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TODAY’S LECTURE IN A NUTSHELL

Lecture 23: Shortest Paths 

▸ Introduction to Shortest Paths


▸ API


▸ Properties


▸ Dijkstra’s Algorithm
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Edge-weighted digraph

3INTRODUCTION TO SHORTEST PATHS

▸ Edge-weighted digraph: a digraph where we associate 
weights or costs with each edge.



Shortest Paths

▸ Shortest path from vertex s to vertex t: a directed path 
from s to t with the property that no other such path has 
a lower weight (total weight sum of edges it consists).
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Shortest Path variants

▸ Single source: from one vertex s to every other vertex.


▸ Single sink: from every vertex to one vertex t.


▸ Source-sink: from one vertex s to another vertex t.


▸ All pairs: from every vertex to every other vertex.


▸ What version is there in your navigation app?
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Shortest Paths Assumptions

▸ Not all vertices need to be reachable.


▸ We will assume so in this lecture.


▸ Weights are non-negative. 


▸ There are algorithms that can handle negative weights.


▸ Shortest paths are not necessarily unique but they are 
simple.
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Weighted directed edge API

▸ public class DirectedEdge

▸ DirectedEdge(int v, int w, double weight)

▸ Constructs a weighted edge from v to w (v->w) with the provided weight.


▸ int from()

▸ Returns vertex source of this edge.


▸ int to()

▸ Returns vertex destination of this edge.


▸ double weight()

▸ Returns weight of this edge.


▸ String toString()

▸ Returns the string representation of this edge.

8API



Weighted directed edge in Java

public class DirectedEdge { 
    private final int v;
    private final int w;
    private final double weight;

   public DirectedEdge(int v, int w, double weight) {
        this.v = v;
        this.w = w;
        this.weight = weight;
    }

   public int from() {
        return v;
    }

    public int to() {
        return w;
    }

    public double weight() {
        return weight;
    }
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Edge-weighted digraph API

▸ public class EdgeWeightedDigraph

▸ EdgeWeightedDigraph(int v)

▸ Constructs an edge-weighted digraph with v vertices.


▸ void addEdge(DirectedEdge e)

▸ Add weighted directed edge e.


▸ Iterable<DirectedEdge> adj(int v)

▸ Returns edges adjacent from v.


▸ int V()

▸ Returns number of vertices.


▸ int E()

▸ Returns number of edges.


▸ Iterable<DirectedEdge> edges()

▸ Returns all edges.
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Edge-weighted digraph adjacency list representation
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Edge-weighted digraph in Java

public class EdgeWeightedDigraph {
    private final int V;                // number of vertices in this digraph
    private int E;                      // number of edges in this digraph
    private ArrayList<ArrayList<DirectedEdge>> adj; // adj.get(v) = adjacency list for v
   
    public EdgeWeightedDigraph(int V) {
       this.V = V;
       this.E = 0;
       adj = new ArrayList<ArrayList<DirectedEdge>>(V);
        for (int v = 0; v < V; v++)
            adj.add(new ArrayList<DirectedEdge>());
    }
    public void addEdge(DirectedEdge e) {
        int v = e.from();
        int w = e.to();
        adj.get(v).add(e);
        E++;
    }

   public Iterable<DirectedEdge> adj(int v) {
       return adj.get(v);
    }
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Single-source shortest path API

▸ Goal: find shortest path from s to every other vertex in the digraph.


▸ public class SP

▸ SP(EdgeWeightedDigraph G, int s)

▸ Shortest paths from s in digraph G.


▸ double distTo(int v)

▸ Length of shortest path from s to v.


▸ Iterable<DirectedEdge> pathTo(int v)

▸ Returns edges along the shortest path from s to v.


▸ boolean hasPathTo(int v)

▸ Returns whether there is a path from s to v.

13API
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Data structures for single-source shortest paths

▸ Goal: find shortest path from s to every other vertex in the digraph.


▸ Shortest-paths tree (SPT): a subgraph which will be a directed tree 
rooted at s which will contain all the vertices reachable from s and 
every tree path in the SPT is a shortest path in the digraph.


▸ Representation of shortest paths with two vertex-indexed arrays.


▸ Edges on the shortest-paths tree: edgeTo[v] is the last edge on 
a shortest path from s to v.


▸ Distance to the source: distTo[v] is the length of the shortest 
path from s to v.

15PROPERTIES
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 public Iterable<DirectedEdge> pathTo(int v) {
        Stack<DirectedEdge> path = new Stack<DirectedEdge>();
        for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()]) {
            path.push(e);
        }
        return path;
    }
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Edge relaxation

▸ Relax edge e = v->w


▸ distTo[v] is the length of the shortest known path from s to 
v.


