
CS062

DATA STRUCTURES AND ADVANCED PROGRAMMING

22: Graphs

GRAPHS

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

Alexandra Papoutsaki 
she/her/hers

TODAY’S LECTURE IN A NUTSHELL

Lecture 22: Graphs

▸ Undirected Graphs

▸ Graph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Directed Graphs

▸ Digraph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Strongly Connected Components

2

Some slides adopted from Algorithms 4th Edition or COS226

UNDIRECTED GRAPHS

Why study graphs?

▸ Thousands of practical applications.

▸ Hundreds of graph algorithms known.

▸ Interesting and broadly useful abstraction.

▸ Challenging branch of theoretical computer science.

3

UNDIRECTED GRAPHS

Undirected Graphs

▸ Graph: A set of vertices connected pairwise by edges.

4

UNDIRECTED GRAPHS

Protein-protein interaction graph

5

https://www.researchgate.net/figure/Network-graph-of-the-protein-protein-interactions-Green-color-
represents-proteins_fig4_272297002

UNDIRECTED GRAPHS

The Internet

6

https://www.opte.org/the-internet

UNDIRECTED GRAPHS

Social media

7

https://www.databentobox.com/2019/07/28/facebook-friend-graph/

UNDIRECTED GRAPHS

Graph terminology

▸ Path: Sequence of vertices connected by edges

▸ Cycle: Path whose first and last vertices are the same

▸ Two vertices are connected if there is a path between them

8

UNDIRECTED GRAPHS

Examples of graph-processing problems

▸ Is there a path between vertex s and t?

▸ What is the shortest path between s and t?

▸ Is there a cycle in the graph?

▸ Euler Tour: Is there a cycle that uses each edge exactly once?

▸ Hamilton Tour: Is there a cycle that uses each vertex exactly once?

▸ Is there a way to connect all vertices?

▸ What is the shortest way to connect all vertices?

▸ Is there a vertex whose removal disconnects the graph?

9

TODAY’S LECTURE IN A NUTSHELL

Lecture 22: Graphs

▸ Undirected Graphs

▸ Graph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Directed Graphs

▸ Digraph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Strongly Connected Components

10

UNDIRECTED GRAPHS

Graph representation

▸ Vertex representation: Here, integers between 0 and V-1.

▸ We will use a dictionary to map between names of
vertices and integers (indices).

11

UNDIRECTED GRAPHS

Basic Graph API

▸ public class Graph

▸ Graph(int V): create an empty graph with V vertices.

▸ void addEdge(int v, int w): add an edge v-w.

▸ Iterable<Integer> adj(int v): return vertices
adjacent to v.

▸ int V(): number of vertices.

▸ int E(): number of edges.

12

UNDIRECTED GRAPHS

Example of how to use the Graph API to process the graph

▸ public static int degree(Graph g, int v){  
 int count = 0;  
 for(int w : g.adj(v))  
 count++;  
 return count;  
}

13

UNDIRECTED GRAPHS

Graph density

▸ In a simple graph (no parallel edges or loops), if , then:

▸ minimum number of edges is 0 and

▸ maximum number of edges is .

▸ Dense graph -> edges closer to maximum.

▸ Sparse graph -> edges closer to minimum.

|V | = n

n(n − 1)/2

14

UNDIRECTED GRAPHS

Graph representation: adjacency matrix

▸ Maintain a -by- boolean array;  
for each edge v-w:

▸ adj[v][w] = adj[w][v] = true;

▸ Good for dense graphs (edges close to).

▸ Constant time for lookup of an edge.

▸ Constant time for adding an edge.

▸ time for iterating over vertices adjacent to .

▸ Symmetric, therefore wastes space in undirected
graphs ().

▸ Not widely used in practice.

|V | |V |

|V |2

|V | v

|V |2

15

A B C D

A 0 1 1 1

B 1 0 0 1

C 1 0 0 0

D 1 1 0 0

A B

DC

UNDIRECTED GRAPHS

Graph representation: adjacency list

▸ Maintain vertex-indexed array of lists.

▸ Good for sparse graphs (edges proportional to
) which are much more common in the real

world.

