸ code

9

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html
https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html
https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html
https://github.com/pomonacs622024sp/code/tree/main/Lecture12

LECTURES 12-15

Sorting

▸ Chapter 2 (Pages 244-296).

▸ Selection sort and Insertion sort.

▸ Mergesort.

▸ Quicksort.

▸ We have seen Lomuto’s partition scheme

▸ Know how to apply them, best and worst case running times, in-place or not, stability

10

https://github.com/pomonacs622024sp/code/tree/main/Lecture12
https://github.com/pomonacs622024sp/code/tree/main/Lecture13
https://github.com/pomonacs622024sp/code/tree/main/Lecture14
https://github.com/pomonacs622024sp/code/tree/main/Lecture15

LECTURE 16

Binary Trees, Binary Search, Heaps, and Priority Queues

▸ Chapter 2.4 (Pages 308-322)

▸ Definitions, basic properties of trees and traversals (pre-, in-, post-, level-order) for
binary trees.

▸ Binary search implementation and complexity.

▸ Binary Heaps and operations.

▸ Different implementations along with complexities.

11

LECTURES 17

Heapsort

▸ Chapter 2.4 (323-327).

▸ Know how to apply, running time analysis.

12

LECTURE 13-17

What you need to remember about sorting

In
place Stable Best Average Worst Remarks

Selection X exchanges

Insertion X X Use for small arrays
or partially ordered

Merge X Guaranteed
performance; stable

Quick X
 probabilistic

guarantee; fastest in
practice

Heap X guarantee; in
place

n2

n2

n2 n

n2n

n log n n log n n log n

n log n

n2

n log n

n log n n log n n log nn log n

n2

n log n

LECTURE 18

Dictionaries and Binary Search Trees

▸ Chapter 3.1 (Pages 362-386).

▸ Different implementations along with complexities.

▸ Chapter 3.2 (Pages 396-414).

▸ Textbook code.

▸ https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/BST.java.html

▸ Addition, Search, Hibbard's Deletion.

14

https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/BST.java.html

LECTURE 19

2-3 Search Trees

▸ Chapter 3.3 (Pages 424-291).

▸ Definitions, Search, Insertion, Construction.

▸ Performance.

15

LECTURE 20

Left-leaning red-black trees

▸ Chapter 3.3 (Pages 292-447).

▸ Definitions, Operations, Insertion.

▸ Performance.

16

LECTURE 21

Hash tables

▸ Chapter 3.3 (Pages 458-477).

▸ Hashing, separate chaining, open addressing.

17

LECTURES 21

Summary for Dictionary operations

18

Worst case Average case

Search Insert Delete Search Insert Delete

BST

2-3 search tree

Red-black BSTs

Separate
chaining

Linear probing

n n n log n log n

log n

log n

log n log n log n log n log n

log n log n log n log n log n log n

n n n 1 1 1

n n n 1 1 1

LECTURES 22

Undirected Graphs

▸ Chapter 4.1 (Pages 515-556).

▸ Definitions, representations, APIs.

▸ BFS.

▸ DFS.

▸ Textbook code.

▸ https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/Graph.java.html

▸ https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/DepthFirstSearch.java.html

▸ https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/BreadthFirstPaths.java.html

19

https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/Graph.java.html
https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/DepthFirstSearch.java.html
https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/BreadthFirstPaths.java.html

LECTURES 22

Directed Graphs

▸ Chapter 4.2 (Pages 566-594).

▸ Definitions, representations, APIs.

▸ BFS.

▸ DFS.

▸ Textbook code.

▸ https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/Digraph.java.html

▸ https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/DirectedDFS.java.html

20

https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/Digraph.java.html
https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/DirectedDFS.java.html

LECTURE 23

Shortest Paths

▸ Chapter 4.4 (Pages 638-676).

▸ Dijkstra’s algorithm.

▸ https://visualgo.net/en/sssp

21

https://visualgo.net/en/sssp

LECTURE 24

Minimum Spanning Trees

▸ Chapter 4.3 (Pages 604-629).

▸ Know how to apply Kruskal's and Prim's algorithms.

▸ https://algs4.cs.princeton.edu/43mst/

▸ https://visualgo.net/en/mst

22

https://algs4.cs.princeton.edu/43mst/
https://visualgo.net/en/mst

PRACTICE PROBLEMS

Problem 1: Balanced Binary Search Trees

23

▸ a. Starting with an empty 2-3 search tree, what is the resulting 2-3 search tree after
you insert the keys 2, 7, 17, 1, 90, 3, 36, 47?

▸ b. Starting with an empty LLRB search tree, what is the resulting LLRB search tree after
you insert the keys 15, 6, 23, 4, 7, 5, 50, 71?