▸ distTo[w] is the length of the shortest known path from s to 
w.


▸ edgeTo[w] is the last edge on shortest known path from s to w.


▸ If e = v->w yields shorter path to w, update distTo[w] and 
edgeTo[w].
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Edge relaxation



19PROPERTIES

Edge relaxation implementation

private void relax(DirectedEdge e) {
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight()) {
       distTo[w] = distTo[v] + e.weight();
       edgeTo[w] = e;
    }
}



20PROPERTIES

Framework for shortest-paths algorithm

▸ Generic algorithm to compute a SPT from s


▸ distTo[v]=  for each vertex v.


▸ edgeTo[v]=null for each vertex v.


▸ distTo[s]=0.


▸ Repeat until done:


▸ Relax any edge.


▸ distTo[v] is the length of a simple path from s to v.

▸ distTo[v] does not increase.

∞
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

∞

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

∞

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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独Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value). 

独Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo
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Indexed min-priority queue (Section 2.4 in recommended textbook)

▸ Associate an index between 0 and n-1 with each key in a priority queue.


▸ Insert a key associated with a given index.


▸ Delete a minimum key and return associated index.


▸ Decrease the key associated with a given index.


▸ public class IndexMinPQ<Key extends Comparable<Key>>

▸ IndexMinPQ(int n)

▸ Create indexed PQ with indices 0,1,…n-1


▸ void insert(int i, Key key)

▸ Associate key with index i.


▸ int delMin()

▸ Remove a minimal key and return its associated index.


▸ void decreaseKey(int i, Key key)

▸ Decrease the key with index i to the specified value.
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public class DijkstraSP {
    private double[] distTo;          // distTo[v] = distance  of shortest s->v path
    private DirectedEdge[] edgeTo;    // edgeTo[v] = last edge on shortest s->v path
    private IndexMinPQ<Double> pq;    // priority queue of vertices

    public DijkstraSP(EdgeWeightedDigraph G, int s) {
        distTo = new double[G.V()];
        edgeTo = new DirectedEdge[G.V()];

        for (int v = 0; v < G.V(); v++)
            distTo[v] = Double.POSITIVE_INFINITY;
        distTo[s] = 0.0;

        // relax vertices in order of distance from s
        pq = new IndexMinPQ<Double>(G.V());
        pq.insert(s, distTo[s]);
        while (!pq.isEmpty()) {
            int v = pq.delMin();
            for (DirectedEdge e : G.adj(v))
                relax(e);
        }
    }

    // relax edge e and update pq if changed
    private void relax(DirectedEdge e) {
        int v = e.from(), w = e.to();
        if (distTo[w] > distTo[v] + e.weight()) {
            distTo[w] = distTo[v] + e.weight();
            edgeTo[w] = e;
            if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
            else                pq.insert(w, distTo[w]);
        }
    }
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Running time depends on PQ implementation

▸ Many variations. Assuming binary heap, running time is 
proportional to  and  extra space.


▸ Cost of insert, delete-min, decrease-key are all .


▸ More complicated version with a Fibonacci heap takes 
 time but in practice it’s not worth 

implementing.

|E | log |V | |V |

log |V |

O( |E | + |V | log |V | )
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Practice Time

▸ Run Dijkstra’s algorithm on the following graph with 0 being the starting 
vertex.
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Answer

v distTo[] edgeTo[]

0 0 -

1 6 3->1

2 2 0->2

3 4 2->3

4 5 3->4

5 8 6->5

6 6 4->6

7 11 5->7
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TODAY’S LECTURE IN A NUTSHELL

Lecture 23: Shortest Paths 

▸ Introduction to Shortest Paths


▸ API


▸ Properties


▸ Dijkstra’s Algorithm
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ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Recommended Textbook: Chapter 4.4 (Pages 638-676)


▸ Website:


▸ https://algs4.cs.princeton.edu/44sp/


▸ Visualization


▸ https://visualgo.net/en/sssp 
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ASSIGNED READINGS AND PRACTICE PROBLEMS

Problem 

▸ Run Dijkstra’s algorithm on the following graph with 0 
being the starting vertex.
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ASSIGNED READINGS AND PRACTICE PROBLEMS

Answer

▸ Run Dijkstra’s algorithm on the following graph with 0 
being the starting vertex.
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v distTo[] edgeTo[]

0 0 -

1 8 0->1
2 12 0->2
3 26 2->3
4 46 3->4
5 34 3->5
6 33 3->6
7 38 3->7
8 42 3->8