▸ Algorithms based on iterating over vertices
adjacent to .

▸ Space efficient ().

▸ Constant time for adding an edge.

▸ Lookup of an edge or iterating over vertices
adjacent to is .

|V |

v

|E | + |V |

v degree(v)

16

UNDIRECTED GRAPHS

Adjacency-list graph representation in Java

public class Graph {

 private final int V;
 private int E;
 private ArrayList<ArrayList<Integer>> adj;

 //Initializes an empty graph with V vertices and 0 edges.
 public Graph(int V) {
 this.V = V;
 this.E = 0;
 adj = new ArrayList<ArrayList<Integer>>(V);
 for (int v = 0; v < V; v++) {
 adj.add(new ArrayList<Integer>());
 }
 }

 //Adds the undirected edge v-w to this graph. Parallel edges and self-loops allowed
 public void addEdge(int v, int w) {
 E++;
 adj.get(v).add(w);
 adj.get(w).add(v);
 }

 //Returns the vertices adjacent to vertex v.
 public Iterable<Integer> adj(int v) {
 return adj.get(v);
 }

17

TODAY’S LECTURE IN A NUTSHELL

Lecture 22: Graphs

▸ Undirected Graphs

▸ Graph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Directed Graphs

▸ Digraph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Strongly Connected Components

18

Some slides adopted from Algorithms 4th Edition or COS226

DEPTH-FIRST SEARCH

Mazes as graphs

▸ Vertex = intersection; edge = passage

19

http://oatzy.blogspot.com/2011/09/playing-with-pac-man.html

http://oatzy.blogspot.com/2011/09/playing-with-pac-man.html

DEPTH-FIRST SEARCH

How to survive a maze: a lesson from a Greek myth

▸ Theseus escaped from the labyrinth after killing the Minotaur with the following
strategy instructed by Ariadne:

▸ Unroll a ball of string behind you.

▸ Mark each newly discovered intersection and passage.

▸ Retrace steps when no unmarked options.

▸ Also known as the Trémaux algorithm.

20

DEPTH-FIRST SEARCH

Depth-first search

▸ Goal: Systematically traverse a graph.

▸ DFS (to visit a vertex v)

▸ Mark vertex v.

▸ Recursively visit all unmarked vertices w adjacent to v.

▸ Typical applications:

▸ Find all vertices connected to a given vertex.

▸ Find a path between two vertices.

21

DEPTH-FIRST SEARCH

Depth-first search

22

DEPTH-FIRST SEARCH

Depth-first search

▸ Goal: Find all vertices connected to s (and a corresponding path).

▸ Idea: Mimic maze exploration.

▸ Algorithm:

▸ Use recursion (ball of string).

▸ Mark each visited vertex (and keep track of edge taken to visit it).

▸ Return (retrace steps) when no unvisited options.

▸ When started at vertex s, DFS marks all vertices connected to s (and no other).

23

DEPTH-FIRST SEARCH

Implementation of depth-first search in Java

24

public class DepthFirstSearch {
 private boolean[] marked; // marked[v] = is there an s-v path?
 private int[] edgeTo; // edgeTo[v] = previous vertex on path from s to v  

 public DepthFirstSearch(Graph G, int s) {
 marked = new boolean[G.V()];
 edgeTo = new int[G.V()];
 dfs(G, s);
 }

 // depth first search from v
 private void dfs(Graph G, int v) {
 marked[v] = true;
 for (int w : G.adj(v)) {
 if (!marked[w]) {
 edgeTo[w] = v;
 dfs(G, w);
 }
 }
 }

DEPTH-FIRST SEARCH

PRACTICE TIME

25

▸ Run DFS on the following graph starting at vertex 0 and return the
vertices in the order of being marked. Assume that the adj method
returns back the adjacent vertices in increasing numerical order.

▸ Vertices marked as visited: 0, 2, 3, 4, 1, 5

DEPTH-FIRST SEARCH

ANSWER

26

V marked edgeTo
0 T -
1 T 4
2 T 0
3 T 2
4 T 2
5 T 1

DEPTH-FIRST SEARCH

Depth-first search analysis

▸ DFS marks all vertices connected to s in time proportional to
 in the worst case.

