
CS062

DATA STRUCTURES AND ADVANCED PROGRAMMING

23: Shortest Paths

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

GRAPHS

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

Alexandra Papoutsaki 
she/her/hers

TODAY’S LECTURE IN A NUTSHELL

Lecture 23: Shortest Paths

▸ Introduction to Shortest Paths

▸ API

▸ Properties

▸ Dijkstra’s Algorithm

2

Some slides adopted from Algorithms 4th Edition or COS226

Edge-weighted digraph

3INTRODUCTION TO SHORTEST PATHS

▸ Edge-weighted digraph: a digraph where we associate
weights or costs with each edge.

Shortest Paths

▸ Shortest path from vertex s to vertex t: a directed path
from s to t with the property that no other such path has
a lower weight (total weight sum of edges it consists).

4INTRODUCTION TO SHORTEST PATHS

Shortest Path variants

▸ Single source: from one vertex s to every other vertex.

▸ Single sink: from every vertex to one vertex t.

▸ Source-sink: from one vertex s to another vertex t.

▸ All pairs: from every vertex to every other vertex.

▸ What version is there in your navigation app?

5INTRODUCTION TO SHORTEST PATHS

Shortest Paths Assumptions

▸ Not all vertices need to be reachable.

▸ We will assume so in this lecture.

▸ Weights are non-negative.

▸ There are algorithms that can handle negative weights.

▸ Shortest paths are not necessarily unique but they are
simple.

6INTRODUCTION TO SHORTEST PATHS

TODAY’S LECTURE IN A NUTSHELL

Lecture 23: Shortest Paths

▸ Introduction to Shortest Paths

▸ API

▸ Properties

▸ Dijkstra’s Algorithm

7

Weighted directed edge API

▸ public class DirectedEdge

▸ DirectedEdge(int v, int w, double weight)

▸ Constructs a weighted edge from v to w (v->w) with the provided weight.

▸ int from()

▸ Returns vertex source of this edge.

▸ int to()

▸ Returns vertex destination of this edge.

▸ double weight()

▸ Returns weight of this edge.

▸ String toString()

▸ Returns the string representation of this edge.

8API

Weighted directed edge in Java

public class DirectedEdge {
 private final int v;
 private final int w;
 private final double weight;

 public DirectedEdge(int v, int w, double weight) {
 this.v = v;
 this.w = w;
 this.weight = weight;
 }

 public int from() {
 return v;
 }

 public int to() {
 return w;
 }

 public double weight() {
 return weight;
 }

9API

Edge-weighted digraph API

▸ public class EdgeWeightedDigraph

▸ EdgeWeightedDigraph(int v)

▸ Constructs an edge-weighted digraph with v vertices.

▸ void addEdge(DirectedEdge e)

▸ Add weighted directed edge e.

▸ Iterable<DirectedEdge> adj(int v)

▸ Returns edges adjacent from v.

▸ int V()

▸ Returns number of vertices.

▸ int E()

▸ Returns number of edges.

▸ Iterable<DirectedEdge> edges()

▸ Returns all edges.

10API

Edge-weighted digraph adjacency list representation

11API

Edge-weighted digraph in Java

public class EdgeWeightedDigraph {
 private final int V; // number of vertices in this digraph
 private int E; // number of edges in this digraph
 private ArrayList<ArrayList<DirectedEdge>> adj; // adj.get(v) = adjacency list for v

 public EdgeWeightedDigraph(int V) {
 this.V = V;
 this.E = 0;
 adj = new ArrayList<ArrayList<DirectedEdge>>(V);
 for (int v = 0; v < V; v++)
 adj.add(new ArrayList<DirectedEdge>());
 }
 public void addEdge(DirectedEdge e) {
 int v = e.from();
 int w = e.to();
 adj.get(v).add(e);
 E++;
 }

 public Iterable<DirectedEdge> adj(int v) {
 return adj.get(v);
 }

12API

Single-source shortest path API

▸ Goal: find shortest path from s to every other vertex in the digraph.