PRACTICE PROBLEMS

Problem 2: Hashtables

24

▸ Consider inserting the keys 25, 17, 12, 26, 27, 5, 9, 29, 11, 23 into a hash table of size
 using the hash function . For each of the following questions, fill

in the following hash table:

▸ a. using open addressing and linear probing with .

▸ b. using open addressing and quadratic probing with .

▸ c. using external chaining.

m = 11 h(k) = k % m

h(k, i) = (h(k) + i) % m

h(k, i) = (h(k) + i2) % m

0 1 2 3 4 5 6 7 8 9 10

PRACTICE PROBLEMS

Problem 3: Traversing Graphs

25

▸ Show the adjacency matrix and
adjacency list representations of the
undirected graph above.

▸ Run a.recursive and b. BFS starting
at vertex A assuming adjacent
vertices are returned in
lexicographic order. Fill in the table
below:

v marked distTo edgeTo

A

B
C
D
E

PRACTICE PROBLEMS

Problem 4: Shortest Paths

26

▸ Run Dijkstra’s algorithm on this graph, starting at vertex
a. Fill in the resulting distTo[] and edgeTo[] arrays below.
In the edgeTo[] column, please indicate the last edge in
the shortest path from a to every other vertex and mark
the shortest path tree.

v distTo edgeTo
a

b
c
d
e
f
g
h
i

PRACTICE PROBLEMS

Solution to Problem 1a: Balanced Binary Search Trees

27

▸ Starting with an empty 2-3 search tree, what is the resulting 2-3 search tree after you insert the keys 2, 7, 17, 1, 90, 3, 36, 47?

2 2 7 7

2 17

7

171 2

7

1 2 17 90

17 901

2 7

3

1 3 17 90

2 36

7

1 3 17

2 36

7

47 90

4

PRACTICE PROBLEMS

Solution to Problem 1b: Balanced Binary Search Trees

28

▸ Starting with an empty LLRB search tree, what is the resulting LLRB search tree after you insert the keys 15, 6, 23, 4, 7, 5, 50, 71?

15 15

6

15

6 23

15

6 23

4

15

6 23

4 7
15

6 23

5 7

4

15

6 50

5 7 23

15

6 50

5 7

4

23 71

PRACTICE PROBLEMS

Solution to Problem 2a: Hashtables

29

▸ Consider inserting the keys 25, 17, 12, 26, 27, 5, 9, 29, 11, 23 into a hash table of size
 using the hash function . For each of the following questions, fill

in the following hash table using open addressing and linear probing
with .

m = 11 h(k) = k % m

h(k, i) = (h(k) + i) % m

11 12 23 25 26 27 17 5 29 9

0 1 2 3 4 5 6 7 8 9 10

PRACTICE PROBLEMS

Solution to Problem 2b: Hashtables

30

▸ Consider inserting the keys 25, 17, 12, 26, 27, 5, 9, 29, 11, 23 into a hash table of size
 using the hash function . For each of the following questions, fill

in the following hash table using open addressing and linear probing with
.

m = 11 h(k) = k % m

h(k, i) = (h(k) + i2) % m

11 12 23 25 26 27 17 29 5 9

0 1 2 3 4 5 6 7 8 9 10

PRACTICE PROBLEMS

Solution to Problem 2c: Hashtables

31

▸ Consider inserting the keys 25, 17, 12, 26, 27, 5, 9, 29, 11, 23 into a hash table of size
 using the hash function . For each of the following questions, fill

in the following hash table using external chaining.
m = 11 h(k) = k % m

0 1 2 3 4 5 6 7 8 9 10

11 23 25 26 5

2712

17 29 9

PRACTICE PROBLEMS

Solution to Problem 3a: Traversing Graphs

32

▸ Show the adjacency matrix and
adjacency list representations of the
undirected graph above.

▸ Run a.recursive DFS assuming
adjacent vertices are returned in
lexicographic order.

▸ Order of visit: A, B, D, E, C

v marked edgeTo

A T -

B T A
C T A
D T B
E T B

PRACTICE PROBLEMS

Solution to Problem 3b: Traversing Graphs

33

▸ Show the adjacency matrix and
adjacency list representations of the
undirected graph above.

▸ Run b. BFS assuming adjacent
vertices are returned in
lexicographic order.

▸ Order of visit: A, B, C, E, D

v marked distTo edgeTo

A T 0 -

B T 1 A
C T 1 A
D T 2 B
E T 1 A

PRACTICE PROBLEMS

Solution to Problem 4: Shortest Paths

34

▸ Run Dijkstra’s algorithm on this graph, starting at vertex
a. Fill in the resulting distTo[] and edgeTo[] arrays below.
In the edgeTo[] column, please indicate the last edge in
the shortest path from a to every other vertex and mark
the shortest path tree.

v distTo edgeTo
a 0 -

b 15 a
c 25 a
d 35 c
e 25 b
f 35 e
g 30 e
h 20 b
i 35 h