▸ Initializing arrays marked and edgeTo takes time proportional to
.

▸ Each adjacency-list entry is examined exactly once and there are
 such entries (two for each edge).

▸ Once we run DFS, we can check if vertex v is connected to s in
constant time. We can also find the v-s path (if it exists) in time
proportional to its length.

|V | + |E |

|V |

2 |E |

27

TODAY’S LECTURE IN A NUTSHELL

Lecture 22: Graphs

▸ Undirected Graphs

▸ Graph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Directed Graphs

▸ Digraph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Strongly Connected Components

28

BREADTH-FIRST SEARCH

Breadth-first search

▸ BFS (from source vertex s)

▸ Put s on a queue and mark it as visited.

▸ Repeat until the queue is empty:

▸ Dequeue vertex v.

▸ Enqueue each of v’s unmarked neighbors and mark them.

▸ Basic idea: BFS traverses vertices in order of distance from s.

29

30

BREADTH-FIRST SEARCH

Breadth-first search in Java

31

public class BreadthFirstSearch {
 private boolean[] marked; // marked[v] = is there an s-v path
 private int[] edgeTo; // edgeTo[v] = previous edge on shortest s-v path
 private int[] distTo; // distTo[v] = number of edges shortest s-v path

 public BreadthFirstSearch(Graph G, int s) {
 marked = new boolean[G.V()];
 distTo = new int[G.V()];
 edgeTo = new int[G.V()];
 bfs(G, s);
 }

 private void bfs(Graph G, int s) {
 Queue<Integer> q = new Queue<Integer>();
 distTo[s] = 0;
 marked[s] = true;
 q.enqueue(s);

 while (!q.isEmpty()) {
 int v = q.dequeue();
 for (int w : G.adj(v)) {
 if (!marked[w]) {
 edgeTo[w] = v;
 distTo[w] = distTo[v] + 1;
 marked[w] = true;
 q.enqueue(w);
 }
 }
 }
 }

BREADTH-FIRST SEARCH

PRACTICE TIME

32

▸ Run the BFS on the following graph starting at vertex 0 and return
the vertices in the order of being marked. Assume that the adj
method returns back the adjacent vertices in increasing numerical
order.

▸ Vertices marked as visited: 0, 2, 4, 5, 3, 1

BREADTH-FIRST SEARCH

ANSWER

33

V marked edgeTo distTo

0 T - 0
1 T 4 2
2 T 0 1
3 T 2 2
4 T 0 1
5 T 0 1

▸ Run DFS and BFS on the following graph starting at vertex s. Assume
that the adj method returns back the adjacent vertices in
lexicographic order.

BREADTH-FIRST SEARCH

PRACTICE TIME

34

https://11011110.github.io/blog/2013/12/17/stack-based-graph-traversal.html

▸ Run DFS and BFS on the following graph starting at vertex s. Assume
that the adj method returns back the adjacent vertices in
lexicographic order.

▸ DFS: s->a->b->e->d->c->f->g->h

▸ BFS: s->a->c->b->d->f->e->g->h

BREADTH-FIRST SEARCH

ANSWER

35

BREADTH-FIRST SEARCH

Summary

▸ DFS: Uses recursion.

▸ BFS: Put unvisited vertices on a queue.

▸ Shortest path problem: Find path from s to t that uses the fewest number of edges.

▸ E.g., calculate the fewest numbers of hops in a communication network.

▸ E.g., calculate the Kevin Bacon number or Erdös number.

▸ BFS computes shortest paths from s to all vertices in a graph in time proportional to

▸ The queue always consists of zero or more vertices of distance k from s, followed
by zero or more vertices of k+1.

|E | + |V |

36

TODAY’S LECTURE IN A NUTSHELL

Lecture 22: Graphs

▸ Undirected Graphs

▸ Graph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Directed Graphs

▸ Digraph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Strongly Connected Components

37

Directed Graph Terminology

▸ Directed Graph (digraph) : a set of vertices V connected pairwise by a set of directed edges E.