▸ public class SP

▸ SP(EdgeWeightedDigraph G, int s)

▸ Shortest paths from s in digraph G.

▸ double distTo(int v)

▸ Length of shortest path from s to v.

▸ Iterable<DirectedEdge> pathTo(int v)

▸ Returns edges along the shortest path from s to v.

▸ boolean hasPathTo(int v)

▸ Returns whether there is a path from s to v.

13API

TODAY’S LECTURE IN A NUTSHELL

Lecture 23: Shortest Paths

▸ Introduction to Shortest Paths

▸ API

▸ Properties

▸ Dijkstra’s Algorithm

14

Data structures for single-source shortest paths

▸ Goal: find shortest path from s to every other vertex in the digraph.

▸ Shortest-paths tree (SPT): a subgraph which will be a directed tree
rooted at s which will contain all the vertices reachable from s and
every tree path in the SPT is a shortest path in the digraph.

▸ Representation of shortest paths with two vertex-indexed arrays.

▸ Edges on the shortest-paths tree: edgeTo[v] is the last edge on
a shortest path from s to v.

▸ Distance to the source: distTo[v] is the length of the shortest
path from s to v.

15PROPERTIES

16PROPERTIES

 public Iterable<DirectedEdge> pathTo(int v) {
 Stack<DirectedEdge> path = new Stack<DirectedEdge>();
 for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()]) {
 path.push(e);
 }
 return path;
 }

17PROPERTIES

Edge relaxation

▸ Relax edge e = v->w

▸ distTo[v] is the length of the shortest known path from s to
v.

▸ distTo[w] is the length of the shortest known path from s to
w.

▸ edgeTo[w] is the last edge on shortest known path from s to w.

▸ If e = v->w yields shorter path to w, update distTo[w] and
edgeTo[w].

18PROPERTIES

Edge relaxation

19PROPERTIES

Edge relaxation implementation

private void relax(DirectedEdge e) {
 int v = e.from(), w = e.to();
 if (distTo[w] > distTo[v] + e.weight()) {
 distTo[w] = distTo[v] + e.weight();
 edgeTo[w] = e;
 }
}

20PROPERTIES

Framework for shortest-paths algorithm

▸ Generic algorithm to compute a SPT from s

▸ distTo[v]= for each vertex v.

▸ edgeTo[v]=null for each vertex v.

▸ distTo[s]=0.

▸ Repeat until done:

▸ Relax any edge.

▸ distTo[v] is the length of a simple path from s to v.

▸ distTo[v] does not increase.

∞

TODAY’S LECTURE IN A NUTSHELL

Lecture 23: Shortest Paths

▸ Introduction to Shortest Paths

▸ API

▸ Properties

▸ Dijkstra’s Algorithm

21

TEXT 22

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

2

0

4

7

1 3

5

2

6

s

69

8

4

5

7

1

5
4

15

312

20

13

11

9

an edge-weighted digraph

0→1 5.0

0→4 9.0

0→7 8.0

1→2 12.0

1→3 15.0

1→7 4.0

2→3 3.0

2→6 11.0

3→6 9.0

4→5 4.0

4→6 20.0

4→7 5.0

5→2 1.0

5→6 13.0

7→5 6.0

7→2 7.0

TEXT 23

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

3

0

4

7

1 3

5

2

6

choose source vertex 0

v distTo[] edgeTo[]

0 0.0 -

1

2

3

4

5

6

7

TEXT 24

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

4

4

7

1 3

5

2

6

relax all edges adjacent from 0

9

8

5

0

0

∞

∞

∞

v distTo[] edgeTo[]