▸ E.g., V = {0,1,2,3,4,5,6,7,8,9,10,11,12},  
E = {{0,1}, {0,5}, {2,0}, {2,3},{3,2},{3,5},{4,2},{4,3},{5,4},{6,0},{6,4},{6,9},{7,6}{7,8},{8,7},{8,9},
{9,10},{9,11},{10,12},{11,4},{11,12},{12,9}}.

▸ Directed path: a sequence of vertices in which there is a directed edge pointing from each
vertex in the sequence to its successor in the sequence, with no repeated edges.

▸ A simple directed path is a directed path with no repeated vertices.

▸ Directed cycle: Directed path with at least one edge whose first and last vertices are the
same.

▸ A simple directed cycle is a directed cycle with no repeated vertices (other than the first
and last).

▸ The length of a cycle or a path is its number of edges.

38INTRODUCTION TO DIRECTED GRAPHS

Directed Graph Terminology

▸ Self-loop: an edge that connects a vertex to itself.

▸ Two edges are parallel if they connect the same pair of vertices.

▸ The outdegree of a vertex is the number of edges pointing from it.

▸ The indegree of a vertex is the number of edges pointing to it.

▸ A vertex w is reachable from a vertex v if there is a directed path
from v to w.

▸ Two vertices v and w are strongly connected if they are mutually
reachable.

39INTRODUCTION TO DIRECTED GRAPHS

INTRODUCTION TO DIRECTED GRAPHS

Directed Graph Terminology

▸ A digraph is strongly connected if there is a directed path
from every vertex to every other vertex.

▸ A digraph that is not strongly connected consists of a set
of strongly connected components, which are maximal
strongly connected subgraphs.

▸ A directed acyclic graph (DAG) is a digraph with no
directed cycles.

40

Anatomy of a digraph

41INTRODUCTION TO DIRECTED GRAPHS

INTRODUCTION TO DIRECTED GRAPHS

Digraph Applications

42

Digraph Vertex Edge

Web Web page Link

Cell phone Person Placed call

Financial Bank Transaction

Transportation Intersection One-way street

Game Board Legal move

Citation Article Citation

Infectious Diseases Person Infection

Food web Species Predator-prey
relationship

INTRODUCTION TO DIRECTED GRAPHS

Popular digraph problems

43

Problem Description

s->t path Is there a path from s to t?

Shortest s->t path What is the shortest path from s to t?

Directed cycle Is there a directed cycle in the digraph?

Topological sort Can vertices be sorted so all edges point from earlier to
later vertices?

Strong connectivity Is there a directed path between every pair of vertices?

TODAY’S LECTURE IN A NUTSHELL

Lecture 22: Graphs

▸ Undirected Graphs

▸ Graph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Directed Graphs

▸ Digraph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Strongly Connected Components

44

DIRECTED GRAPHS

Basic Graph API

▸ public class Digraph

▸ Digraph(int V): create an empty digraph with V vertices.

▸ void addEdge(int v, int w): add an edge v->w.

▸ Iterable<Integer> adj(int v): return vertices adjacent from
v.

▸ int V(): number of vertices.

▸ int E(): number of edges.

▸ Digraph reverse(): reverse edges of digraph.

45

DIRECTED GRAPHS

Digraph representation: adjacency list

▸ Maintain vertex-indexed array of lists.

▸ Good for sparse graphs (edges proportional to
) which are much more common in the real

world.

▸ Algorithms based on iterating over vertices
adjacent from .

▸ Space efficient ().

▸ Constant time for adding a directed edge.

▸ Lookup of a directed edge or iterating over
vertices adjacent from is .

|V |

v

|E | + |V |

v outdegree(v)

46

DIRECTED GRAPHS

Adjacency-list digraph representation in Java

47

public class Digraph {

 private final int V;
 private int E;
 private ArrayList<ArrayList<Integer>> adj;

 //Initializes an empty digraph with V vertices and 0 edges.
 public Digraph(int V) {
 this.V = V;
 this.E = 0;
 adj = new ArrayList<ArrayList<Integer>>(V);
 for (int v = 0; v < V; v++) {
 adj.add(new ArrayList<Integer>());
 }
 }

 //Adds the directed edge v->w to this digraph.
 public void addEdge(int v, int w) {
 E++;
 adj.get(v).add(w);
 }

 //Returns the vertices adjacent from vertex v.
 public Iterable<Integer> adj(int v) {
 return adj.get(v);
 }

TODAY’S LECTURE IN A NUTSHELL

Lecture 22: Graphs

▸ Undirected Graphs

▸ Graph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Directed Graphs

▸ Digraph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Strongly Connected Components

48

DEPTH-FIRST SEARCH

Reachability

▸ Find all vertices reachable from s along a directed path.

49

https://apprize.info/science/algorithms_2/2.html

https://apprize.info/science/algorithms_2/2.html

DEPTH-FIRST SEARCH

Depth-first search in digraphs

▸ Same method as for undirected graphs.

▸ Every undirected graph is a digraph with edges in both directions.

▸ Maximum number of edges in a simple digraph is .

▸ DFS (to visit a vertex v)

▸ Mark vertex v.

▸ Recursively visit all unmarked vertices w adjacent from v.

▸ Typical applications:

▸ Find a directed path from source vertex s to a given target vertex v.

▸ Topological sort.

▸ Directed cycle detection.

n(n − 1)

50

DEPTH-FIRST SEARCH

Depth-first search

51

DEPTH-FIRST SEARCH

Directed depth-first search in Java

public class DirectedDFS {
 private boolean[] marked; // marked[v] = is there an s->v path?

 public DirectedDFS(Digraph G, int s) {
 marked = new boolean[G.V()];
 dfs(G, s);
 }

 // directed depth first search from v
 private void dfs(Digraph G, int v) {
 marked[v] = true;
 for (int w : G.adj(v)) {
 if (!marked[w]) {
 dfs(G, w);
 }
 }
 }

52

DEPTH-FIRST SEARCH

Depth-first search analysis

▸ DFS marks all vertices reachable from s in time proportional to
 in the worst case.

▸ Initializing arrays marked takes time proportional to .

▸ Each adjacency-list entry is examined exactly once and there are
such edges.

▸ Once we run DFS, we can check if vertex v is reachable from s in
constant time. We can also find the s->v path (if it exists) in time
proportional to its length.

|V | + |E |

|V |

E

53

TODAY’S LECTURE IN A NUTSHELL

Lecture 22: Graphs

▸ Undirected Graphs

▸ Graph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Directed Graphs

▸ Digraph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Strongly Connected Components

54

BREADTH-FIRST SEARCH

Breadth-first search

▸ Same method as for undirected graphs.

▸ Every undirected graph is a digraph with edges in both directions.

▸ BFS (from source vertex s)

▸ Put s on queue and mark s as visited.

▸ Repeat until the queue is empty:

▸ Dequeue vertex v.

▸ Enqueue all unmarked vertices adjacent from v, and mark them.

▸ Typical applications:

▸ Find the shortest (in terms of number of edges) directed path between two vertices in time
proportional to .|E | + |V |

55

56

BREADTH-FIRST SEARCH

Summary

▸ Single-source reachability in a digraph: DFS/BFS.

▸ Shortest path in a digraph: BFS.

57

TODAY’S LECTURE IN A NUTSHELL

Lecture 22: Graphs

▸ Undirected Graphs

▸ Graph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Directed Graphs

▸ Digraph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Strongly Connected Components

58

STRONGLY CONNECTED COMPONENTS

Is a digraph strongly connected?

▸ A strongly connected digraph is a directed graph in which it is possible to reach
any vertex starting from any other vertex by traversing edges.

▸ Pick a random starting vertex s.

▸ Run DFS/BFS starting at s.

▸ If have not reached all vertices, return false.

▸ Reverse edges.

▸ Run DFS/BFS again on reversed graph.

▸ If have not reached all vertices, return false.

▸ Else return true.