0 0.0 -

1

2

3

4

5

6

7

TEXT 25

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

∞

Dijkstra's algorithm demo

5

4

7

1 3

5

2

6

relax all edges adjacent from 0

9

8

5

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2

3

4 9.0 0→4

5

6

7 8.0 0→7

0

∞

5

0

∞

8

9

TEXT 26

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

7

0

4

7

1 3

5

2

6

choose vertex 1

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2

3

4 9.0 0→4

5

6

7 8.0 0→7

TEXT 27

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

8

0

4

7

1 3

5

2

6

relax all edges adjacent from 1

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2

3

4 9.0 0→4

5

6

7 8.0 0→7

4

15

12

5

∞

∞

8

TEXT 28

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

9

0

4

7

1 3

5

2

6

relax all edges adjacent from 1

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 17.0 1→2

3 20.0 1→3

4 9.0 0→4

5

6

7 8.0 0→7

4

15

12

✔

∞

∞5

17

20

8

TEXT 29

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

11

0

4

7

1 3

5

2

6

choose vertex 7

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 17.0 1→2

3 20.0 1→3

4 9.0 0→4

5

6

7 8.0 0→7

TEXT 30

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

∞

Dijkstra's algorithm demo

12

0

4

7

1 3

5

2

6

relax all edges adjacent from 7

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 17.0 1→2

3 20.0 1→3

4 9.0 0→4

5

6

7 8.0 0→7

6

7
8

17

TEXT 31

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

13

0

4

7

1 3

5

2

6

relax all edges adjacent from 7

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 15.0 7→2

3 20.0 1→3

4 9.0 0→4

5 14.0 7→5

6

7 8.0 0→7

6

7
8

17

∞ 14

15

TEXT 32

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

15

0

4

7

1 3

5

2

6

select vertex 4

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 15.0 7→2

3 20.0 1→3

4 9.0 0→4

5 14.0 7→5

6

7 8.0 0→7

TEXT 33

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

16

0

4

7

1 3

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 15.0 7→2

3 20.0 1→3

4 9.0 0→4

5 14.0 7→5

6

7 8.0 0→7

relax all edges adjacent from 4

4

5

20

8

14

9 ∞

TEXT 34

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

17

0

4

7

1 3

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 15.0 7→2

3 20.0 1→3

4 9.0 0→4

5 13.0 4→5

6 29.0 4→6

7 8.0 0→7

relax all edges adjacent from 4

4

5

20

✔

∞ 29

8

14

9

13

TEXT 35

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

19

0

4

7

1 3

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 15.0 7→2

3 20.0 1→3

4 9.0 0→4

5 13.0 4→5

6 29.0 4→6

7 8.0 0→7

select vertex 5

TEXT 36

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

20

0

4

7

1 3

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 15.0 7→2

3 20.0 1→3

4 9.0 0→4

5 13.0 4→5

6 29.0 4→6

7 8.0 0→7

relax all edges adjacent from 5

1

13

29

13

15

TEXT 37

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

21

0

4

7

1 3

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 20.0 1→3

4 9.0 0→4

5 13.0 4→5

6 26.0 5→6

7 8.0 0→7

relax all edges adjacent from 5

1

13

29

13

15 14

26

TEXT 38

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

23

0

4

7

1 3

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 20.0 1→3

4 9.0 0→4

5 13.0 4→5

6 26.0 5→6

7 8.0 0→7

select vertex 2

TEXT 39

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

24

0

4

7

1 3

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 20.0 1→3

4 9.0 0→4

5 13.0 4→5

6 26.0 5→6

7 8.0 0→7

relax all edges adjacent from 2

3

11

26

14

20

TEXT 40

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

25

0

4

7

1 3

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

relax all edges adjacent from 2

3

11

26

14

20 17

25

TEXT 41

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

27

0

4

7

1 3

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

select vertex 3

TEXT 42

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

28

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

relax all edges adjacent from 3

9

3

25

2017

TEXT 43

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

29

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

relax all edges adjacent from 3

9

✔

3

25

2017

TEXT 44

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

31

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

3

select vertex 6

TEXT 45

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

32

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

3

relax all edges adjacent from 6

TEXT 46

独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

34

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

3

shortest-paths tree from vertex s

s

47DIJKSTRA’S ALGORITHM

Indexed min-priority queue (Section 2.4 in recommended textbook)

▸ Associate an index between 0 and n-1 with each key in a priority queue.