59

TODAY’S LECTURE IN A NUTSHELL

Lecture 22: Graphs

▸ Undirected Graphs

▸ Graph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Directed Graphs

▸ Digraph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Strongly Connected Components

60

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Recommended Textbook: Chapter 4.1 (Pages 522-556), Chapter 4.2 (Pages
566-594)

▸ Website:

▸ https://algs4.cs.princeton.edu/41graph/

▸ https://algs4.cs.princeton.edu/42digraph/

61

Visualization

▸ https://visualgo.net/en/dfsbfs

https://algs4.cs.princeton.edu/41graph/
https://algs4.cs.princeton.edu/42digraph/
https://visualgo.net/en/dfsbfs

ASSIGNED READINGS AND PRACTICE PROBLEMS

Problem 1

▸ What is the maximum number of edges in an undirected graph with V vertices and
no parallel edges?

▸ What is the minimum number of edges in an undirected graph with V vertices,
none of which are isolated (have degree 0)?

▸ What is the maximum number of edges in a digraph with V vertices and no parallel
edges?

▸ What is the minimum number of edges in a digraph with V vertices, none of which
are isolated?

62

ASSIGNED READINGS AND PRACTICE PROBLEMS

Problem 2

▸ Assume you are given the following 16 edges of an undirected graph with 12 vertices, inserted in
an adjacency list in this order:

▸ 8-4

▸ 2-3

▸ 1-11

▸ 0-6

▸ 3-6

▸ 10-3

▸ 7-11

▸ 7-8

▸ ...

63

▸ 11-8

▸ 2-0

▸ 6-2

▸ 5-2

▸ 5-10

▸ 5-0

▸ 8-1

▸ 4-1

ASSIGNED READINGS AND PRACTICE PROBLEMS

Problem 3

▸ Run DFS and BFS on the following digraph starting at vertex 0.

64

ASSIGNED READINGS AND PRACTICE PROBLEMS

Answer 1

▸ What is the maximum number of edges in an undirected graph with V vertices and no parallel
edges?

▸ , where .

▸ What is the minimum number of edges in an undirected graph with V vertices, none of which
are isolated (have degree 0)?

▸ .

▸ What is the maximum number of edges in a digraph with V vertices and no parallel edges?

▸ , where .

▸ What is the minimum number of edges in a digraph with V vertices, none of which are
isolated?

▸ .

n(n − 1)/2 n = |V |

n − 1

n(n − 1) n = |V |

n − 1

65

ASSIGNED READINGS AND PRACTICE PROBLEMS

Answer 2

▸ Assume you are given the following 16 edges of an undirected graph with 12 vertices, inserted in
an adjacency list in this order:

▸ 8-4

▸ 2-3

▸ 1-11

▸ 0-6

▸ 3-6

▸ 10-3

▸ 7-11

▸ 7-8

▸ ...

66

▸ 11-8

▸ 2-0

▸ 6-2

▸ 5-2

▸ 5-10

▸ 5-0

▸ 8-1

▸ 4-1

▸ 0 -> 5 -> 2 -> 6

▸ 1 -> 4 -> 8 -> 11

▸ 2 -> 5 -> 6 -> 0 -> 3

▸ 3 -> 10 -> 6 -> 2

▸ 4 -> 1 -> 8

▸ 5 -> 0 -> 10 -> 2

▸ 6 -> 2 -> 3 -> 0

▸ 7 -> 8 -> 11

▸ 8 -> 1 -> 11 -> 7 -> 4

▸ 9 ->

▸ 10 -> 5 -> 3

▸ 11 -> 8 -> 7 -> 1

ASSIGNED READINGS AND PRACTICE PROBLEMS

Answer 3

▸ DFS - Order of visit: 0, 1, 3, 2, 4, 5, 7, 6

67

V marked edgeTo
0 T -
1 T 0
2 T 3
3 T 1
4 T 3
5 T 4
6 T 7
7 T 5

ASSIGNED READINGS AND PRACTICE PROBLEMS

Answer 3

▸ BFS - Order of visit: 0, 1, 3, 2 4, 5, 7, 6

68

V marked edgeTo distTo

0 T - 0

1 T 1 1

2 T 3 2

3 T 1 2

4 T 3 3

5 T 4 4

6 T 7 6

7 T 5 5