▸ Insert a key associated with a given index.

▸ Delete a minimum key and return associated index.

▸ Decrease the key associated with a given index.

▸ public class IndexMinPQ<Key extends Comparable<Key>>

▸ IndexMinPQ(int n)

▸ Create indexed PQ with indices 0,1,…n-1

▸ void insert(int i, Key key)

▸ Associate key with index i.

▸ int delMin()

▸ Remove a minimal key and return its associated index.

▸ void decreaseKey(int i, Key key)

▸ Decrease the key with index i to the specified value.

48DIJKSTRA’S ALGORITHM

public class DijkstraSP {
 private double[] distTo; // distTo[v] = distance of shortest s->v path
 private DirectedEdge[] edgeTo; // edgeTo[v] = last edge on shortest s->v path
 private IndexMinPQ<Double> pq; // priority queue of vertices

 public DijkstraSP(EdgeWeightedDigraph G, int s) {
 distTo = new double[G.V()];
 edgeTo = new DirectedEdge[G.V()];

 for (int v = 0; v < G.V(); v++)
 distTo[v] = Double.POSITIVE_INFINITY;
 distTo[s] = 0.0;

 // relax vertices in order of distance from s
 pq = new IndexMinPQ<Double>(G.V());
 pq.insert(s, distTo[s]);
 while (!pq.isEmpty()) {
 int v = pq.delMin();
 for (DirectedEdge e : G.adj(v))
 relax(e);
 }
 }

 // relax edge e and update pq if changed
 private void relax(DirectedEdge e) {
 int v = e.from(), w = e.to();
 if (distTo[w] > distTo[v] + e.weight()) {
 distTo[w] = distTo[v] + e.weight();
 edgeTo[w] = e;
 if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
 else pq.insert(w, distTo[w]);
 }
 }

49DIJKSTRA’S ALGORITHM

Running time depends on PQ implementation

▸ Many variations. Assuming binary heap, running time is
proportional to and extra space.

▸ Cost of insert, delete-min, decrease-key are all .

▸ More complicated version with a Fibonacci heap takes
 time but in practice it’s not worth

implementing.

|E | log |V | |V |

log |V |

O(|E | + |V | log |V |)

50DIJKSTRA’S ALGORITHM

Practice Time

▸ Run Dijkstra’s algorithm on the following graph with 0 being the starting
vertex.

0

1 5

7

2 4

3

6

8

5

2

13

3

3

2

6

1

1
2

5

2

6

51DIJKSTRA’S ALGORITHM

Answer

v distTo[] edgeTo[]

0 0 -

1 6 3->1

2 2 0->2

3 4 2->3

4 5 3->4

5 8 6->5

6 6 4->6

7 11 5->7

0

1 5

7

2 4

3

6

8

5

2

13

3

3

2

6

1

1
2

5

2

6

TODAY’S LECTURE IN A NUTSHELL

Lecture 23: Shortest Paths

▸ Introduction to Shortest Paths

▸ API

▸ Properties

▸ Dijkstra’s Algorithm

52

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Recommended Textbook: Chapter 4.4 (Pages 638-676)

▸ Website:

▸ https://algs4.cs.princeton.edu/44sp/

▸ Visualization

▸ https://visualgo.net/en/sssp

53

https://algs4.cs.princeton.edu/44sp/
https://visualgo.net/en/sssp

ASSIGNED READINGS AND PRACTICE PROBLEMS

Problem

▸ Run Dijkstra’s algorithm on the following graph with 0
being the starting vertex.

54

ASSIGNED READINGS AND PRACTICE PROBLEMS

Answer

▸ Run Dijkstra’s algorithm on the following graph with 0
being the starting vertex.

55

v distTo[] edgeTo[]

0 0 -

1 8 0->1
2 12 0->2
3 26 2->3
4 46 3->4
5 34 3->5
6 33 3->6
7 38 3->7
8 42 3->8

